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1.  Introduction
Direct measurements of the geomagnetic field are available through ground observatories and navigators’ 
data for the last 400 years (Jonkers et al., 2003) and satellite measurements for the last decades. For earlier 
periods, the data are obtained through the archeomagnetic study of archeological baked materials and vol-
canic rocks that acquire, during their last cooling, a thermoremanent magnetization (TRM) whose direction 
is parallel, and intensity is proportional to the intensity of the local geomagnetic field.

Global models of the Earth's magnetic field have been constructed from direct, historical, and archeom-
agnetic data by inversion with spherical harmonic analysis in space (e.g., Arneitz et al., 2019; Campuzano 
et al., 2019; Constable et al., 2016; Hellio & Gillet, 2018; Jackson et al., 2000). They can be used to define the 
temporal and spatial variation of the magnetic field worldwide. Another way to describe secular variation 
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is to construct local reference curves for a given area in direction and/or 
intensity (e.g., Hervé et al., 2017; Kovacheva et al., 2014; Molina-Cardın 
et al., 2018; Tema & Lanos, 2021).

There has been a long tradition of archeomagnetic studies in Northern 
and Central America, with the first studies in the mid 60s (e.g., Bucha 
et al., 1970; Lee, 1975 for Mexico and see Jones et al., 2021 for USA) and 
continuous improvements since (e.g., Alva-Valdivia et  al.,  2020,  2021; 
Dubois, 1989; Hagstrum & Champion, 2002; Hervé, Perrin, Alva-Valdiv-
ia, Tchibinda Madingou, et  al.,  2019; Jones et  al.,  2020,  2021; Lengyel 
& Eighmy, 2002; Mahgoub, Juárez-Arriaga, Böhnel, Manzanilla, & Cy-
phers, 2019; Morales et al., 2009; Pétronille et al., 2012; Rodríguez-Trejo 
et al., 2019; Schaafsma et al., 2002; Soler-Arechalde et al., 2019; Stern-
berg, 1989; Wolfman, 1990). For the past 2 kyrs, around 325 intensities 
and 690 directions, respectively 11% and 12% of the worldwide archeo-
magnetic data set (GEOMAGIA50.v3.4; Brown et  al.,  2021), have been 
published. Local reference curves that were proposed are not fully in 
agreement with predictions from global models, especially for Central 
America. Different parameters can explain this difference. First, data are 
not distributed regularly in these areas but are grouped in three main 
spots (Figure 1): Southwestern USA (Arizona, New Mexico, Colorado and 
Utah), Lower Mississippi river (Arkansas, Mississippi), and Central Mex-
ico along the Trans Mexican volcanic belt.

Only a few data are available outside these areas: lava flows from the Cascade Mountains (e.g., Hagstrum & 
Champion, 2002) and archeological baked clays from the Mayan area in Southern Mexico and Guatemala 
(e.g., Alva-Valdivia et al., 2010; Fanjat et al., 2013; Morales et al., 2009; Wolfman, 1990). No data have been 
presently published in large areas, such as Northern Mexico. It is interesting to note that this distribution 
is partly related to the location of the experimental laboratories and does not reflect the archeomagnetic 
potential of these areas. Also, only a few dozens of data, generally acquired on volcanic flows are full vector 
(e.g., Mahgoub, Juárez-Arriaga, Böhnel, Siebe, & Pavón-Carrasco, 2019). Another weakness of the Northern 
and Central American data set is the inhomogeneous data quality, which clearly impacts the recovery of 
the secular variation in these regions (e.g., Hervé, Perrin, Alva-Valdivia, Tchibinda Madingou, et al., 2019; 
Jones et al., 2020). A large proportion of intensity data do not fulfill modern quality criteria, such as the ne-
cessity to appropriately correct for TRM anisotropy and cooling rate effects, at least for archeological baked 
clays (Hervé , Perrin, Alva-Valdivia, Tchibinda Madingou, et al., 2019; Mahgoub, Juárez-Arriaga, Böhnel, 
Manzanilla, & Cyphers, 2019).

As a new step to improve the Central American archeomagnetic database, nine pottery kilns were sampled 
in the archeological site of Casas de Fuego in Chihuahua state, Northern Mexico. This site is part of the 
Mogollon cultural area, one of the most important in Northern Mexico and Southwestern USA.

2.  Archeological Context and Sampling
Northern Mexico and Southwestern USA have a high potential for archeomagnetism through their rich 
archeological heritage. During the pre-Columbian period, these regions belonged to the so-called Oasisa-
merica (Kirchhoff, 1954). They were divided into three main cultural areas in the first half of the second 
millennium CE: Ancestral Puebloan (Four Corners area, before named Anasazi), Hohokam (SW Arizona), 
and Mogollon (SE Arizona, SW New Mexico, West Texas, and northern parts of Chihuahua and Sonora 
states in Mexico). These three cultural complexes have similar characteristics, for example large buildings in 
adobe divided into many rooms. The main archeological site of the Casas Grandes culture, belonging to the 
Mogollon area, is Paquimé in NW Chihuahua. This famous site, classified to the UNESCO World Heritage 
List, was occupied from circa 700 to 1500 CE with a florescence period at Middle period between 1150 and 
1450 CE (Pailes, 2017). This period was characterized by intense economic activity with long-distance trade 
with other Oasisamerica and Central Mexico regions. Fine painted potteries were produced, such as the 

Figure 1.  Location of Casas de Fuego area (red diamond) and available 
archeomagnetic data (directional data are in blue, and intensity data in 
pink). Circles (triangles) are for data coming from sites using archeological 
(volcanic) material.
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Mimbres and Ramos traditions (Alva-Valdivia et al., 2021). The population also significantly increased, as 
evidenced by the high number of smaller contemporaneous archeological sites close to Paquimé.

Casas de Fuego is located ∼18 km south of Paquimé (Cruz-Antillon & Maxwell, 2017) in the Arroyo Seco 
valley. The archeological area was discovered in 1999 and excavated in 2000–2002 (Cruz-Antillon, 2003). 
Several settlements are dispersed over a few km2 in two main areas on both sides of the valley, Arroyo Seco 
A and B. Our study focuses on Arroyo Seco B, with two archeological sites 1.5 km away (CF1 and CF2, Fig-
ure 2a). Buildings in adobe are rather well preserved with size varying from 1 to 100 m2. The larger complex 
was excavated on archeological site CF1 by R. Cruz- Antillón (Figures 2b and 2c), with square (2 × 2 m) or 
rectangular (2 × 4 m) rooms. In comparison to other known archeological sites in the Paquimé area, the 
Arroyo Seco B buildings have the peculiarity of presenting some rooms that were clearly exposed to fire with 
well burnt walls and ashy floors (Figures 2c and 2d). Such rooms are interpreted as kilns for pottery bak-
ing (Cruz-Guzman & Nava Maldonado, 2008), as supported by the presence of overheated pottery sherds 
related to a failed baking process. Archeological artifacts, dendrochronology and radiocarbon converge to 
an occupation of the Casas de Fuego area between 1250 and 1450 CE, that is, at the end of Casas Grandes 
Middle period.

The archeomagnetic sampling was performed on the best-preserved parts of the burnt walls of CF1 and 
CF2 (Figure 2c). At CF1 archeological site, five rooms (CF1-1 to CF1-5) were sampled in the main building 
(Figure 2b) and another room (CF1-6) in a close small building. At CF2 archeological site, two rooms (CF2-
7 and CF2-8) were sampled. Finally, we studied another burnt room (six blocks) in a smaller archeological 
site called El Papalote (PAP). This site is located in the same valley about 8.5 km north of CF1. No direct 
dating could be performed at PAP but the similarity of the archeological context let us assume that it was 
used at the same period as CF1-CF2. A total of 48 paleomagnetic block samples, between 4 and 8 per room, 
were sampled (Figure S1) and oriented with magnetic and sun compasses on horizontally leveled plaster 
caps. After induration with sodium silicate in the laboratory, all block samples were cut in 4–15 cubic spec-
imens, 2 cm side.

Figure 2.  (a) Location map of Casas de Fuego archeological sites; (b) picture of the CF1 archeological site; (c) schematic map of the CF1 archeological site with 
location of the samples as red circles (see Figure S1 for labels), burnt (unburnt) walls in orange (brown); and (d) picture of room CF1-1 with plaster caps. Maps 
modified from Cruz-Antillon (2003).
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3.  Rock Magnetism
The magnetic carriers and their thermal stability were estimated by different rock magnetic experiments.

Susceptibility versus temperature (K/T) curves were done with an AGICO Multi-frequency Kappabridge 
(MFK1-CS3). Two successive heating-cooling cycles, up to 350 and 620°C, were performed on powder spec-
imens of ∼200 mg. Curie temperatures (Tc) were estimated at the point where the curvature of the concave 
part of the heating curve is maximal. First-order reversal curves (FORC) experiments were measured with a 
regular grid and a 200 ms averaging time on selected samples. Data were processed by the FORCinel routine 
(Harrison & Feinberg, 2008) with VARIFORC smoothing parameters (Egli, 2013).

Most kiln walls present a change in color from reddish when the wall was in contact with the fire to blackish 
inside the wall (Figure 3). To test the influence of the color gradient on the magnetic mineralogy, detailed 
rock magnetic analysis was done in four different zones from red to black (zones a–d, Figure 3). In general, 
heating and cooling K/T curves are fairly reversible, evidencing no mineralogical transformation, except for 
an example (Figure 3b) that shows the effect of oxidation with lower values of the cooling branch. The main 
magnetic phase is a Ti-poor titanomagnetite with Curie temperature ranging from 520 to 550°C. FORC di-
agrams present mainly a SD behavior with uniaxial, randomly oriented grains and no interaction indicated 
by a central ridge over Bu direction and in one case a negative distribution (Figure 3d).

4.  Directional Analysis
All magnetic moments were measured with a 2G Enterprises cryogenic magnetometer. Alternating field 
(AF) demagnetization was done with an AF device in line with the cryogenic magnetometer, from 4 to 
90 mT (3–5 mT steps). Thermal demagnetization was performed in an MMTD80A oven with temperatures 
ranging from 100 to 585°C (20–50°C steps). Sixteen pilot sister-specimens were demagnetized with both 
methods. As they give similar results, the rest of the specimens were AF demagnetized. Results were in-
terpreted with the Puffin Plot software (Lurcock & Wilson, 2012), and the mean directions per kiln were 
calculated by Fisher statistic with the PmagPy software (Tauxe et al., 2016).

Two-third of the specimens present a single component of magnetization (Figures 4a and 4c), while the 
others also have a small secondary component (Figures 4b and 4d) partly maybe of viscous origin. Charac-
teristic remanent directions are listed per specimen (Table S1) and plotted per kiln (Figure S2). The mean 
directions per kiln, calculated at the block sample and at the specimen levels (Table 1), are less than 1° apart 
and the distribution parameters are similar. Considering the homogeneity between the two calculations, 
the specimen level was preferred because the larger number of determinations allows a more reliable calcu-
lation of the 95% confidence circles (α95). Most mean directions are well-grouped (Figure 5), except CF2-7 
that has the larger α95 and for which the kappa decreased at the block sample level. For these reasons, CF2-7 
should be considered with caution.

5.  Archeointensity Experiments
Archeointensities were determined using the Thellier-Thellier method (Thellier & Thellier, 1959), where 
specimens are heated twice at each temperature in a laboratory field applied in opposite directions (+z and 
−z). Every two steps, a partial thermoremanent magnetization (pTRM) check is made with an additional 
heating along +z to monitor the absence of mineralogical alteration during the experience. Temperature 
steps, ranging from 100 to 560°C, were chosen according to the unblocking temperatures estimated during 
thermal demagnetizations. All thermal experiments were performed in an ASC oven and a laboratory field 
of 40–50 μT (see Table S2) was applied during both heating and cooling. Results were displayed with Thelli-
erTool4.0 software (Leonhardt et al., 2004), and the archeointensities were deduced from the ratios between 
the NRM lost and the pTRM gained at each temperature step.

Seventy-six specimens were measured and representative NRM/TRM plots and orthogonal diagrams are pre-
sented in Figure 6. Roughly one-third of our specimens, mainly from the reddish part of the walls, present a 
linear NRM/TRM plot with a good reproducibility of pTRM checks (within 5%) and only one component of 
magnetization on the orthogonal diagram (Figure 6a). On these most reliable results, the archeointensities 
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Figure 3.  Rock magnetic experiments through a composite section of CF1 burnt walls: KT curves (heating/cooling 
curves in red/blue respectively) and FORC diagrams.
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Figure 4.  Orthogonal diagrams and demagnetization curves for representative samples: (a and b) alternating field 
demagnetization; (c and d) thermal demagnetization. Magnetization is in 10−1 A/m. Open (full) symbols correspond to 
vertical (horizontal) projections on the orthogonal plots; red (black) symbols to selected (not selected) demagnetization 
steps.

Mean per specimen Mean per block Archeointensity

Archeo site Lat Long Site N Dec Inc k α95 N Dec Inc k N F sd Fcr sd

El Papalote 30.28 −107.90 PAP 13 352.0 53.0 99 4.2 5 352.2 52.7 105 10 63.5 5.8 60.8 5.7

Casas de Fuego 1 30.20 −107.89 CF1-1 13 344.6 52.3 285 2.5 5 345.2 52.1 394 5 66.4 7.0 64.7 6.8

CF1-2 13 0.0 47.7 253 2.6 5 359.7 47.9 366 – – – – –

CF1-3 12 354.3 50.5 192 3.1 5 354.2 50.9 217 6 62.3 6.1 60.6 5.1

CF1-4 12 346.8 49.4 116 4.0 5 350.0 50.0 136 8 64.9 3.9 61.5 3.6

CF1-5 8 357.5 48.6 397 2.8 4 358.4 47.7 451 4 67.3 1.6 63.5 1.5

CF1-6 13 2.9 54.0 370 2.2 6 2.6 54.3 664 4 58.4 1.2 55.6 1.0

Casas de Fuego 2 30.20 −107.89 CF2-7 9 356.2 61.6 120 4.7 4 355.4 61.5 101 6 63.0 3.1 59.4 3.2

CF2-8 12 357.3 52.6 531 1.9 3 357.3 52.5 731 4 65.6 3.9 63.1 1.6

Note. Archeo site, archeological site; (Lat, Long), latitude and longitude of the archeological site; Site, kiln name; N, number of specimens used to calculate 
the mean values; (Dec., Inc.), average declination and inclination; kappa, Fisher precision parameter; α95, 95% confidence circle; F, archeointensity in μT; Fcr, 
corrected archeointensity; sd, standard deviation.

Table 1 
Mean Directions at the Specimen and Block Sample Levels and Archeointensity Results
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were estimated between 100–150°C and 540–550°C. Another third of the 
specimens presents a slight secondary component that is erased at fairly 
low temperatures, usually by 300–400°C (Figure 6b). Reliable archeoin-
tensities can still be estimated at higher temperature (Table S2). The last 
third has NRM/TRM diagrams either with no linear segment over a large 
enough temperature range or with two slopes (Figure 6c) and no archeo-
intensity was estimated.

For baked clays, anisotropy effects on TRM intensity have to be investi-
gated (e.g., Aitken et al., 1981; Veitch et al., 1984), even though they are 
generally low for such burnt structures (e.g., Kovacheva et al., 2009). The 
TRM anisotropy tensor is defined through six successive heatings and 
coolings at 530°C or 540°C, with the same applied laboratory field aligned 
along the specimen directions +x, −x, +y, −y, +z, and −z, followed in 
most cases by a stability check. Archeointensities were corrected for ani-
sotropy effects only when the factor of evolution (%EvolATRM) was within 
the range 0%–5% (Table S2). Only 15 specimens could be corrected for the 
anisotropy effect. However, the corrected intensities are within 10% of the 
uncorrected values without systematic trend that gives us confidence in 
the reliability of the other intensity estimations.

TRM intensity also depends on the duration of cooling (e.g., Fox & Aitken, 1980) and the 1-h cooling used 
routinely during the archeointensity experiments is likely faster than the archeological cooling rate. The 
procedure of Gómez-Paccard et al. (2006) was carried out to correct this effect with a slow cooling (5 h) at 
the same temperature as used for the anisotropy correction, followed by a stability check. The duration of 
the slow cooling rate was constrained by technical reasons and may still underestimate the archeological 
cooling. However, it was shown that such an imprecision does not significantly disturb the average archeo-
intensity values (Hervé, Chauvin, et al., 2019). Cooling rate correction factors (CR factor, Table S2) averaged 
around a mean value of 5% that was used to correct the intensities when the cooling rate evolution factor 
was too large (%EvolCR ≤5%, Table S2). Averaged archeointensity results per kiln (Table 1) show a slight 
decrease of the standard deviation after corrections.

6.  Discussion
Altogether nine mean directions and eight mean intensities were obtained in this study. The differences, es-
pecially in declination, suggest that the activity of the kilns did not stop at the same time. These new data are 
the first full vector data obtained on archeological material in Mexico and Western North America. We com-
pared them to intensities (Figure 7) and directions (Figure 8) published from sites located within 2,000 km 
from Casas de Fuego in the 0–2000 CE period. Data were retrieved from GEOMAGIA50 (Brown et al., 2021) 

Figure 5.  Mean characteristic directions per kiln with their α95 confidence 
circle on an equal-area plot.
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Figure 6.  Representative NRM/TRM plots and orthogonal diagrams. Red circles depict temperature steps used in the calculation on the NRM/TRM diagrams. 
Open (full) circles on Zijderveld plots correspond to a vertical (horizontal) plane projection, respectively.
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and from regional compilations (Hervé, Perrin, Alva-Valdivia, Tchibinda 
Madingou, et al., 2019; Jones et al., 2020, 2021; Mahgoub, Juárez-Arria-
ga, Böhnel, Manzanilla, & Cyphers, 2019; Soler-Arechalde et al., 2019). 
Data were relocated to Casas de Fuego via the Virtual Geomagnetic Pole 
(VGP) and the Virtual Axial Dipole Moment (VADM) assumptions for 
directions and intensities respectively. The non-dipolar component of the 
geomagnetic field introduces a relocation error that could reach a few de-
grees or a few μT at the maximum (Casas & Incoronato, 2007; Goguitcha-
ichvili et al., 2020). We also compared the predictions, at Casas de Fuego, 
of global models that have been recently constructed with archeological 
and volcanic data (e.g., ARCH10k.1, Constable et al., 2016; COV-ARCH, 
Hellio & Gillet,  2018; BIGMUDI4k.1, Arneitz et  al.,  2019; SHAWQ2k, 
Campuzano et al., 2019). The predictions of these models being reason-
ably consistent, we choose to present on Figures 7 and 8 only the most 
recent SHAWQ2k model that has the advantage of weighting data accord-
ing to their quality.

6.1.  Comparison With Intensity Data and Models

For the last 2 kyrs, 192 intensity averages were found within 2,000 km 
from Casas de Fuego: 141 from Mexico (see Alva-Valdivia et  al.,  2021; 
Garcia et  al.,  2021; Hervé, Perrin, Alva-Valdivia, Tchibinda Mad-
ingou, et  al.,  2019; Mahgoub, Juárez-Arriaga, Böhnel, Manzanilla, 
& Cyphers,  2019) and 51 from Western North America (e.g., Bowles 
et  al.,  2002; Champion,  1980; Jones et  al.,  2020; Sternberg,  1982). Ar-
cheological baked clays constitute 80% of the data set. Consistently with 
Jones et al. (2020), we corrected the Southwestern USA mean values by a 
cooling rate effect of 6.73%, experimentally determined in their study. 32 
volcanic data are available for Mexico and one for Utah. However, it can 
be noted that some Mexican flows have been studied several times, es-
pecially the Xitle lava sequence (Alva-Valdivia et al., 2020) that has been 
intensively sampled in Mexico City but also the Jorullo (Alva-Valdivia 
et al., 2019) and Paricutin lava flows (Urrutia-Fucugauchi et al., 2004).

The whole data set is plotted in Figure 7a, together with the new intensities 
that are within the wide range of VADM values (70–150 ZAm2) observed 
in the first half of the second millennium CE. As several studies (Hervé, 
Perrin, Alva-Valdivia, Tchibinda Madingou, et al., 2019; Jones et al., 2020; 
Mahgoub, Juárez-Arriaga, Böhnel, Manzanilla, & Cyphers, 2019) showed 
the large role of the uneven data quality in this dispersion, we applied 
the following selection criteria: (a) only data acquired with the original 

or derived Thellier-Thellier and microwave methods, (b) at least three specimens, (c) a standard deviation 
(sd) lower than 10%, and (d) an age uncertainty less than ±200 years. Furthermore, paleointensity values 
on ceramics must have been corrected for anisotropy effects using the TRM tensor when the laboratory 
field was not applied parallel to the NRM. Data corrected for TRM anisotropy by the Mean (XYZ) correction 
were discarded as a bias up to 10–15 μT is possible (Hervé, Perrin, Alva-Valdivia, Tchibinda Madingou, 
et al., 2019). Finally, the cooling rate correction must also be considered for archeological baked clays, either 
by a coefficient directly estimated on the specimen or by applying an average rate. This set of criteria corre-
sponds to the C1 set of Hervé, Perrin, Alva-Valdivia, Tchibinda Madingou, et al. (2019) to which we add one 
microwave determination. It is also closely similar to the one used by Mahgoub, Juárez-Arriaga, Böhnel, 
Manzanilla, and Cyphers (2019) to construct their secular variation curve for Mexico that we consider most 
reliable than the curve proposed by Garcia et al. (2021), not as selective for anisotropy correction.

Most Casas de Fuego data pass these criteria, except CF1-1 with a sd of 11%. One-third of the initial Mexican 
data set was accepted: six lava flows (Alva-Valdivia et al., 2019; Gratton et al., 2005; Mahgoub, Juárez-Arriaga, 

Figure 7.  Comparison of intensities from Casas de Fuego (red stars) 
with others data within 2,000 km (a) before and (b) after selection. Data 
from Mexico are in green and in pink for the closest from Casas de Fuego 
(Alva-Valdivia et al., 2021); data from Western North America are in blue. 
Circles and triangles correspond to archeological baked clays and lava 
flows respectively. All data are relocated in Casas de Fuego via VADM. 
In (b), the red curve is the relocated Mexican curve of Mahgoub, Juárez-
Arriaga, Böhnel, Manzanilla, and Cyphers (2019) and the black curve 
is the prediction at the archeological site of SHAWQ2k global model 
(Campuzano et al., 2019). Both curves are plotted with their 95% error 
envelope.



Geochemistry, Geophysics, Geosystems

TCHIBINDA MADINGOU ET AL.

10.1029/2021GC009969

9 of 13

Figure 8.  Comparison of directions from Casas de Fuego (red stars) with data within 2,000 km from Western North America (a and b) and Mexico (c and d). 
All compiled data are plotted in (a–c), whereas (b–d) presents the selected data set. Circles and triangles correspond to archeological baked clays and lava flows 
respectively. In (a), the blue data come from Southwestern USA and the green one from the Lower Mississippi river region. In (c), the brown data were acquired 
on burnt material carrying a TRM and the beige data on unburnt lime-plasters. In (b–d), the red curves with their 95% error envelope are the regional curves of 
Hagstrum and Blinman (2010) for Western North America and of Soler-Arechalde et al. (2019) for Mexico. The prediction at the archeological site of SHAWQ2k 
global model (Campuzano et al., 2019) is plotted in black with its 95% error envelope. All data and curves are relocated to Casas de Fuego via VGP.
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Böhnel, Siebe, & Pavón-Carrasco, 2019; Morales et al., 2006; Pérez Rodriguez et al., 2019) and 39 baked 
clays (Alva-Valdivia et al., 2021; Hervé, Perrin, Alva-Valdivia, Tchibinda Madingou, et al., 2019; Mahgoub, 
Juárez-Arriaga, Böhnel, Manzanilla, & Cyphers,  2019). Other high-quality archeomagnetic data exist in 
Mexico, but they are either beyond the 2,000 km limit (e.g., Fanjat et al., 2013) or older than 2 kyrs (e.g., 
Duran et al., 2010; Hervé, Perrin, Alva-Valdivia, Rodríguez-Trejo, et al., 2019). For Western North America, 
47% of the data set passed the selection criteria, with one lava flow (Champion, 1980) and 23 data on ceram-
ics (Bowles et al., 2002; Jones et al., 2020; Sternberg, 1982). As well in Mexico as in Western North America, 
the most discriminant criterion was the anisotropy correction, usually not performed in early studies (e.g., 
Bucha et al., 1970; Lee, 1975).

While the selection discards the highest and lowest intensity values (Figure 7b), the Mexican and Western 
North American data sets remain consistent, even though data are now missing for some periods as around 
500–600, 1200, and 1500–1700 CE. Between 1200 and 1500 CE, besides Casas de Fuego, five Western North 
American and six Mexican data are available with intensities ranging from 80 to 130 ZAm2. The closest 
results from our sites are the Paquimé results (pink circles in Figure 7; Alva Valdivia et al., 2021) that are in 
better agreement with the Mexican secular variation curve (Mahgoub, Juárez-Arriaga, Böhnel, Manzanilla, 
& Cyphers, 2019), while our results are more consistent with the SHAWQ2k global model (Campuzano 
et al., 2019). The difference between regional and global models can be explained by the absence of high 
intensities in the selected data set of Mahgoub, Juárez-Arriaga, Böhnel, Manzanilla, and Cyphers (2019), 
but it was also shown that the global models are strongly influenced by low-quality data (Hervé, Perrin, 
Alva-Valdivia, Tchibinda Madingou, et al., 2019) that tend to smooth secular variation. We think that none 
of the models properly described the likely rapid secular variation at that time. New reliable data, especially 
in Northern Mexico, will be necessary to confirm this hypothesis.

6.2.  Comparison With Directional Data and Models

Many directions (589) were published from sites within 2,000 km of Casas de Fuego for the last 2 kyrs, a 
large majority coming from archeological fireplaces or ovens. Four-hundred two archeological data are 
from Southwestern USA (Arizona, Colorado, New Mexico, Utah), 61 archeological data are from the Lower 
Mississippi river (Arkansas, Mississippi, Tennessee, and Missouri), and 10 volcanic data are from North 
California and Utah (e.g., Hagstrum & Champion, 2002). The Western North American data set appears 
homogeneous with a rather uniform temporal distribution over the last two millennia (Figure 8a).

The Mexican data set contains 116 data (without Casas de Fuego): 100 on archeological material and 16 on 
lava flows (see Soler-Arechalde et al., 2019). Most of them are located in Central Mexico along the Trans 
Mexican Volcanic Belt and in the Maya area. There are no directions from North of 21°N, emphasizing even 
further the interest of our work for the Mexican database. The Mexican data set is less homogeneous than 
in Western North America, with a wider range of inclination values and some data with declinations up to 
40°W (Figure 8c). To test the geomagnetic origin of this dispersion, we also performed a critical analysis 
of the directional data with (a) at least five specimens; (b) an α95 lower than 5°; and (c) an age uncertainty 
less than ±200 years. A peculiarity of the Mexican data set is the presence of lime-plasters covering house 
floors, which mix water, lime, and lithic clasts (Hueda-Tanabe et al., 2004). Due to the volcanic environ-
ment of Central Mexico, the lithic clasts are rich in ferromagnetic particles, and a remanent magnetization 
is acquired by the alignment of the particles parallel to the local geomagnetic field when the plaster is 
mixed, therefore carrying a detrital remanent magnetization that does not record the ancient geomagnetic 
field as accurately as a TRM. Furthermore, lime-plasters data have systematically higher uncertainties (Fig-
ure 8c), so we choose to consider only directions from burnt structures. Finally, we discarded the direction 
of Tula415 (Figure 8c) that passes the criteria but was considered as unreliable in the original article of 
Wolfman (1990).

The selection process preferentially removed data with the westernmost declinations and highest or lowest 
inclinations, and the remaining 49 Mexican directions (39 and 10 from archeological and volcanic material, 
respectively) form a more homogeneous data set (Figure  8d). Unfortunately, the selection also removes 
almost all data that could be compared to Casas de Fuego. The Casas de Fuego data are in good agreement 
with the Western North American data set, with selection (420 data, Figure 8b) or without selection (473 
data, Figure 8a).
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Casas de Fuego data are basically in agreement with the predictions of the SHAWQ2k global model and 
with the regional secular variation curves of Western North America (Hagstrum & Blinman, 2010) and 
Mexico (Soler-Arechalde et al., 2019), relocated at the archeological site (Figures 8b–8d). The Western North 
America regional and global curves show a plateau of the inclination over the last millennium, while the 
curve of Soler-Arechalde et al. (2019) exhibits a rapid and short increase of the inclination between 1200 and 
1400 CE. Our CF2-7 kiln result could seem to support this feature but, as said before, it should be considered 
with care. As can be seen from Figure 8d, all data with very high inclinations have been discarded from our 
selection, therefore this peak seems to result from the inclusion of low-quality data (e.g., lime-plaster data 
and Tula415) in the calculation of the mean directions by the moving windows technique, and likely does 
not reflect a geomagnetic feature. The Mexican secular variation curve over the last millennium needs to 
be re-established with new reliable data. For the moment, we suggest to use the Western North America 
directional curve (Hagstrum & Blinman, 2010) for archeomagnetic dating in Northern Mexico. If applied to 
Casas de Fuego, the fairly steady increase in declination between 1100 and 1800 CE may indicate a relative 
chronology between our kilns, with CF1-1 being the earliest in activity and CF1-6 the latest.

7.  Conclusions
Casas de Fuego results are the first full vector determinations obtained in Northern Mexico. The difference 
between kilns, especially in declination, suggests that the kilns were used at different times. The nine direc-
tions and the eight intensities are consistent as well with selected data from Western North America than 
from Mexico. Considering the directional secular variation, the SHAWQ2k global model and the regional 
curves for Western North America (Hagstrum & Blinman, 2010) and Mexico (Soler-Arechalde et al., 2019) 
show the same tendency over the last two millennia if the last part of the Mexican curve is not considered. 
For the last millennium, the regional Western North America curve seems more suitable for archeomagnet-
ic dating in Northern Mexico. For the intensity secular variation, SHAWQ2k model gives predictions higher 
than Mahgoub, Juárez-Arriaga, Böhnel, Manzanilla, and Cyphers (2019) intensity curve but none seems to 
reflect the rapid secular variation that seems to occur between 1200 and 1500 CE.

Data Availability Statement
Directional and paleointensity results are available in the MagIC database (http://earthref.org/Mag-
IC/19284), https://doi.org/10.7288/V4/MAGIC/19284.
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