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Abstract

If a graph G is such that no two adjacent vertices of G have the same degree, we say that
G is locally irregular. In this work we introduce and study the problem of identifying a largest
induced subgraph of a given graph G that is locally irregular. Equivalently, given a graph G,
find a subset S of V (G) of minimum order, such that by deleting the vertices of S from G
results in a locally irregular graph; we denote with I(G) the order of such a set S. We first treat
some easy graph families, namely paths, cycles, trees, complete bipartite and complete graphs.
However, we show that the decision version of the introduced problem is NP-Complete, even
for restricted families of graphs, such as subcubic bipartite, or cubic graphs.

Then, looking for more positive results, we turn towards computing the parameter I(G)
through the lens of parameterised complexity. In particular, we provide two algorithms that
compute I(G), each one considering different parameters. The first one considers the size of the
solution k and the maximum degree ∆ of G with running time (2∆)knO(1), while the second
one considers the treewidth tw and ∆ of G, and has running time ∆2twnO(1). Therefore, we
show that the problem is FPT by both k and tw if the graph has bounded maximum degree
∆. Since these algorithms are not FPT for graphs with unbounded maximum degree (unless
we consider ∆ + k or ∆ + tw as the parameter), it is natural to wonder about the existence
of an algorithm that does not include additional parameters (other than k or tw) in its de-
pendency. We manage to settle negatively this question, and we show that our algorithms
are essentially optimal. In particular, we prove that there is no algorithm that computes I(G)
with dependence f(k)no(k) or f(tw)no(tw), unless the ETH fails.

Keywords: Locally irregular, largest indused subraph, FPT, treewidth, W-hardness

1 Introduction
A graph G is said to be locally irregular, if every two adjacent vertices of G have different degrees.
In this paper, we introduce and study the problem of finding a largest locally irregular induced
subgraph of a given graph. This problem is equivalent to identifying what is the minimum number
k of vertices that must be deleted from G, so that what remains is a locally irregular graph.

The notion of locally irregular graphs was first introduced in [6]. The most interesting aspect
of locally irregular graphs, comes from their connection to the so-called 1-2-3 Conjecture, proposed
in [23]. Formally, the 1-2-3 Conjecture tells us that for almost every graph, we should be able to
put weights from {1, 2, 3} on the edges of that graph, so that the colouring that assigns a colour
to each vertex equal to the sum of the weights on its adjacent edges, is a proper vertex-colouring
of the graph.

As we said earlier, the 1-2-3 Conjecture seems to have some very interesting links to locally
irregular graphs. An obvious connection is that this conjecture holds for irregular graphs. Indeed,
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assigning weight 1 to all the edges of a locally irregular graph, suffices to produce a proper vertex-
colouring, as each vertex receives a colour equal to its degree. Furthermore, there have been taken
some steps towards proving that conjecture, which involve edge-decomposition of a graph into a
constant number of locally irregular subgraphs, i.e., given G, find an edge-colouring of G using
a constant number of colours, such that each colour induces a locally irregular subgraph of G.
This is the main motivation behind [6], and it seems to remain interesting enough to attract more
attention [8, 26, 29].

Note that the class of locally irregular graphs can be seen as an antonym to that of regular
graphs. It is important to state here that there exist several additional such notions. This is mainly
due to the very well known fact that non-trivial irregular graphs, i.e., graphs with no two vertices
(not necessarily adjacent) having the same degree, do not exist (see [13]). Thus, the literature
has plenty of slightly different definitions of irregularity (see for example [2, 13, 14, 21, 30]). One
way to deal with the nonexistence of irregular graphs, is to define a notion of local irregularity.
Intuitively, instead of demanding for all vertices of a graph to have different degrees, we are now
considering each vertex v separately, and request that the vertices “around” v verify some properties
of irregularity. For example, the authors of [3] study graphs G such that for every vertex v of G,
no two neighbours of v have the same degree. For an overview of other interesting notions of
irregularity (local or otherwise), we refer the reader to [4].

The problem we introduce belongs in a more general and well studied family of problems, which
is about identifying a largest induced subgraph of a given graph that verifies a specific property Π.
That is, given a graph G = (V,E) and an integer k, does there exist a set V ′ ⊆ V such that |V ′| ≤ k
and G[V \V ′] has the specified property Π? In our case, the property Π is “the induced subgraph is
locally irregular”. This generalisation is indeed a classic problem in graph theory, appearing as the
Induced Subgraph with Property Π (ISPΠ for short) problem in [22]. Unfortunately, it was
shown in [25], that ISPΠ is a hard problem for any property Π that is hereditary, i.e., all induced
subgraphs of G verify Π if G itself verifies that property.

However, the ISPΠ problem remains interesting (one could say that it actually becomes more
interesting) even when considering properties Π that are not hereditary. Recently, the authors
of [7] studied the problem for Π being “all vertices of the induced subgraph have odd degree”,
which clearly is not a hereditary property. Nevertheless, they showed that this is an NP-hard
problem, and they gave an FPT algorithm that solves the problem when parameterised by the
rank-width. Continuing with this idea of Π being a property that focuses on the degrees of the
given graph, we would also like to mention [12], in which the authors study the ISPΠ problem
for Π being “the number of vertices of the induced subgraph with degree equal to the maximum
degree of G, is at least k”, where the graph G and the integer k are given in the input. Also, the
authors of [1, 5, 28] studied the ISPΠ problem, where Π is the rather natural property “the induced
subgraph is d-regular”, where d is an integer given in the input (recall that a graph is said to be
d-regular if all of its vertices have the same degree d). In particular, in [5] it is shown that finding
a largest (connected) induced subgraph that is d-regular, is NP-hard to approximate, even when
restricted on bipartite or planar graphs. The authors of [5] also provide linear-time algorithms
to solve the problems for graphs with bounded treewidth. In contrast, the authors of [1] take a
more practical approach, as they focus on solving the problem for the particular values of d = 1
and d = 2, their tools including bounds from quadratic programming, Lagrangian relaxation and
integer programming.

It is quite clear that, in some sense, the property that interests us lies at the opposite side of the
one studied in [1, 5, 28]. However, both properties, “the induced subgraph is locally regular” and
“the induced subgraph is locally irregular” are not hereditary. This means that we do not get an
NP-hardness result directly from [25]. Furthermore, in contrast to the hereditary properties, for
which the ISPΠ problem always admits FPT algorithms (proven in [11, 24]), for the non-hereditary
ones this is not always true. Indeed in [28], the authors proved that when considering Π as “the
induced subgraph is regular”, the ISPΠ problem is W[1]-hard when parameterised by the size of
the solution. That is, there should be no O∗(f(k)nc) time algorithm for this problem, where c is a
constant. For such problems, it is also interesting to see if there exists any algorithm with running
time O∗(no(k)) or O∗(f(k)no(k)). The authors of [15, 16, 17] provide techniques that can be used
to strongly indicate the non-existence of such algorithms, being applied on a variety of W[1]-hard
and W[2]-hard problems, such as the Independent Set and the Dominating Set, parameterised
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by the size of their solutions. Usually these lower bounds are shown under the assumption of a
weaker version of the Exponential Time Hypothesis, which states that SAT can not be solved
in 2o(n+m).

Our contribution: We begin in Section 2 by providing the basic notations and definitions that
are going to be used throughout this paper. In Section 3, we deal with the complexity of the
introduced problem. In particular, in Section 3.1, we show that the problem belongs in P if the
input graph is a path, cycle, tree, complete bipartite or complete graph. We then move on to
Section 3, where we prove that finding the maximum induced locally irregular subgraph of a given
graph G is NP-hard, even if G is restricted to being a subcubic bipartite, or a cubic graph.

As the problem seems to be hard even for rather restricted families of graphs, we decide to look
into its parameterised complexity. In Sections 4.1 and 4.2 we present two algorithms that compute
I(G), each one considering different parameters. The first considers the size of the solution k and
the maximum degree ∆ of G, and and has running time (2∆)knO(1), while the second considers
the treewidth tw and ∆ of G, and has running time ∆2twnO(1). Unfortunately, these algorithms
can be considered as being FPT only if ∆ is part of the parameter. Therefore, we wondered if
we can eliminate the ∆ from the dependence. In Section 4.3 we answer this question negatively
and we show that our algorithms are essentially optimal. In particular, we present two linear
fpt-reductions which prove that the problem is W[2]-hard when parameterised only by the size of
the solution and W[1]-hard when parameterised only by the treewidth. Through these reductions,
we also show that we can not even have an algorithm that computes I(G) in time O∗(f(k)no(k))
or O∗(f(tw)no(tw)), unless the ETH fails.

2 Preliminaries
For notions and definitions on graph theory not explained here, we refer the reader to [19].

Let G = (V,E) be a graph and G′ = (V ′, E′) be a subgraph of G (i.e., created by deleting
vertices and/or edges of G). Recall first that the subgraph G′ is induced if it can be created only
by deleting vertices of G. That is, for each edge uv ∈ E, if u, v ∈ V ′, then uv ∈ E′. For any vertex
v ∈ V , let NG(v) = {u ∈ V : uv ∈ E} denote the neighbourhood of v in G, and let dG(v) = |NG(v)|
denote the degree of v in G. We also define NG[v] = NG(v) ∪ {v}. Finally, for any X ⊆ V , we
define NG[X] =

⋃
v∈X NG[v]. Note that, whenever the graph G is clear from the context, we will

omit the subscript and simply write N(v), d(v), N [v] and N [X].
A rooted tree T is an acyclic connected graph with one special vertex r, designated to be the

root of T . Any vertex u of T with d(u) = 1, is called a leaf of T . Any vertex of T that is not a
leaf, is known as an internal vertex. The parent of a vertex v 6= r, is the unique vertex that is
closest to v in the unique path from v to r.

Let G = (V,E) be a graph. We say that G is locally irregular if for every edge uv ∈ E, we
have that d(u) 6= d(v). Now, let S ⊆ V be such that G[V \ S] is a locally irregular graph; any
set S that has this property, is said to be an irregulator of G. For short, we will say that S is an
ir(G). Moreover, let I(G) be the minimum order that any ir(G) can have. We will say that S is a
minimum irregulator of G, for short S is an ir∗(G), if S is an ir(G) and |S| = I(G).

We also define the following notion, which generalises ir(G). Let G = (V,E) be a graph,
S,X ⊆ V and let G′ = G[V \ S]. Now, let S ⊆ V be such that, for each two neighbouring
vertices u, v in X \ S, we have that dG′(u) 6= dG′(v); any set S that has this property, is said to
be an irregulator of X in G, for short ir(G,X). We define the notions of ir∗(G,X) and I(G,X)
analogously to the previous definitions.

Finally, recall that a fixed parameter-tractable (FPT for short) algorithm, is an algorithm with
running time f(k)nO(1), where f is a computable function and k is the considered parameter. We
also make use of what is known as a linear fpt-reduction, a type of polynomial reduction such that
the size of the parameter of the new problem is linear in regards to the size of the parameter of the
original problem. Observe that if we have a linear fpt-reduction from a problem Q with parameter
k to a problem Q′ with parameter k′ and the assumption that Q can not be solved in time f(k)n

o(k)
1

(where n1 is the size of the input of Q), then we can conclude that there is no f(k′)n
o(k′)
2 time

algorithm for Q (where n2 is the size of the input of Q).
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We will now provide some lemmas that will be useful throughout this paper. In the first three
lemmas below, we investigate the relationship between I(G) and I(G,X).

Lemma 2.1. Let G = (V,E) be a graph and let X ⊆ V . Then I(G,X) ≤ I(G).

Proof. Let S be an ir∗(G), G′ = G[V \ S] and X ′ = X \ S. Observe that for each pair of vertices
u, v such that u ∈ X ′ and v ∈ NG′(u) ∩X ′, we have that dG′(u) 6= dG′(v), since S is an ir∗(G).
It follows that S is also an irregulator of X in G, i.e. S is an ir(G,X), and thus we have that
I(G,X) ≤ |S| = I(G).

Lemma 2.2. Let G = (V,E) be a graph and S,X ⊆ V such that S is an ir∗(G,X). Then,
S ⊆ N [X] and I(G,X) = I(G[N [X]], X).

Proof. Let S be an ir∗(G,X), S1 = S ∩N [X] and S2 = S \ S1. It suffices to prove that S1 is an
ir(G,X). Indeed, if S1 ⊆ S is an ir(G,X), since S is an ir∗(G,X), we can conclude that S = S1

and that S ⊆ N [X] (by definition of S1).
Assume now that S1 is not an ir(G,X). Then there exists a pair of vertices u, v where uv is

an edge in G[X \ S1] and dG[V \S1](u) = dG[V \S1](v). Observe that N [{u, v}] ⊆ N [X], and thus
N [{u, v}] ∩ S2 = ∅. Therefore, dG[V \S](u) = dG[V \S1](u) = dG[V \S1](v) = dG[V \S](v). This is a
contradiction since S is an ir∗(G,X).

Now, we will prove that I(G,X) = I(G[N [X]], X). Let S be an ir∗(G,X). Since S ⊆ N [X]
and any vertex v ∈ X \ S has N(v) ⊆ N [X], we have that dG[V \S](v) = dG[N [X]\S](v). Thus,
S is an ir(G[N [X]], X) and I(G,X) ≥ I(G[N [X]], X). Now for the opposite direction, let S′ be
an ir∗(G[N [X]], X). We will show that S′ is also an ir(G,X). Since for all v ∈ X \ S′, we
have dG[V \S′](v) = dG[N [X]\S′](v) (again because N(v) ⊆ N [X]) we have that S′ is an ir(G,X).
Therefore, I(G,X) ≤ I(G[N [X]], X).

Lemma 2.3. Let G = (V,E) be a graph, and X1, . . . , Xn ⊆ V such that N [Xi] ∩ N [Xj ] = ∅ for
every 1 ≤ i < j ≤ n. Then

∑n
i=1 I(G,Xi) ≤ I(G).

Proof. Let X =
⋃n

i=1Xi. For every 1 ≤ i ≤ n, let Si be an ir∗(G,Xi) and G′i = G[V \ Si], and let
S =

⋃n
i=1 Si and G′ = G[V \ S]. Observe first that for every i 6= j, since N [Xi] ∩N [Xj ] = ∅, we

have that Si ∩ Sj = ∅ as well. Thus, |S| =
∑n

i=1 |Si|.
We will now show that S is an ir∗(G,X). Assume that there exists an S′ such that |S′| < |S|

and S′ is an ir(G,X). Then, there exists a k ≤ n such that the set S′k = S′ ∩N [Xk], is such that
|S′k| < |Sk|, as otherwise |S′| can not be smaller than |S|. Observe that S′k must be an ir(G,Xk);
this holds because for any vertex u ∈ S′ \ S′k, we know that u /∈ N [Xk]. This is a contradiction
since we have assumed that Sk is an ir∗(G,Xk) and S′k is an ir(G,Xk) with size smaller than Sk.
Therefore, S is an ir∗(G,X), and the statement follows by Lemma 2.1.

Lemma 2.4. Let G = (V,E) be a graph such that, G is not locally irregular, and S be an ir∗(G).
Furthermore let Gv = (V ′, E′) be the graph G[V \ {v}] for a vertex v ∈ S. Then I(Gv) = I(G)− 1.

Proof. First observe that S′ = S \ {v} must be an ir(Gv) as Gv[V ′ \S′] = G[V \S]. It follows that
I(Gv) ≤ I(G)−1. Assume that I(Gv) < I(G)−1. Then these exists an S′′ such that |S′′| < I(G)−1
and S′′ is an ir(Gv). Since Gv[V ′ \S′′] = G[V \ (S′′ ∪{v})], we have that S′′ ∪{v} is an ir(G) and
|S′′ ∪ {v}| = |S′′|+ 1 < I(G). This is a contradiction.

The following, almost trivial, observation, will be useful throughout the rest of the paper.

Observation 2.5. Let G = (V,E) be a graph and S be an ir(G). Then, for each edge uv ∈ E, if
d(u) = d(v), then S contains at least one vertex in N [{u, v}].

3 Complexity
In this section, we deal with the (classical) complexity of the problem we introduced. First, we
calculate I(G) for some easy families of graphs. Specifically, we show that I(G) can be calculated in
linear time when G is a path, a cycle, a complete or a complete bipartite graph, and in polynomial
time when G is a tree. Then, we show that finding a minimum irregulator of a graph is NP-hard.
Interestingly, this remains true even for quite restricted families of graphs, such as 3-regular graphs
(also known as cubic) and bipartite graphs of maximum degree at most 3.
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3.1 Polynomial Cases
Theorem 3.1. Let G be a graph. If G = Kn, then I(G) = n − 1. Also, if G = Kn,m with
0 ≤ n ≤ m, then I(G) ≤ 1 with the equality holding if and only if n = m.

Proof. Let G = (V,E). Assume that G = Kn, and let S be an ir(G) with |S| < n − 1. Then
G′ = G[V \ S] is a complete graph of order n′ > n− (n− 1) = 1, and for any n′ ≥ 2, we have that
Kn′ is not locally irregular, leading to a contradiction.

Observe that Kn,m, with 0 ≤ n < m, is locally irregular, and thus I(Kn,m) = 0 in this case.
Assume now that G = Kn,n with n ≥ 1. We have that I(G) ≥ 1 as Kn,n is not locally irregular.
Let L,R be the two bipartitions of V , with |L| = n and |R| = n. Consider the set S = {v}, where
v is any vertex of L. Clearly, after the deletion of v, the graph G′ = G[V \ S] is isomorphic to
Kn−1,n which is locally irregular.

Theorem 3.2. Let Pn be the path on n vertices, then

I(Pn) =

{
bn4 c, if n 6≡ 2 mod 4

bn4 c+ 1, if n ≡ 2 mod 4

Proof. We will begin our proof by examining the cases of P1, P2, P3, and P4. Observe first of all;
that P1 and P3 are locally irregular graphs. It follows that I(P1) = I(P3) = 0.

On the other hand, it is also easy to check that P2 is not locally irregular, but that deleting any
one of its vertices suffices to turn it into P1 (which is locally irregular). It follows that I(P2) = 1.
We will now show that I(P4) = 1. Let P4 = v1v2v3v4 and note that P4 is not locally irregular (we
have that d(v2) = d(v3) = 2). Moreover, deleting either v1 or v4 from P4, results in the graph
P3, which is locally irregular. Thus I(P4) = 1. Observe moreover that any path on more than 4
vertices is not locally irregular.

We are now ready to continue with the proof. Let n, k, d ∈ N, with n ≥ 5, n ≡ k mod 4,
d = bn4 c and G = Pn = v1 . . . vn. We have the following two cases:

• k 6= 2. Consider the set S = {vi : i ≡ 0 mod 4}. We have that |S| = d. Also, observe that
the graph G[V (G) \ S] has d connected components, each one of which is isomorphic to P3,
which are locally irregular, and a connected component isomorphic to Pk, where k ∈ {0, 1, 3},
which is also locally irregular (the graph P0 is the null graph). It follows that S is an ir(Pn)
and that I(Pn) ≤ |S| = d. All that is left to show is that I(Pn) ≥ d. Let us assume that there
exists a set S0 that is an ir(Pn) and |S0| < d. Now observe that G[V (G) \ S0] contains at
least one connected component isomorphic to Pm, with m ≥ 4 This is a contradiction, since
Pm is not locally irregular.

• k = 2. Consider the set S = {vi : i ≡ 0 mod 4}∪{vn}. We have that |S| = d+ 1. Similarly to
the previous case, we have that G[V (G)\S] contains d connected components isomorphic to P3

and one connected component isomorphic to P1. Thus S is an ir(Pn) and I(Pn) ≤ |S| ≤ d+1.
All that is left to show is that I(Pn) ≥ d + 1. Observe that the arguments supporting that
I(Pn) > d are the same as the previous case. So, we assume that there exists a set S0 that
is an ir(Pn) and |S0| = d. Observe that all the connected components of G[V (G) \ S0] are
paths. Also, if there exists a connected component isomorphic to a Pm, with m ≥ 4, then
G[V (G) \ S0] is not locally irregular. So we may assume that all the connected components
of G[V (G) \ S0] are isomorphic to a paths on at most 3 vertices. It follows that one of these
components must be isomorphic to P2, and P2 is not locally irregular. This is a contradiction.

Corollary 3.3. Let Cn be the cycle on n ≥ 3 vertices, then I(Cn) = I(Pn−1) + 1

To explain the above statement, observe that for every vertex v belonging to the cycle G = Cn,
we have that d(v) = 2. Thus, we know that I(Cn) ≥ 1 and that any S that is an ir(G) contains at
least one vertex, say vertex v. The statement follows by observing that the graph G[V (G) \ v] is
isomorphic to Pn−1.

Another interesting case is when G is a tree. In this case, we can calculate I(G) in polynomial
time as a direct consequence of Theorem 4.2 (see Section 4.2). Indeed, in that theorem we provide
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an algorithm that computes I(G) in time ∆2twnO(1). The next corollary follows directly from the
fact that trees have tw = 1 (by definition) and ∆ = O(n).

Corollary 3.4. Let T be a tree. There exists a polynomial time algorithm that computes I(T ).

u7

u8

u6

u1

u5

u2

u4

u3
u r

w1

w2

(a) The 3-gadget

u1

u2

u3

u4

u r

w1

w2

(b) The 1-gadget

Figure 1: The two gadgets used in the proof of Theorem 3.5.

3.2 NP-Hard Cases
Theorem 3.5. Let G be graph and k ∈ N. Deciding if I(G) ≤ k is NP-complete. The same is
true if G is a

• cubic graph, or

• a bipartite graph with maximum degree ∆ ≤ 3.

Proof. Let us focus first on proving the first item of the statement. Since the problem is clearly
in NP, we will focus on proving it is also NP-hard. The reduction is from 2-Balanced 3-SAT,
which was proven to be NP-complete in [9]. In that problem, a 3CNF formula F is given as an
input, comprised by a set C of clauses over a set of Boolean variables X. In particular, we have
that each clause contains exactly 3 literals, and each variable x ∈ X appears in F exactly twice as
a positive and twice as a negative literal. The question is, whether there exists a truth assignment
to the variables of X satisfying F .

Let F be a 3CNF formula with m clauses C1, . . . , Cm and n variables x1, . . . , xn that is given
as input to the 2-Balanced 3-SAT problem. We will construct a cubic graph G such that F is
satisfiable if and only if I(G) ≤ 3n. To construct G = (V,E), we start with the following graph:
for each literal xi (¬xi resp.) in F , add a literal vertex vi (v′i resp.) in V , and for each clause Cj

of F , add a clause vertex cj in V . Next, for each 1 ≤ j ≤ m, add the edge vicj (v′icj resp.) if the
literal xi (¬xi resp.) appears in Cj according to F . Observe that the resulting graph is bipartite,
for each clause vertex c we have d(c) = 3 and for each literal vertex v we have d(v) = 2 (since in F ,
each variable appears twice as a positive and twice as a negative literal). To finish the construction
of G, we will make use of the 3-gadgets, illustrated in Figure 1(a). When we say that we attach
a copy H of the 3-gadget to the vertices vi and v′i (for some 1 ≤ i ≤ n), we mean that we add
H to G, and we identify the vertices w1 and w2 to the vertices vi and v′i respectively. Now, for
each pair of literal vertices {vi, v′i}, attach one copy Hi of the 3-gadget to the vertices vi and v′i
(see Figure 2). Clearly this construction is achieved in linear time in regards to n+m. Note also
that the resulting graph G is cubic. Before we move on with the reduction, we state the following
claim:

Claim 3.6. Let H be a copy of the 3-gadget, shown in Figure 1(a), and X = V (H) \ {w1, w2}.
We have the following:

• I(H,X) = 3

• For any S that is an ir∗(H,X), we have that r /∈ S;
• for w ∈ {w1, w2}, if w ∈ S, with S being an ir∗(H,X), then S = {u4, u8, w}. Furthermore,
these are the only optimal irregulators of X in H that contain either w1 or w2.
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v1

v′1

v2

v′2

v3

v′3

c1

c2

c3

c4

Figure 2: An example of the construction of the cubic graph G in the proof of Theorem 3.5, starting
the input formula F = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3).
The formula has the n = 3 variables x1, x2, x3, and m = 4 clauses. For 1 ≤ i ≤ n, the vertex vi (v′i
resp.) corresponds to the appearances of the literal xi (¬xi resp.) in F .

Proof of the claim. First we will show that if S is an ir(H,X), then |S| ≥ 3. Clearly, if |S| = 1,
then S cannot be an ir(H,X). Assume now that |S| = 2 and consider the edges ur, u2u7 and u4u5.
These edges have in common that both of their incident vertices have the same degree (which is
equal to 3). It follows from Observation 2.5 that S contains at least one vertex in each one of the sets
S1 = N(uv) = {u1, u5, u, r, w1, w2}, S2 = N(u2u7) = {u1, u2, u3, u6, u7, u8} and S3 = N(u4u5) =
{u3, u4, u5, u6, u8}. Assume first that u1 ∈ S. In Figure 4 we illustrate all possible subsets of vertices
of H of order 2 that contain u1. Clearly none of them is an ir(H,X). It follows that u1 /∈ S. Note
that due to symmetry, we can also deduce that u5 /∈ S. It follows that S ∩ S1 ⊆ {u, r, w1, w2}
and, since |S| = 2, that the remaining vertex w of S belongs to (S2 ∩ S3) \ {u1, u5} = {u3, u6, u8}.
Let H ′ = H[V (H) \ S]. It is easy to see that if w = u3 then dH′(u7) = dH′(u8), if w = u6 then
dH′(u3) = dH′(u4) and that if w = u8 then dH′(u3) = dH′(u6) (and this holds true for any possible
combination of vertices w ∈ {u3, u6, u8} and w′ ∈ {u, r, w1, w2}). Thus S cannot be an ir(H,X)
and I(H,X) ≥ 3. For the rest of the claims, it suffices to find all the irregulators of X in H of
order 3. By doing an exhaustive search, we were able to identify these irregulators. They are (up
to symmetry) the following: {u1, u8, u7}, {u1, u5, u7}, {u1, u3, u7}, {u4, u8, u}, {u4, u8, w1} and
{u4, u8, w2}. �

We are now ready to show the equivalence between finding a satisfying truth assignment t of
F , and finding an S that is an ir(G) such that |S| = 3n (from which follows that I(G) ≤ 3n).

Let t be a satisfying truth assignment of F , and let S′ be the set of literal vertices vi (v′i resp.)
such that the corresponding literals xi (¬xi resp.) are assigned value true by t. Now, for each copy
Hi of the gadget which was used in the construction of G, let S′i = {u4, u8, α}, where α ∈ S′, and
consider the set S =

⋃n
i=1 S

′
i. Note that |S| = 3n. We will show that S is an ir(G). Since t is a

satisfying truth assignment of F , each clause Cj contains at least one literal that is set to true. In
other words, the clause vertex cj is adjacent to at least one literal vertex that belongs to S. Let
G′ = G[V (G) \ S], and note that dG′(cj) ≤ 2 (for every 1 ≤ j ≤ m), while the degree of all the
literal vertices of G′ is equal to 3. It follows, from the previous observations and from Claim 3.6,
that S is an ir(G). Furthermore, by the construction of S, we know that for any literal vertex
v of G′, the copy of the vertex r which incident to v, has degree 2 in G′. Finally, observe that
S ∩ V (Hi) is an ir(Hi, Xi) (by the construction of S) and that deleting any vertex of G that does
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not belong to N [Xi], does not change the degree of any vertex in N [Xi]. So, we can conclude that
there are no two vertices in Xi that have the same degrees in G′. Thus S is an ir(G).

For the other direction, assume that I(G) ≤ 3n and let S be an ir∗(G). For 1 ≤ i ≤ n, let
Xi = V (Hi) \ {vi, v′i} and observe that N [Xi] contains exactly the vertices of the gadget Hi. Also,
let Si = S ∩ V (Hi), for all i ∈ {1, . . . , n}. First we are going to prove some properties of S:

Claim 3.7. For the given set S, the following properties hold for all i ∈ {1, . . . , n}:
1. Si is an ir∗(Hi, Xi).

2. S =
⋃n

i=1 Si.

3. the vertex r belonging to the Hi gadget, does not belong to S.

4. If vi ∈ S (for some i), then v′i /∈ S and vice versa.

5. For all j ∈ {1, . . . ,m}, we have that cj /∈ S.

Proof of the claim. For the first item, let us first show that Si is an ir(Hi, Xi). Assume that Si

is not an ir(Hi, Xi); then there exist two vertices u, v in Xi \ Si that have the same degree in
G[V \ Si]. Since S \ Si does not include any vertices of Hi, we know that u, v belong in G[V \ S].
This is a contradiction since S is an ir∗(G). In order to show that Si is actually an ir∗(Hi, Xi),
we need to take in consideration the order of S. Since Si is an ir(Hi, Xi), we have that |Si| ≥ 3.
Assume that there exist an i such that |Si| > 3. Since Si ⊆ NG[Xi] and NG[Xi]∩NG[Xj ] = ∅, for
every i 6= j, we have that |S| ≥

∑n
i=1 |Si| > 3n. This is a contradiction because |S| ≤ 3n. Thus

the first item holds.
The rest of the items follow from the first item. For the second item, we just need to observe

that
∑n

i=1 |Si| = 3n and |S| ≤ 3n. Therefore, S can not contain any other vertex. The third and
four item follow by the facts that Si = S ∩ V (Hi), the first item and Claim 3.6. Finally, the fifth
item holds because cj /∈ NG[Xi], for any i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, and S =

⋃n
i=1 Si ⊆⋃n

i=1NG[Xi]. �

Before we give the truth assignment let as note two more things for some vertices of G′ =
G[V \ S]. First, any literal vertex v that belongs in G′, has dG′(v) = 3 since S does not contain
any of the neighbours of v. Furthermore, for each clause vertex cj , there must exist a literal vertex
v ∈ N(cj) such that v ∈ S, as otherwise cj would have the same degree as all its neighbours in G′.

Now consider the following truth assignment: we assign the value true to every variable xi if
the corresponding literal vertex vi belongs in S, and value false to every other variable. Now, since
for every 1 ≤ j ≤ m we have that dG′(cj) < 3, it follows that each clause Cj contains either a
positive literal xi which has been set to true, or a negative literal ¬xi which has been set to false.
Thus F is satisfied.

Now, for the second item of the statement, the proof is similar to the one described above. The
reduction is done once more from the 2-Balanced 3-SAT problem. The main difference lies in
the gadget used in the construction of G. For this construction, we make use of the 1-gadget H
(shown in Figure 1(b)). Other than that, the construction of G is exactly the same. Observe that
this time, the resulting graph G is subcubic bipartite. Furthermore, for X = V (H) \ {w1, w2}, it
is fairly easy to check that I(H,X) = 1. Also, any S that is an ir∗(H,X), is such that S = {w},
with w ∈ {w1, w2}, and these are the optimal irregulators of X in H (this plays a similar role as
Claim 3.6). The rest of the proof consists in showing the equivalence between finding a satisfying
truth assignment for a formula F and deciding if I(G) ≤ n, where G is the graph that corresponds
to F , and it works exactly as the proof of the first item.

4 Parameterised Complexity
As the problem of computing a minimal irregulator of a given graph G seems to be rather hard
to solve, we focused our efforts towards finding parameterised algorithms that can solve it. In
Section 4.1 we present an FPT algorithm that calculates I(G) when parameterised by the size
of the solution and ∆, the maximum degree of the graph. Then, we turn our attention towards
graphs that are “close to being trees”, that is graphs of bounded treewidth. Indeed, in Section 4.2
we provide an FPT algorithm that finds a minimum irregulator of G, when parameterised by the
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treewidth of the input graph and by ∆. Observe that both of our algorithms have to consider ∆ as
part of the parameter if they are to be considered as FPT. The natural question to ask at this point
is whether we can have an FPT algorithm, when parameterised only by the size of the solution, or
the treewidth of the input graph. In Section 4.3, we give a strong indication towards the negative
answer for both cases, proving that, in some sense, the algorithms provided in Sections 4.1 and 4.2
are optimal.

4.1 FPT by the Size of the Solution and ∆

Theorem 4.1. For a given graph G = (V,E) with |V | = n and maximum degree ∆, there exists
an algorithm that decides if I(G) ≤ k in time (2∆)knO(1).

Proof. In order to decide if I(G) ≤ k we are going to use a recursive algorithm. The algorithm has
input (G, k), where G = (V,E) is a graph and k ≥ 0 is an integer. The basic idea of this algorithm,
is to take advantage of Observation 2.5. We present the exact procedure in Algorithm 1.

Algorithm 1 [IsIrregular(G, k) decision function]

Input: A graph G = (V,E) and an integer k ≥ 0.
Output: Is I(G) ≤ k or not?
1: if G is irregular then
2: return yes
3: else if k = 0 then
4: return no
5: else . k > 0 and G is not irregular
6: ans← no
7: find an edge vu ∈ E such that dG(v) = dG(u)
8: for all w ∈ NG[{u, v}] do
9: set Gw = G[V \ {w}]

10: if IsIrregular(Gw, k − 1) returns yes then
11: ans← yes

12: return ans

Now, let us argue about the correctness and the efficiency of this algorithm. We claim that
for any graph G = (V,E) and any integer k ≥ 0, Algorithm 1 returns yes if I(G) ≤ k and no
otherwise. Furthermore, the number of steps that the algorithm requires, is f(k, n) = (2∆)knO(1),
where n = |V |. We will prove this by induction on k.

Base of the induction (k = 0): Here, we only need to check if G is locally irregular. Algo-
rithm 1 does this in line 1 and returns yes if it is (line 2) and no otherwise (line 4). Furthermore,
we can check if G is locally irregular in polynomial time. So, the claim is true for the base.

Induction hypothesis (k = k0 ≥ 0): We assume that we have a k0 ≥ 0 such that Algorithm 1
can decide if any graph G with n vertices and maximum degree ∆ has I(G) ≤ k0 in f(k0, n) =
(k0 + 1)(2∆)k0nO(1) steps.

Induction step (k = k0 + 1): Let G = (V,E) be a graph. If G is locally irregular then
I(G) = 0 and Algorithm 1 answers correctly (in line 2). Assume that G is not locally irregular;
then there exist an edge vu ∈ E such that dG(v) = dG(v). Now, let S be an ir∗(G). It follows from
Observation 2.5 that S must include at least one vertex w ∈ NG[{v, u}]. Since Algorithm 1 considers
all the vertices in NG[{v, u}], at some point it also considers the vertex w ∈ S ∩NG[{v, u}]. Now,
observe that for any x ∈ S, the set Sx = S\{x} is an ir∗(Gx), where Gx = G[V \{x}]. Furthermore,
by Lemma 2.4, we have I(Gx) ≤ k−1 = k0 iff I(G) ≤ k. By the induction hypothesis, we know that
the algorithm answers correctly for all the instances (Gx, k0). Thus, if I(G) ≤ k = k0 + 1, there
must exist one instance (Gw, k0), where w ∈ S ∩ NG[{v, u}], for which the Algorithm 1 returns
yes. Therefore the algorithm answers for (G, k0 + 1) correctly. Finally, this process request nO(1)

steps in order to check if the graph is locally irregular and 2∆f(k − 1, n − 1) steps (by induction
hypothesis) in order to check if for any graph Gx we have I(Gx) ≤ k−1 = k0 (where x ∈ N [{u, v}]).
So, the algorithm decides in nO(1) + 2∆f(k − 1, n − 1) ≤ nO(1) + 2∆k(2∆)k−1(n − 1)O(1) ≤
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nO(1) + k(2∆)knO(1) ≤ (k + 1)(2∆)knO(1) steps. Finally, note that k ≤ n − 1, and the result
follows.

It is worth noting that Algorithm 1 can be slightly modified in order to also return a set S that
is an ir∗(G). To do that, it suffices to start with S being the empty set, and update this set every
time Algorithm 1 “deletes” a vertex w, by adding this w to S.

4.2 FPT by Treewidth and ∆

Theorem 4.2. For a given a graph G = (V,E) with treewidth tw and maximum degree ∆, there
exists an algorithm that returns I(G) in time ∆2twnO(1).

Proof. As the techniques we are going to use are standard, we are sketching some of the introductory
details. For more details on tree decompositions (definition and terminology) see [20]. Assuming
that we have a nice tree decomposition (defined in [10]) of the graph G rooted at a node r, we are
going to perform dynamic programming on the nodes of this tree decomposition. For a node t of
the given tree decomposition of G, we denote by Bt the bag of this node and by B↓t the set of
vertices of the graph that appears in the bags of the nodes of the subtree with t as a root. Observe
that Bt ⊆ B↓t .

The idea behind our algorithm, is that for each node t we store all the sets S ⊆ B↓t such that S
is an ir(G,B↓t \Bt). We will also store the necessary “conditions” (explained more in what follows)
such that if there exists a set S′, where S′ \S ⊆ V \B↓t , that meets these conditions, then S′ is an
ir(G,B↓t ). Observe that if we manage to do such a thing for every node of the tree decomposition,
then we can find I(G). To do so, it suffices to check the size of all the irregulators we stored for
the root r of the tree decomposition, which also meet the conditions we have set. In that way, we
can find a set S that is an ir(G,B↓r \ Br), satisfies our conditions and is of minimum order, and
since B↓r = V , this set S is a minimum irregulator of G and I(G) = |S|.

Let us now present the actual information we are keeping for each node. Assume that t is a node
of the tree decomposition and S ⊆ B↓t is an irregulator of B↓t \Bt in G, i.e., S is an ir∗(G,B↓t \Bt).
For this S we want to remember which vertices of Bt belong to S as well as the degrees of the
vertices v ∈ Bt \ S in G[B↓t \ Bt]. This can be done by keeping a table D of size tw + 1 where,
if v ∈ Bt \ S we set D(v) = dG[B↓

t \Bt]
(v) and if v ∈ Bt ∩ S we set D(v) = ∅ (slightly abusing the

notation, by D(v) we mean the position in the table D that corresponds to the vertex v). Like
we have already said, we are going to keep some additional information about the conditions that
could allow these sets to be extended to irregulators of B↓t in G if we add vertices of V \ B↓t . For
that reason, we are also going to keep a table with the “target degree” of each vertex; in this table
we assign to each vertex v ∈ Bt \ S a degree dv such that, if there exists S′ where S′ \ S ⊆ V \B↓t
and for all v ∈ Bt \ S we have dG[V \S′](v) = dv, then S is an ir(G,B↓t ). This can be done by
keeping a table T of size tw + 1 where for each v ∈ Bt \ S we set T (v) = i, where i is the target
degree, and for each v ∈ Bt ∩ S we set T (v) = ∅. Such tables T will be called valid for S in Bt.
Finally, we are going to keep the set X = S ∩ Bt and value min = |S|. Note that the set X does
not gives us any extra information, but we keep it as it will be useful to refer to it directly.

To sum up, for each node t of the tree decomposition of G, we keep a set of quadruples
(X,D, T,min), each quadruple corresponding to a valid combination of a set S that is an ir(G,B↓t \
Bt) and the target degrees for the vertices of Bt \S. Here it is important to say that when treating
the node Bt, for every two quadruples (X1, D1, T1,min1) and (X2, D2, T2,min2) such that for all
v ∈ Bt we have that D1(v) = D2(v) and T1(v) = T2(v) (this indicates that X1 = X2 as well), then
we are only going to keep the quadruple with the minimum value between min1 and min2 as we
will prove that this is enough in order to find I(G).

Claim 4.3. Assume that for a node t, we have two sets S1 and S2 that are both ir(G,B↓t \Bt), and
that T is a target table that is common to both of them. Furthermore, assume that (X1, D1, T, |S1|)
and (X2, D2, T, |S2|) are the quadruples we have to store for S1 and S2 respectively (both respecting
T ), with D1(v) = D2(v) for every v ∈ Bt. Then for any set S ⊆ V \B↓t such that dG[V \(S1∪S)](v) =
T (v) for all v ∈ Bt, we also have that dG[V \(S2∪S)](v) = T (v) for all v ∈ Bt.
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Proof of the claim. Assume that we have such an S for S1, let v be a vertex in Bt and H =
G[v∪

(
(V \B↓t ) \S

)
] (observe that H does not depend on S1 or S2). Since dG[V \(S1∪S)](v) = T (v),

we know that in the graph H, v has exactly T (v)−D1(v) neighbours (as D1(v) = dG[B↓
t \S1)](v)).

Now, since D1(v) = D2(v) = dG[B↓
t \S2](v) we have that dG[V \S2∪S](v) = T (v). Therefore, the claim

holds. �

Simply put, Claim 4.3 states that for any two quadruples Q1 = (X,D, T,min1) and Q2 =
(X,D, T,min2), any extension S of S1 is also an extension of S2 (where S1 and S2 are the two sets
that correspond to Q1 and Q2 respectively). Therefore, in order to find the minimum solution, it
is sufficient to keep the quadruple that has the minimum value between min1 and min2.

Now we are going to explain how we create all the quadruples (X,D, T,min) for each type of
node in the tree decomposition. First we have to deal with the Leaf Nodes. For a Leaf node t
we know that Bt = B↓t = ∅. Therefore, we have only one quadruple (X,D, T,min), where the
size of both D and T are zero (so we do not need to keep any information in them), S = ∅ and
min = |S| = 0.

Now let t an Introduce node; assume that we have all the quadruples (X,D, T,min) for its child
c and let v be the introduced vertex. By construction, we know that v is introduced in Bt and thus
it has no neighbours in B↓t \Bt. It follows that if S ⊆ B↓c is an irregulator for B↓c \Bc, then both
S and S ∪ {v} are irregulators for B↓t \ Bt in G. Furthermore, there is no set S ⊆ B↓t \ {v} that
is an irregulator of B↓t \Bt and is not an irregulator of B↓c \Bc. So, we only need to consider two
cases for the quadruples we have to store for c; if v belongs in the under-construction irregulator
of B↓t \Bt in G or not.

Case 1. (v is in the irregulator): Observe that for any S that is an ir(G,B↓c \ Bc), which is
stored in the quadruples of Bc, for every u ∈ Bc \S, we have that dG[B↓

c \S](u) = dG[B↓
t \(S∪{v})]

(u).
Moreover, for any target table T which is valid for S in c, the target table T ′ is valid for S ∪{v} in
t, where T ′ is almost the same as T , the only difference being that T ′ also contains the information
about v, i.e, T ′(v) = ∅. So, for each quadruple (X,D, T,min) in c, we need to create one quadruple
(X ∪{v}, D′, T ′,min+ 1) for t, where D′ is the almost the same as D, except that it also contains
the information about v, i.e., D′(v) = ∅.

Case 2. (v is not in the irregulator): Let q = (X,D, T,min) be a stored quadruple of c and
S be the corresponding ir(G,B↓c \ Bc). We will first explain how to construct D′ of t, based on
q. Observe that the only change between G[B↓c \ S] and G[B↓t \ S], is that in the latter there
exist some new edges from v to some of the vertices of Bc. Therefore, for each vertex u ∈ Bc \X
we set D′(u) = D(u) + 1 if u ∈ N [v] and D′(u) = D(u) otherwise. Finally, for the introduced
vertex v, we set D′(v) = |N(v) ∩ (Bc \X)|. We will now treat the target degrees for t. Observe
that the target degrees for each vertex in Bt \ {v} are the same as in T , since v only has edges
incident to vertices in Bt. Now, we only need to decide which are the valid targets for v. Since
dG[B↓

t \S](v) = D′(v), we know that for every target t′, we have that D′(v) ≤ t′ ≤ ∆. Furthermore,
we can not have the target degrees of v to be the same as the targets of one of its neighbours in Bc

(these values are stored in T ), as, otherwise, any valid target table T ′ of t would lead to adjacent
vertices in Bt having the same degree. Let {t1, . . . , tk} ⊂ {D(v), . . . ,∆} be an enumeration of all
the valid targets for v (i.e. ti 6= T (u) for all u ∈ N [v] ∩ Bc \ X). Therefore, for each quadruple
(X,D, T,min) in c, and for each i = 1, . . . , k, we need to create the quadruple (X,D′, Ti,min),
such that Ti(u) = T (u) for all u ∈ Bc and Ti(v) = ti. In total, we have k ≤ ∆ such quadruples.

Now, let us explain how we deal with a Join node. Assume that t is a Join Node with c1 and
c2 as its two children in the tree decomposition. Here, it is important to mention that Bc1 = Bc2

and (B↓c1 \ Bc1) ∩ (B↓c2 \ Bc2) = ∅. Assume that there exists an irregulator S of B↓t \ Bt in G, a
valid target table T of S, and let (X,D, T,min) be the quadruple we need to store in t for this pair
(S, T ). Observe that this pair (S, T ) is valid for both c1 and c2, so we must already have stored
at least one quadruple in each node. Let X ⊆ Bt and a target table T such that (X,D1, T,min1)
and (X,D2, T,min2) are stored for c1 and c2 respectively. We create the quadruple (X,D, T,min)
for t by setting D(u) = D1(u) + D2(u) − dG[Bt\X](u) for all u ∈ Bt \X, D(u) = ∅ for all u ∈ X
and min = min1 + min2 − |X|. Observe that these are the correct values for the D(u) and min,
as otherwise we would count dG[Bt\X](u) and |X| twice. Finally, we need to note that we do not
store any quadruple (X,D, T,min) we create for the Join Note such that D(u) > T (u) for a vertex
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u ∈ Bt \X. This is because for such quadruples, the degree of vertex u will never be equal to any
of the target degrees we have set, as it can only increase when we consider any of the ancestor (i.e.
parent, grantparent etc.) nodes of Bt.

Finally, we need to treat the Forget nodes. Let t be a Forget node, c be the its child and v
be the h forgotten vertex. Assume that we have to store in t a quadruple (X,D, T,min). Then,
since X = Bt ∩ S for an irregulator S of Bt in G, we know that in c we must have already stored
a quadruple (X ′, D′, T ′,min′) such that, X ′ = S ∩Bc, D′(u) = D(u) for all u ∈ Bc, T ′(u) = T (u)
for all u ∈ Bc and min′ = min. Therefore, starting from the stored quadruples in c, we can create
all the quadruples of t. For each quadruple (X ′, D′, T ′,min′) in c, we create at most one quadruple
(X,D, T,min) for t by considering two cases; the forgotten vertex vf belongs to X ′ or not.

Case 1. (v belongs to X ′): then the quadruple (X,D, T,min) is almost the same as (X ′, D′, T ′,min′),
with the following differences: X = X ′ \ {v}, min = min′, D(u) = D′(u) and T (u) = T ′(u) for all
u ∈ Bt and the tables D and T do not include any information for v as this vertex does not belong
to Bt anymore.

Case 2. (v does not belong to X ′): we will first check if D′(vf ) = T ′(vf ) or not. This is
important because the degree of the v will never again be considered by our algorithm, and thus
its degree will remain unchanged. So, if D′(vf ) = T ′(vf ), we create the quadruple (X,D, T,min)
where X = X ′, min = min′, D(u) = D′(u) and T (u) = T ′(u) for all u ∈ Bt and the tables D and
T do not include any information for v.

For the running time, we need to observe that the number of nodes of a nice tree decomposition
is O(tw · n) and all the other calculations are polynomial in n + m. Thus we only need to count
the different quadruples in each node. Now, for each vertex v, we either include it in X or we have
∆ + 1 options for the value D(u) (the degree could have any value between 0 and ∆) and ∆ + 1− i
for the value T (u) if the D(u) = i (we can not have T (u) < D(u)). Also, for sufficiently large ∆,
we have that 1+

∑∆
i=0(∆+1− i) < ∆2. Furthermore, the set X and the value min do not increase

the number of quadruples because X = {u | D(u) = ∅} and from all quadruples (X,D1, T1,min1),
(X,D2, T2,min2) such that D1(u) = D2(u) and T1(u) = T2(u) for all u ∈ Bt we only keep one of
them (by Claim 4.3).

In total, the number of different quadruples in each node are ∆2tw, and therefore the algorithm
decides in ∆2twnO(1) time.

Once more, the algorithm presented in the proof of Theorem 4.2 can be adapted to also return
an ir∗(G). To do so, it suffices to also store a set S′ for every node c, such that S′ is an ir(G,B↓c \Bc)
that satisfies the properties demanded by the quadruple.

4.3 W-Hardness
In this section we present two linear-fpt reductions. The first is from the Dominating Set problem,
when parameterised by the size of the solution, and the second is from the List Colouring
problem, when parameterised by the treewidth of the graph.

Theorem 4.4. Let G be a graph and k ∈ N. Deciding if I(G) ≤ k is W[2]-hard, when parameterised
by k.

Proof. The reduction is from the Dominating Set problem, which was shown to be W[2]-complete
when parameterised by the size of the solution (e.g. in [18]). In that problem, a graph H = (V,E)
and an integer k are given as input. The question asked, is whether there exists a set D ⊆ V of
order at most k (called a dominating set of H), such that V = N [D].

Let H = (V,E) be a graph and k ∈ N. We will construct a graph G = (V ′, E′) such that H
has a dominating set of order at most k if and only if G has an irregulator of order at most k.
We begin by defining an arbitrary enumeration of the vertices of V . That is, V = {v1, . . . , vn}.
The graph G is built starting from a copy of the graph H. To avoid any confusion in what is to
follow, we will always use H to denote the original graph, and G|H = G[{v′1, . . . , v′n}] to denote
the copy of H that lies inside G (where the indices of the v′is’ are the same as the indices of the
corresponding vis’). Then, for each 1 ≤ i ≤ n, we attach the necessary number of pending vertices
(meaning vertices of degree 1) to the vertex v′i, so that the degree of v′i becomes equal to i · n.
Finally, for each v′i, let u′i be one of its newly attached pending vertices, and attach the necessary
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number of new pending vertices to u′i, so that its degree becomes equal to that of v′i. The resulting
graph is G. To be clear, for every vertex v of G, we either have that v = v′i or v = u′i, or that v is
a vertex pending from v′i or u′i (for some 1 ≤ i ≤ n). Note also that for each 1 ≤ i ≤ n, we have
that dG(v′i) = dG(u′i) = i · n.

Now let D be a dominating set of H, with |D| = m ≤ k, and let D′ be the subset of V ′ that
corresponds to the vertices of D. That is, D′ = {v′i ∈ V ′ : vi ∈ D}. We claim that the graph
G′ = G[V ′\D′] is locally irregular. Indeed, for every 1 ≤ i ≤ n, let α(i) be the number of neighbours
of vi that belong toD. Observe that sinceD is a dominating set ofH, we have that 1 ≤ α(i) ≤ n−1.
Now, for every vertex v′i in V ′, we have that either v′i ∈ D′, in which case v′i does not belong to G′,
or dG′(v′i) = dG(v′i)−α(i) < dG′(u′i). Moreover, for every 1 ≤ i < j ≤ n, if v′i, v′j /∈ D′, we have that
dG(v′j)−dG(v′i) ≥ n, and thus dG′(v′j)−dG′(v′i) = dG(v′j)−α(j)−dG(v′i)+α(i) ≥ n+α(i)−α(j) ≥ 2.
Finally, every pending vertex l of G′ is attached to either u′i or v′i, which have degree (in G′) strictly
larger than 1. It follows that D′ is an irregulator of G with |D′| = m ≤ k, and thus I(G) ≤ k.

For the other direction, assume that I(G) ≤ k and let S be an ir(G), with |S| = k, and
G′ = G[V ′ \ S]. For each 1 ≤ i ≤ n, let Si = N [v′i] ∪ N(u′i). We claim that for every i, we have
S ∩ Si 6= ∅. Assume that this is not true, i.e., that there exists an i0 such that Si0 ∩ S = ∅. Then,
by deleting the vertices of S from G, the degrees of v′i0 and u′i0 remain unchanged. Formally, we
have that dG′(v′i0) = dG(v′i0) = dG(u′i0) = dG′(u′i0). This is a contradiction since S is an irregulator
of G. Now, we consider the set S′, defined as follows:

• Start with S′ = S.

• For each i, while there exists a vertex v ∈ Si ∩ S′ such that dG(v) = 1 or v = u′i, remove v
from S′ and add v′i to S′.

Clearly, we have that S′ only contains vertices from V (G|H) and that |S′| ≤ |S| = k. Also, from
the construction of S′, for every i, we have that Si ∩ S′ 6= ∅. It follows that for every vertex v′i,
we either have v′i ∈ S′ or there exists a vertex v ∈ N(v′i) ∩ V (G|H) such that v ∈ S′. Going back
to H, let D = {vi : v′i ∈ S′}. It is clear that D is a dominating set of H of order at most k. This
finishes our reduction.

Finally, note that throughout the above described reduction, the value of the parameter of
the two problems is the same (in both of them, the parameter has the value k). Moreover, the
construction of the graph G is achieved in polynomial time in regards to n. These observations
conclude our proof.

Corollary 4.5. Let G be a graph of order n and k ∈ N. Unless the ETH fails, there is no algorithm
that decides if I(G) ≤ k in time O∗(f(k)no(k)).

Proof. The corollary is a result of the following observations:

1. the redaction we presented from Dominating Set in the proof of Theorem 4.4 is a linear
fpt-reduction and

2. there is no algorithm that answers if a graph G of order n has a Dominationg Set of size at
most k in time O∗(f(k)no(k)) unless the ETH fails [27].

Theorem 4.6. Let G be a graph with treewidth tw, and k ∈ N. Deciding if I(G) = k is W [1]-hard
when parameterised by tw.

Proof. We will present a reduction from the List Colouring problem: the input consists in a
graph H = (V,E) and a list function L : V → P({1, . . . , k}) that specifies the available colours for
each vertex u ∈ V . The goal is to find a proper colouring c : V → {1, . . . , k} such that c(u) ∈ L(u)
for all u ∈ V . This problem is known to be W [1]-hard when parameterised by the treewidth tw of
H [20].

Now, starting from an instance (H,L) of List Colouring, we will construct a graph G =
(V ′, E′) (see Figure 3 (a)) such that:

• |V ′| = O(|V |6),

• tw(G) = tw(H) and
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u′

Edges incident to the
vertices v′ ∈ NG(u′) ∩ U ′

(a) The graph G

m horn gadgets

. . .

Hk1

. . .
Hk2

. . .
Hkl

. . .

. . .

. . .

l forbidden colour gadgets

. . .

k degree gadgets

w1 v1

v2

(b) Degree gadget

w2 ...

(c) Forbidden colour gadget
Hi

i− 1 vertices

w3

(d) Horn gadget

Figure 3: In (a) we illustrate the construction of G, as it is described in the proof of Theorem 4.6.
The black vertex represents every vertex that belongs in U ′. For the specific vertex u′ shown in
the figure, we have that L(u) = {c1, . . . , cl} and ki = n3 − ci for all i = 1, . . . , l. We also have that
m = 2n3 − dG(u)− k − l.

• I(G) = nk if and only if (H,L) is a yes-instance of List Colouring.

Before we start with the construction of G, let us give the following observation.

Observation 4.7. Let (H,L) an instance of List Colouring where H = (V,E) and there exists
a vertex u ∈ V such that |L(u)| > d(u). Then the instance (H[V \ {u}], L′), where L′(v) = L(v)
for all v ∈ V \ {u}, is a yes-instance of List Colouring if and only if (H,L) is a yes-instance
of List Colouring.

Indeed, observe that for any vertex u ∈ V , by any proper colouring c of H, c(u) only has to
avoid d(u) colours. Since |L(u)| > d(u), we will always have a spare colour to use on u that belongs
in L(u). From the previous observation, we can assume that in our instance, for all u ∈ V , we have
|L(u)| ≤ d(u). Furthermore, we can deduce that k ≤ n(n−1) as the degree of any vertex is at most
(n−1). Finally, let us denote by L(u) the set {0, 1, . . . , k}\L(u). It is important to note here that
for every u ∈ V , the list L(u) contains at least one element belonging in {1, . . . , k}. It follows that
L(u) also contains at least one element, the colour 0. To sum up, we have that 1 ≤ |L(u)| ≤ k.

Now, we present the three gadgets we are going to use in the construction of G. First, we have
the “forbidden colour gadget” Hi, which is a star with i leaves (see Figure 3(c)). When we say
that we attach a copy of Hi on a vertex v of a graph G, we mean that we add Hi to G and we
identify the vertices v and w2 (where here and in what follows, we are using the naming illustrated
in Figure 3 when talking about the vertices w1, w2, w3, v1 and v2). The second, will be the “degree
gadget”, which is presented in Figure 3(b). Finally, we have the “horn gadget”, which is a path on
three vertices (see Figure 3(d)). We define the operation of attaching these two gadgets on a vertex
v of a graph G similarly to how we defined this operation for the forbidden colour gadget (each
time using the appropriate w1 or w3, according to if it is a degree or a horn gadget respectively).

In order to construct G, we start from a copy of H. Let us use G|H to denote the copy of H
that lies inside of G and, for each vertex u ∈ V , let u′ be its copy in V ′. Furthermore, we will call
the set of these vertices U ′. That is, U ′ = {v ∈ V (G|H)}. Then, we are going to attach several
copies of each gadget to u′, for each vertex u′ ∈ U ′. We start by attaching k copies of the degree
gadget to each vertex u′ ∈ U ′. Then, for each u ∈ V and each i ∈ L(u), we attach one copy of the
forbidden colour gadget H2n3−i to the vertex u′. Finally, for each u′ ∈ U ′, we attach to u′ as many
copies of the horn gadget as are needed, in order to have dG(u′) = 2n3.

Before we continue, observe that, for sufficiently large n, we have attached more than n3 horn
gadgets to each vertex of U ′. Indeed, before attaching the horn gadgets, each vertex u′ ∈ U ′

has dG(u) ≤ n − 1 neighbours in U ′, k neighbours from the degree gadgets and at most k < n2

neighbours from the forbidden colour gadgets (recall that |L(u)| ≤ k). We will now show that
|V ′| = O(n6). For that purpose, let us calculate the number of vertices in all the gadgets attached
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to a single vertex u′ ∈ U . First, we have 5k < 5n2 vertices in the degree gadgets. Then, we have
less than 4n3 vertices in the horn gadgets (as we have less that 2n3 such gadgets). Finally, we have
at most k < n2 forbidden colour gadgets, each one of which containing at most 2n3 vertices. So,
for each vertex u′ ∈ U ′, we have at most 2n5 + 4n3 + 5n2 vertices in the gadgets attached to u′.
Therefore, we have |V ′| = O(n6).

Before we prove that I(G) ≤ nk if and only if (H,L) is a yes-instance of List Colouring,
we need to argue about two things. First, about the treewidth of the graph G and second, about
the minimum value of I(G). Since our construction only attaches trees to each vertex of G|H (and
recall that a tree has a treewidth of 1 by definition), we know that tw(G) = tw(G|H) = tw(H).
As for I(G), we will show that it has to be at least equal to nk. For that purpose we have the
following two claims.

Claim 4.8. Let S be an ir(G) and S ∩ U ′ 6= ∅. Then |S| > n3.

Proof of the claim. Let u′ ∈ S ∩ U ′. By construction, G contains more than n3 horn gadgets that
are attached to u′. Therefore, by deleting u′, we create more than n3 copies of the P2 graph, each
one of which forces us to include at least one of its vertices in S. Hence, |S| > n3. �

Claim 4.9. Let S be an ir(G) and S ∩ U = ∅. Then |S| ≥ nk. In particular, S includes at least
one vertex from each copy of the degree gadget used in the construction of G.

Proof of the claim. Let D be a copy of the degree gadget, attached to some vertex u′ ∈ U ′. Observe
that we have dG(v1) = dG(v2). It follows by Observation 2.5, that S contains at least one vertex
v in N(v1, v2), and since u′ /∈ S, this v is a vertex other than w1. The result follows from the
fact that the same arguments hold for any degree gadget attached to any vertex of U ′ (recall that
|U ′| = n and we have attached k copies of the degree gadget to each one of the vertices of U ′). �

By the previous two claims, we conclude that I(G) ≥ nk.
We are ready to show that, if (H,L) is a yes-instance of List Colouring, then there exists

a set S ⊆ V ′ such that S is an ir(G) and |S| = nk. Let c be a proper colouring of H such that
c(u) ∈ L(u) for all u ∈ V . We will construct an irregulator of G as follows. For each u ∈ V we
partition (arbitrarily) the k degree gadgets attached to the vertex u′ to c(u) “good” and (k− c(u))
“bad” degree gadgets. For each good degree gadget, we add the copy of the vertex v1 of that gadget
to S and for each bad degree gadget we add the copy of the vertex v2 of that gadget to S. This
process creates a set S of size nk, as it includes k distinguished vertices for each vertex u′ ∈ U .

Now we need to show that S is an ir(G). LetG′ = G[V ′\S]; observe that each vertex u′ ∈ U ′ has
degree dG′(u′) = 2n3 − c(u). Therefore, u′ does not have the same degree as any of its neighbours
that do not belong in U ′. Indeed, for every v ∈ NG′(u′) \ U ′, we have that dG′(v) ∈ {1, 2} (if
v belongs to a bad degree or a horn gadget) or dG′(v) ∈ {2n3 − i : i ∈ L(u)} (if v belongs to
a forbidden colour gadget). Furthermore, since c is a proper colouring of H, for all uv ∈ E, we
have that c(u) 6= c(v). This gives us that for any edge u′v′ ∈ E′ with u′, v′ ∈ U ′, we have that
dG′(u′) = 2n3 − c(u) 6= 2n3 − c(v) = dG′(v′).

So, we know that for every vertex u′ ∈ U , there is no vertex w ∈ NG′(u′) such that dG′(u′) =
dG′(w). It remains to show that, in G′, there exist no two vertices belonging to the same gadget,
which have the same degrees. First of all, we have that S does not contain any vertex from any
of the horn and forbidden colour gadgets, nor from U ′. Thus any adjacent vertices belonging to
these gadgets have different degrees. Last, it remains to check the vertices of the degree gadgets.
Observe that for any copy of the degree gadget, S contains either v1 or v2. In both cases, after the
deletion of the vertices of S, any adjacent vertices belonging to any degree gadget have different
degrees. Therefore, S is an ir(G) of order nk and since I(G) ≥ nk we have that I(G) = nk.

Now, for the opposite direction, assume that there exists a set S ⊆ V ′ such that S is an ir∗(G)
and |S| = kn. Let G′ = (V ′′, E′′) be the graph G[V ′ \S]. It follows from Claim 4.8 and Claim 4.9,
that S ∩ U = ∅ and that S contains exactly one vertex from each copy of the degree gadget in G
and no other vertices. Consider now the colouring c of H defined as c(u) = 2n3 − dG′(u′). We will
show that c is a proper colouring for H and that c(u) ∈ L(u). First, we have that c is a proper
colouring of H. Indeed, for any edge uv ∈ E, there exists an edge u′v′ ∈ E′′ (since S ∩ U ′ = ∅).
Since G′ is localy irregular we have that dG′(u′) 6= dG′(v′), an thus c(u) 6= c(v). It remains to
show that c(u) ∈ L(u) for all u ∈ V . First observe that, during the construction of G, we attached
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exactly k degree gadgets to each u′ ∈ U ′. It follows that dG′(u′) = 2n3 − j and c(u) = j for a
j ∈ {0, 1, . . . , k}. It is sufficient to show that j /∈ L(u). Since S contains only vertices from the
copies of the degree gadgets, we have that each u′ ∈ U ′ has exactly one neighbour of degree 2n3− i
for each i ∈ L(u) (this neighbour is a vertex of the Hi forbidden colour gadget that was attached
to u′). Furthermore, for all u′ ∈ U , since G′ is locally irregular, we have that, dG′(u′) 6= 2n3− i for
all i ∈ L(u). Equivalently, dG′(u′) = 2n3− j for any j ∈ L(u). Thus, c(u) ∈ L(u) for all u ∈ V .

Corollary 4.10. Let G be a graph of order n and treewidth tw. Unless the ETH fails, there is no
algorithm that computes I(G) in time O∗(f(tw)no(tw)).

Proof. The corollary is a result of the following observations:

1. the redaction from List Colouring that we presented in the proof of Theorem 4.6 is a linear
fpt-reduction and

2. there is no algorithm that answers if an instance (G,L) of the List Colouring is a yes-
instance in time O∗(f(tw)no(tw)) unless the ETH fails [20].

5 Conclusion
In this work we introduce the problem of identifying the largest locally irregular induced subgraph of
a given graph. There are many interesting directions that could be followed for further research. An
obvious one is to investigate whether the problem of calculating I(G) remains NP-hard for other,
more restricted families of graphs. The first candidate for such a family would be the one of cubic
bipartite graphs. Such a result would also serve as a good motivation to conceive an approximation
algorithm for these graphs, which we believe to be quite possible. On the other hand, there are
some interesting families, for which the problem of computing an optimal irregulator could very
well be decided in polynomial time, such as chordal and series-parallel graphs. The last aspect
we find intriguing, is to study the parameterised complexity of calculating I(G) when considering
other parameters, like the size of the minimum vertex cover of G, with the goal of identifying a
parameter that suffices, by itself, in order to have an FPT algorithm.
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Figure 4: An illustration of all the possible S ⊆ V (H) of order 2 that contain u1, used in the proof
of Claim 3.6. The case S = {u1, w2} is omitted because it is the same as the case(c). Gray vertices
and edges represent the vertices and edges that do not appear in H[V (H) \ S]. By black vertices,
we represent a pair of adjacent vertices with the same degree in H[V (H) \ S].
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