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In this paper, we investigate a reconfigurable intelligent surface (RIS) aided multi-pair communication system, in which multi-pair users exchange information via an RIS. We derive an approximate expression for the achievable rate by assuming that statistical channel state information (CSI) is available. A genetic algorithm (GA) to solve the rate maximization problem is proposed as well. In particular, we consider implementations of RISs with continuous phase shifts (CPSs) and discrete phase shifts (DPSs). Simulation results verify the obtained results and show that the proposed GA method has almost the same performance as the globally optimal solution. In addition, numerical results show that three quantization bits can achieve a large portion of the achievable rate for the CPSs setup.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) are an emerging transmission technology that is capable of configuring the wireless channel into desirable forms by appropriately optimizing the response of their individual scattering elements [1]. Due to their appealing features of low cost and low power consumption, RISs have attracted extensive research attention [START_REF] Huang | Reconfigurable intelligent surfaces for energy efficiency in wireless communication[END_REF]- [START_REF] Renzo | Smart radio environments empowered by recongurable AI meta-surfaces: An idea whose time has come[END_REF]. Some initial efforts have been devoted to the study of various RIS-aided communication systems and applications, such as physical layer security in [START_REF] Shen | Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[END_REF], [START_REF] Yu | Robust and secure wireless communications via intelligent reflecting surfaces[END_REF], multicell networks in [START_REF] Pan | Multicell MIMO communications relying on intelligent reflecting surfaces[END_REF], full duplex systems in [START_REF] Peng | Multiuser full-duplex two-way communications via intelligent reflecting surface[END_REF], mobile edge computing in [START_REF] Bai | Latency minimization for intelligent reflecting surface aided mobile edge computing[END_REF], and wireless power transfer in [START_REF] Pan | Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[END_REF]. However, a paucity of contribution studied RIS-aided multi-pair communication systems, which is a typical communication scenario due to the rapid increase of the number of machine-type devices in future networks.
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Against this background, we study the transmission design for an RIS-aided multi-pair communication system. Unlike most of the existing papers [START_REF] Shen | Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[END_REF]- [START_REF] Pan | Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[END_REF] where instantaneous channel state information (CSI) is assumed to be known, we consider the availability of statistical CSI [START_REF] Guo | Outage probability analysis and minimization in intelligent reflecting surface-assisted MISO systems[END_REF] that is easier to obtain since it varies more slowly. Specifically, our contributions are as follows: 1) We derive the achievable rate of the considered system model; 2) we propose a genetic algorithm (GA) method to solve the phase shifts optimization problem, by considering the setups of continuous phase shifts (CPSs) and discrete phase shifts (DPSs); 3) we provide extensive simulation results to demonstrate the correctness of our derived results, and to show that three bits are enough to discretize the phase shifts, which provides useful engineering insights for designing RIS-aided systems.

The rest of the paper is organized as follows. In Section II, we introduce the RIS-aided multi-pair communication system model. We derive the achievable rate in Section III and optimize the phase shifts in Section IV. Numerical results are provided to demonstrate the correctness of our analysis in Section V. Conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider an RIS-aided multi-pair communication system, where K pairs of users exchange information via an RIS, as shown in Fig. 1. The RIS consists of L reflective elements that are capable of customizing the channel by optimizing their phase shifts. The phase shift matrix Θ is denoted by Θ = diag(e jθ1 , . . . , e jθ ℓ , . . . , e jθL ), where θ ℓ is the phase shift of the ℓth reflective element. We denote the ith singleantenna transmitter as U Ai and the ith single-antenna receiver as U Bi , for i = 1, ..., K.

The channel between U Ai and the RIS and the channel between the RIS and U Bi can be written as

g ai = √ α ai h ai , (1) 
g bi = √ α bi h bi , (2) 
where α ai and α bi denote the large-scale fading coefficients, and g i ∈ C L×1 and h i ∈ C L×1 denote the fast fading vectors. Rician fading is assumed for all channels, thus the vectors h ai and h bi can be expressed as

h ai = ε i ε i + 1 h ai + 1 ε i + 1 hai , (3) 
h bi = β i β i + 1 h bi + 1 β i + 1 hbi , (4) 
where ε i and β i denote the Rician factors, hai ∈ C L×1 and hbi ∈ C L×1 denote the non-line-of-sight channel vectors, whose entries are independent and identically distributed standard Gaussian random variables, i.e., CN (0, 1), and h ai ∈ C L×1 and h bi ∈ C L×1 denote the line-of-sight channel vectors. In particular, h ai and h bi can be expressed as

h ai = [1, e j2π d λ sinςi , . . . , e j2π d λ (L-1)sinςi ] T , (5) 
h bi = [1, e j2π d λ sinϕi , . . . , e j2π d λ (L-1)sinϕi ] T , (6) 
where ϕ i and ς i represent the ith pair of users' angle of arrival (AoA) and angle of departure (AoD), respectively. In the present paper, we consider RISs that are made of discrete elements that are spaced half of the wavelength apart [1]. Therefore, we assume d = λ 2 in the rest of the paper. We assume the availability of statistical CSI at U Ai , for i = 1, . . . , K. The statistical CSI can be readily obtained since it varies much slowly than the instantaneous CSI. The signal received at U Bi is given by

y i = g T bi Θ K j=1 √ p j g aj x j + n i = √ p i g T bi Θg ai x i Desired signal + K j=1,j =i √ p j g T bi Θg aj x j
Inter-user interference

+ n i Noise , (7) 
where x j ∼ CN (0, 1) represents the signal transmitted by U Aj , p j denotes the transmit power of U Aj , and n i ∼ CN (0, σ 2 i ) is the additive white Gaussian noise (AWGN) at U Bi , for i = 1, . . . , K.

From ( 7), we observe that y i consists of three parts: the desired signal that U Bi wants to receive, the interference produced by other multi-pair users, and the noise. Furthermore, the signal-to-interference plus noise ratio (SINR) at U Bi is given by

γ i = p i α bi α ai h T bi Θh ai 2 K j=1,j =i p j α bi α aj h T bi Θh aj 2 + σ 2 i . (8) 
Hence, the ergodic achievable rate for U Bi can be expressed as

R i = E{log 2 (1 + γ i )}, (9) 
and the sum achievable rate can be written as

C = K i=1 R i . (10) 

III. ACHIEVABLE RATE ANALYSIS

In this section, we analyze the system performance. We derive an approximate expression for the achievable rate in the following theorem.

Theorem 1. In an RIS-aided multi-pair communication system, the average achievable rate of U Bi can be approximated as

R i ≈ Ri log 2      1 + p i α bi α ai εiβiΩi,i+L(εi+βi)+L (εi+1)(βi+1) K j=1,j =i p j α bi α aj εiβjΩi,j +L(εi+βj )+L (εi+1)(βj+1) + σ 2 i      , (11) 
where Ω i,i and Ω i,j are, respectively, defined as

Ω i,i = L + 2 1≤m<n≤L cos[θ n -θ m + (n -m)π(sinϕ i +sinς i )], (12) 
Ω i,j = L + 2 1≤m<n≤L cos[θ n -θ m + (n -m)π(sinϕ i +sinς j )]. (13) 
Proof: Using Lemma 1 in [START_REF] Zhang | Power scaling of uplink massive MIMO systems with arbitrary-rank channel means[END_REF], R i in ( 9) can be approximated as

R i ≈ log 2      1 + p i α bi α ai E h T bi Θh ai 2 K j=1,j =i p j α bi α bj E h T bi Θh aj 2 + σ 2 i      . ( 14 
)
The ℓth element of h ai and the ℓth element of h bi can be written as

[h ai ] ℓ = ε i ε i + 1 e j(ℓ-1)πsinϕi + 1 ε i + 1 (s ℓi + jt ℓi ), (15) 
[h bi ] ℓ = β i β i + 1 e j(ℓ-1)πsinςi + 1 β i + 1 (u ℓi + jv ℓi ), (16) 
where s ℓi ∼ N (0, 1/2) and t ℓi ∼ N (0, 1/2) denote the independent real and imaginary parts of [ hai ] ℓ , respectively, and u ℓj ∼ N (0, 1/2) and v ℓj ∼ N (0, 1/2) denote the independent real and imaginary parts of [ hbi ] ℓ , respectively. Let us first consider the term E h T bi Θh aj 2 in [START_REF] Renzo | Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison[END_REF]. By substituting [START_REF] Guo | Outage probability analysis and minimization in intelligent reflecting surface-assisted MISO systems[END_REF] and ( 16) into E h T bi Θh aj 2 , it can be rewritten as

E h T bi Θh aj 2 = E R h T bi Θh aj 2 + I h T bi Θg aj 2 , ( 17 
)
where the terms R h T bi Θh aj and I h T bi Θg aj are the real and imaginary parts of h T bi Θh aj . They are respectively given by ( 18) and (19) (at the bottom of this page), where λ ij is given by

λ ij = 1 (ε i + 1)(β j + 1) . ( 20 
)
With the aid of some algebraic calculations, we obtain

E h T bi Θh aj 2 = ε i β j Ω i,j + L(ε i + β j ) + L (ε i + 1)(β j + 1) . (21) 
A similar method can be used to calculate the term E h T bi Θh ai 2 in ( 14), which yields

E h T bi Θh ai 2 = ε i β i Ω i,i + L(ε i + β i ) + L (ε i + 1)(β i + 1) . ( 22 
)
By substituting ( 21) and ( 22) into ( 14), we obtain the final result in [START_REF] Pan | Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[END_REF]. This completes the proof.

✷ Substituting ( 11) into [START_REF] Bai | Latency minimization for intelligent reflecting surface aided mobile edge computing[END_REF], we obtain the sum achievable rate. According to Theorem 1, if α bi , α ai , AoA, AoD, ε i , and σ i are kept fixed, the sum achievable rate is determined by the number of user pairs K, the transmit power p i , the phase shift matrix Θ and the number of reflective elements L.

IV. PHASE SHIFTS OPTIMIZATION

In this section, we formulate and solve the phase shifts optimization problem in order to maximize the sum achievable rate. Both case studies of CPSs and DPSs are considered.

A. Optimal CPSs Design

To begin with, we consider the scenario adopting CPSs. The optimization problem is formulated as To tackle this issue, we propose a GA method in Algorithm 1. We associate each individual to a 1 × L phase shift vector θ = [θ 1 , . . . , θ ℓ , . . . , θ L ] and θ ℓ corresponds to its ℓth gene.

max Θ K i=1 Ri (23a) s.t. θ ℓ ∈ [0, 2π) ∀ℓ = 1, . . . , L. (23b) 
The initial population, the evaluation and sort operations, the selection function, the crossover function and the mutation function of the proposed GA method are described as follows.

1) Initial population: N t individuals are generated, by generating each gene as a variable that is randomly distributed within [0, 2π). This is referred to as the initial population.

2) Evaluation and sort: Each individual is evaluated by using the fitness function

f (θ) = 1 K i=1 Ri . ( 24 
)
In particular, the lower the fitness function is, the higher the evaluation of the individual and the position in the corresponding sorted list are.

R h T bi Θh aj = λ ij L ℓ=1 ( ε i β j (cos(θ ℓ + (ℓ -1)π(sinϕ i + sinς j ))) + cosθ ℓ (s ℓi u ℓj -t ℓi v ℓj ) -sinθ ℓ (s ℓi v ℓj + t ℓi u ℓj ) ) + λ ij L ℓ=1 ( √ ε i ((cosθ ℓ -sinθ ℓ )cos((ℓ -1)πsinϕ i )u ℓj -(cosθ ℓ + sinθ ℓ )sin((ℓ -1)πsinϕ i )v ℓj ) + β j ((cosθ ℓ -sinθ ℓ )(cos((ℓ -1)πsinς j )s ℓi -(cosθ ℓ + sinθ ℓ )sin((ℓ -1)πsinς j )t ℓi )) ) (18) 
I h T bi Θh aj = λ ij L ℓ=1 ( ε i β j (sin(θ ℓ + (ℓ -1)π(sinϕ i + sinς j ))) + sinθ ℓ (s ℓi u ℓj -t ℓi v ℓj ) + cosθ ℓ (s ℓi v ℓj + t ℓi u ℓj ) ) + λ ij L ℓ=1 ( √ ε i ((cosθ ℓ + sinθ ℓ )cos((ℓ -1)πsinϕ i )u ℓj + (cosθ ℓ -sinθ ℓ )sin((ℓ -1)πsinϕ i )v ℓj ) + β i ((cosθ ℓ + sinθ ℓ )cos((ℓ -1)πsinς j )s ℓj + (cosθ ℓ -sinθ ℓ )sin((ℓ -1)πsinς j )t ℓj ) ) (19)
3) Selection function: The selection function is used to obtain two candidates, θ 1 and θ 2 , from N t individuals. The individuals with larger values of the fitness function have a lower probability to be selected. θ 1 and θ 2 are obtained by using Algorithm 2.

Algorithm 2: Selection Algorithm

1 Generate a random number c between 0 and 1; 2 Define a cumulative-probabilities vector r = [1/N t , . . . , r/N t , . . . , 1], for r = 1, ..., N t .; 3 Denote r ′ /N t as the nearest maximum number in r to c; 4 Take the r ′ th individual in the list that is sorted by using (24).

Algorithm 3: Single-Point Crossing Algorithm

1 Get θ 1 = [θ (1) 1 , . . . , θ (1) 
ℓ , . . . , θ

L ] and

θ 2 = [θ (2) 1 , . . . , θ (2) 
ℓ , . . . , θ

L ] selected by Algorithm 2; 2 Identify a crossover point ℓ ′ ∈ [1, L] randomly; 3 Crossover θ 1 and θ 2 at crossover point ℓ ′ ; 4 Obtain two children

θ c1 = [θ (1) 1 , . . . , θ (1) 
ℓ ′ , θ (2) 
ℓ ′ +1 , . . . , θ

L ] and

θ c2 = [θ (2) 1 , . . . , θ (2) 
ℓ ′ , θ (1) 
ℓ ′ +1 , . . . , θ (1) 
L ].

4) Crossover function:

The crossover function operates on θ 1 and θ 2 , and generates two crossover children θ c1 and θ c2 . A single-point crossing algorithm is employed, which is described in Algorithm 3.

5) Mutation function: The mutation function operates on (N t -N e )L genes from (N t -N e ) individuals (except for the elites). Each gene is capable of mutating to a random number between 0 and 2π with mutation rate.

Similar as [START_REF] Ye | Tradeoff caching strategy of the[END_REF], the complexity of the proposed GA algorithm is nN t , where N t is the population size, and n is the number of generations evaluated. Moreover, n is determined by the convergence behavior of the GA.

B. Optimal DPSs Design

In practice, only a limited number of phase shifts can be used. We assume that each reflective element is encoded with B bits, and thus 2 B phase shifts can be chosen to enhance the signal reflected by the RIS. We denote the DPS matrix as Θ = diag(e j θ1 , . . . , e j θℓ , . . . , e j θL ), where θℓ is the DPS of the ℓth reflective element. Replacing the CPSs in Problem (23) by the DPSs, the optimization problem for DPSs can be formulated as

max Θ K i=1 Ri (25a) s.t. θℓ ∈ {0, 2π/2 B , . . . , 2π(2 B -1)/2 B } ∀ℓ = 1, . . . , L. (25b) 
It is observed that Problem (25) is similar to Problem (23). Accordingly, the GA method proposed for solving the CPSs optimization problem can be applied to solve the DPSs optimization problem as well.

V. NUMERICAL RESULTS

We evaluate the impact of different parameters on the sum achievable rate. We assume that the Rician factor is ε i = 10, the noise power is σ 2 i = 1, and the transmission power is SNR = p i , for i = 1, ..., K. The main parameters for the GA are: N t = 100, N s = 50, N c = 50, N e = 1, n max = 10000, P m = 0.1, and ε = 10 -6 . The other parameters are summarized in Table I, where the AOA and the AOD are randomly distributed within [0, 2π), and the large-scale fading coefficients α ai and α bi are set according to [START_REF] Zhang | Power scaling of uplink massive MIMO systems with arbitrary-rank channel means[END_REF].

In Fig. 2, we illustrate the sum achievable rate (10) versus the SNR obtained from the analytical expression in [START_REF] Pan | Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[END_REF] and Monte-Carlo simulations from [START_REF] Peng | Multiuser full-duplex two-way communications via intelligent reflecting surface[END_REF]. Two quantization bits are assumed. A good analytical agreement with Monte-Carlo simulation results is obtained, which verifies the derivations. We observe that the sum achievable rate increases with the number of reflecting elements L, as expected.

Fig. 3 depicts the sum achievable rate versus the SNR, by assuming two quantization bits and comparing different optimization schemes. Compared with the scheme based on randomly chosen phase shifts, the proposed GA and exhaustive search methods can achieve higher sum achievable rate. It is interesting to observe that the proposed GA method has almost the same performance as the globally optimal solution obtained by using the exhaustive search method.

Fig. 4 shows the sum achievable rate versus B (the number of quantization) for the scenarios adopting DPSs. The sum achievable rate for the DPSs setup increases rapidly when B is small, while the curve gradually saturates when B is large. However, it is known that using a large number of quantization bits to control the phase shifts incurs high hardware cost and power consumption. The figure shows that three quantization bits can achieve a large portion of the sum achievable rate for the CPSs setup, which provides useful engineering design insights for RIS-aided systems. Fig. 5 depicts the sum achievable rate versus the Rician factor, with two quantization bits and SNR = 20 dB. The figure shows that the sum achievable rate increases with the Rician factor. With the increase of the Rician factor, we can observe that the gaps of the sum rates between the random scheme and the proposed GA method converge to the fixed values. It is because with a large Rician factor, the channels are dominated by the LOS component.

VI. CONCLUSION

In this paper, we investigated RIS-aided communications for multiple pairs of users. We derived an approximate expression for the achievable rate. Based on the derived analytical framework, we developed a GA-based algorithm for optimizing the achievable sum achievable rate, which can be applied to CPS-based and DPS-based implementations. Simulation results verified the effectiveness of the proposed GA-based method. outage probability and fronthaul usage in a cloud-RAN," IEEE Trans. Veh. Technol., vol. 67, no. 7, pp. 6383-6397, Jan. 2018.
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