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Abstract

Crystallographic B-factors provide direct dynamical information on the internal

mobility of proteins that is closely linked to function, and are also widely used as a

benchmark in assessing elastic network models. A significant question in the field is:

what is the exact amount of thermal vibrations in protein crystallographic B-factors?

This work sets out to answer this question. First, we carry out a thorough, statisti-

cally sound analysis of crystallographic B-factors of over 10,000 structures. Second, by

employing a highly accurate all-atom model based on the well-known CHARMM force

field, we obtain computationally the magnitudes of thermal vibrations of nearly 1,000

structures. Our key findings are: (i) the magnitude of thermal vibrations, surprisingly,

is nearly protein-independent, as a corollary to the universality for the vibrational

spectra of globular proteins established earlier; (ii) the magnitude of thermal vibra-

tions is small, less than 0.1 Å2 at 100 K; (iii) the percentage of thermal vibrations in

B-factors is the lowest at low resolution and low temperature (<10%) but increases to

as high as 60% for structures determined at high resolution and at room temperature.

The significance of this work is that it provides for the first time, using an extremely

large dataset, a thorough analysis of B-factors and their thermal and static disorder

components. The results clearly demonstrate that structures determined at high res-

olution and at room temperature have the richest dynamics information. Since such

structures are relatively rare in the PDB database, the work naturally calls for more

such structures to be determined experimentally.

Keywords: B-factor; dynamics; static disorder; thermal vibrations; mean-square dis-

placements; X-ray crystallography; NMA; elastic network models
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1 Introduction

The Debye–Waller factor (DWF), or B-factor as it is called in protein X-ray crystallography,

is a factor used to describe for each atom the degree to which its electron density spreads out.

If protein molecules in all unit cells had exactly the same conformation, were motionless,

and lined up perfectly by having exactly the same position and orientation relative to the

centers/axes of their unit cells, then the electron density would have no spread and all the

B-factors would be 0.

In reality, none of above is true. First, protein molecules may assume different conforma-

tional states in unit cells1, which is one kind of static disorder. Second, protein molecules

may have different positions and orientations within unit cells, which is another kind of

static disorder. This latter kind of static disorder may be further divided into translational

disorder (due to positional difference in unit cells) or rotational disorder (due to orientational

differences in unit cells)2, although in practice the two can only occur together in a densely

packed crystal. Third, protein crystals are not perfectly periodic and have defects. This is

further aggravated by radiation damage, in particular for structures obtained using intense

synchrotron radiation. Radiation damage can be significantly reduced by freezing the crys-

tal and carrying out the experiment at a low cryogenic temperature (at around 100 K or

lower)3, which is the very reason most structures are determined at 100 K nowadays. Data

collection at temperatures below 100 K was even proposed to further reduce radiation dam-

age4. At low cryogenic temperature, one possible consequence of radiation damage is that

it may increase rotational disorder via “structural rearrangements from radiation-induced

breaks in crystal contacts”5. The effect of radiation damage on B-factors is complicated.

It is dose-dependent and varies from protein to protein. Since it is indistinguishable from

static disorder in the analyses we perform, we no longer make the distinction in the rest of

the paper. The recent advent of serial synchrotron crystallography presents an alternative
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way to overcome radiation damage and creates a renewed hope and interest in carrying out

X-ray crystallography at room temperature6. Fourth, protein molecules are certainly not

motionless: Protein molecules may vibrate within each unit cell or have rigid body motions

relative to one another, i.e., vibrations across unit cells. The former is represented by optical

waves while the latter acoustic waves7. Because of the aforementioned static disorder and

dynamics in a protein crystal, if we were to align all the unit cells and observe them over

time, we would see that protein molecules within unit cells do not align perfectly, but spread

out around a mean conformation. The spread around the mean position of each atom i is

generally modeled as a Gaussian function and the magnitude of the spread is characterized

by 〈u2i 〉, the mean-square displacement from the mean position.

The isotropic Debye-Waller factor, or B-factor, is related to 〈u2i 〉 as:

Bi =
8π2

3
〈u2i 〉. (1)

Or,

〈u2i 〉 =
3

8π2
Bi. (2)

Accounting for the contributions from different sources mentioned above, the mean-square

displacement 〈u2i 〉 can be divided and subdivided as,

〈u2i 〉 = 〈u2i 〉d + 〈u2i 〉ld = 〈u2i 〉v + 〈u2i 〉aw︸ ︷︷ ︸
dynamics

+ 〈u2i 〉cld + 〈u2i 〉rld + 〈u2i 〉tld + 〈u2i 〉
f
ld︸ ︷︷ ︸

static disorder

, (3)

where the subscripts d and ld denote dynamics and lattice disorders, respectively, and the su-

perscripts represent conformational (c), rotational (r), translational (t) disorders, and crystal

defects (f). The dynamics term 〈u2i 〉d can be subdivided into thermal vibrations within unit

cells (denoted by subscript v) and vibrations across unit cells, or acoustic waves (denoted

by subscript aw). According to Hinsen’s calculations, the contribution from acoustic waves
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〈u2i 〉aw is significantly smaller in comparison to thermal vibrations within unit cells 〈u2i 〉v,

about 14% for lysozyme7. A further decomposition of 〈u2i 〉v into contributions from internal

and rigid-body motions can be attempted but is difficult because these two contributions

produce very similar patterns8. The separation can be made more reliably when covari-

ance information is available in addition to single-atom fluctiations9. Note also that 〈u2i 〉v

represents the mean-square displacement due to thermal vibrations of protein molecules un-

der the influence of crystal packing. It is not the same as thermal vibrations of a single

protein molecule. The influence of crystal packing has been studied by several groups of

researchers7,10,11. Compared to that of a single molecule, peaks of residues that are near the

surface of the protein are significantly reduced due to crystal contacts, while the rest of 〈u2i 〉v

is slightly smaller under the influence of crystal packing7.

Frauenfelder et al.1 used the Mössbauer effect on protein crystals to determine 〈u2i 〉d apart

from the entanglement with lattice disorder 〈u2i 〉ld. Comparison of results from Mössbauer

effect with X-ray B-factors suggested a way of determining 〈u2i 〉ld. Unfortunately, few nuclei

are Mössbauer active2. Based on their computation on myoglobin, they concluded that

lattice disorder accounted for only 15-30% of B-factors, and that the dominant contribution

to B-factors at room temperature was thermal motions1,2. The conclusion was drawn from

sparse data but the work was influential in the field.

The idea that thermal motions or 〈u2i 〉d is the dominant contribution to B-factors was,

however, challenged when it was noted by Kurinov and Harrison that instead of having a

much higher B-factor at high temperature, lysozyme had nearly identical B-factors at cryo-

genic (about 100 K) and at room temperature (about 300 K)12. Kurinov and Harrison found

that for lysozyme, the contribution from lattice disorder 〈u2i 〉ld was actually much higher than

〈u2i 〉d at low temperature and the two became comparable at high temperature. That is, at

room temperature, the contribution of thermal fluctuations is the highest, at about 50%.

Kurinov and Harrison also found that lattice disorder was nearly residue independent but
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increased considerably at low temperature12.

A more recent work by Hinsen provided further evidence suggesting that static disorder

was the dominant contribution to B-factors7. By comparing with experimental compress-

ibility data, Hinsen carried out a careful study to quantify the contribution from dynamics,

specifically from vibrational motions of protein molecules within unit cells (optical waves)

and rigid body motions of protein molecules relative to one another across unit cells (acous-

tic waves). The results indicated that the percentage of contribution from dynamics 〈u2i 〉d

could be as low as 4-7% in lysozyme, or up to 16% if a higher experimental compressibility

value was used. In either case, the percentage of 〈u2i 〉d in 〈u2i 〉 is very low. However, due to

scarcity of experimental data on compressibility, the conclusion is limited only to tetragonal

lysozyme crystals.

The extent of dynamic contributions to B-factors was also computed using MD simu-

lations. For example, MD simulations of crambin by Burden and Oakley showed that the

magnitude of the dynamical contribution was several times smaller than the crystallographic

B-factors. MD simulations were performed also by Hinsen and co-workers9 on a small number

of proteins to compute their atomic displacements and cross correlations. Unfortunately, the

magnitudes of atomic displacements were not reported nor compared with crystallographic

B-factors. A fundamental problem with computing 〈u2i 〉d from MD simulations is insuf-

ficient sampling of conformational space, which leads to a systematic underestimation of

conformational fluctuations.

Contribution of this work. In this work, using an extremely large dataset containing

more than 10,000 proteins, we carry out a thorough, statistically sound analysis of crystal-

lographic B-factors and find that temperature and structural resolution are the two major

determinants of B-factors. Specifically, (i) the magnitude of B-factors of a protein (which

is defined as the mass-weighted average of those of individual atoms) is nearly temperature

independent, but decreases linearly as resolution increases due to the decrease in lattice dis-
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order; (ii) lattice disorder decreases significantly also as temperature increases, and since it is

compensated by nearly the same amount of increase in dynamics, the magnitude of B-factors

appears nearly unchanged as a result. Furthermore, we use the all-atom sbNMA model13,14

based on the CHARMM force field15 to compute the magnitude of thermal vibrations of

nearly 1,000 structures and find that it is nearly protein-independent, having a narrow dis-

tribution that peaks at 0.093 Å2 at 100 K. We show that this universality in the magnitude

of thermal vibrations is a direct corollary of the universality of vibrational spectra of globu-

lar proteins established earlier16–18. Put together, these results show that the percentage of

thermal vibrations in B-factors is lowest at low resolution and low temperature (only 8-9%

at 100 K and 2.0 Å) and can become as high as 60% at high resolution (1.1 Å or higher)

and high temperature.

Significance. Crystallographic B-factors provide important dynamical information for

the internal mobility of proteins that is often linked to function. An insightful understanding

of B-factors and the various influences on them has significant implications. First, it will allow

researchers to better utilize its dynamic information and carry out meaningful comparisons

between B-factors of different structure forms. For example, by comparing crystal structures

of a given enzyme at apo and ligand-bound form, one may be able to determine how the

binding has modified mobility at the active site2. Secondly, understanding B-factors should

be significant also to X-ray crystallography and structure refinement. One of the earliest

models for interpreting B-factors attributed the observed atomic displacement 〈u2i 〉 to rigid

body motions of molecules in crystals and was carried out by Cruickshank19, who interpreted

atom displacements in the crystal with a translation tensor and a libration tensor. The work

was later expanded by Schomaker and Trueblood20 in their well-known translation, libration,

and screw (TLS) model20, which is still widely used today in X-ray structure refinement21.

Alternatively, normal mode analysis (NMA) for macromolecules22–24, developed in the 1980’s,

also was used to understand atomic displacement in B-factors and a normal mode refinement
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method was developed25,26. A good understanding of B-factors may inspire new refinement

methods to be developed that may result in better structure quality and in turn, better

understanding of protein dynamics. Thirdly, crystallographic B-factors have been widely

used as a benchmark in evaluating elastic network models. In most of these evaluations,

B-factors were, mistakenly, used interchangeably as the magnitudes of thermal vibrations.

A better understanding of B-factors, especially the amounts of thermal vibrations that are

contained in them, can allow more accurate and meaningful assessments to be performed.

It can provide also insightful guidance on structure dataset selection when performing such

an assessment.

2 Methods

2.1 The sbNMA model

The spring-based NMA, or sbNMA, was developed by Na and Song13 in 2014. It is an

all-atom model based on the CHARMM force field15, though it is extendable to other force

fields as well. It is designed to maintain the high accuracy of the classical normal mode

analysis (cNMA) using all-atom force fields and at the same time circumvent its cumbersome

step of energy minimization, which makes cNMA inconvenient to use. The most significant

contribution of sbNMA thus is that it maintains mostly the accuracy of cNMA while not

requiring energy minimization. It can be applied directly to experimental structures like

elastic network models27–29. Extensive studies have shown that i) it can faithfully reproduce

the vibrational spectrum of globular proteins18 and capsids30, a feat that very few models

are able to accomplish; ii) its mean square fluctuation predictions correlate nearly perfectly

with cNMA, reaching a correlation of nearly 90%13; iii) it proves to be a better benchmark

to evaluate elastic network models than B-factors14.

There are a few key components in sbNMA, which are described below in detail.
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The force field. sbNMA uses the CHARMM force field15. The force field parameters

are given in a parameter file that includes parameters for bond stretching, bond bending,

torsional terms, improper terms, and van der Waals interactions. All the parameters of these

five types are extracted and saved in arrays. The remaining CHARMM parameters are cur-

rently not used in sbNMA. These include primarily parameters for electrostatic interactions,

as well as CMAP. It is difficult to include electrostatic interactions in sbNMA since they

yield large negative spring constants13. van der Waals interactions may introduce a negative

spring constant too but that occurs only at large separation distances when it becomes very

weak and thus negligible (see Fig. 1 in Ref. 13). Additionally, electrostatic interactions were

found to contribute much less than van der Waals interactions13. A possible alternative is

to include an explicit term for hydrogen bonds, which may compensate somewhat for the

absence of electrostatic interactions. This may get included in a future release of sbNMA.

The combined contribution of van der Waals interactions and electrostatics was found to be

well approximated by a harmonic term with a distance-dependent force constant31.

Actual interactions of a protein. To perform normal mode analysis on a given protein

system and to compute its Hessian matrix, one needs to first determine all the interactions

in the system. While this part is greatly simplified in contact-based elastic network models,

it is much more involved in sbNMA, since one needs to determine all the 2-body, 3-body,

and 4-body interactions. To determine these terms, sbNMA uses the psfgen (or autopsf)

script from VMD32. Given a pdb file, psfgen/autopsf is able to add missing atoms and

guess their coordinates, add disulphide patches automatically, and generate both a pdb and

a protein structure file (or a psf file). For example, given a pdb file 1ubq.pdb, the psf file

generated by VMD contains all the bond stretching, bond bending, torsional, and improper

interactions. These interaction pairs, triplets, quadruplets are extracted from the psf file and

used in sbNMA computations. The van der Waals interactions are computed directly based

on pairwise distances among the atoms.
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Building the Hessian matrix. Once we have the interaction parameters and the lists of

interactions, we can construct the Hessian matrix and the mass matrix. The bond stretching

term and van der Waals term are 2-body interactions and their contributions to the Hessian

matrix are easy to implement. The bond bending term (3-body) as well as torsional and

improper terms (4-body) are implemented in a similar fashion to what was described in the

work by Blondel and Karplus33.

The entire sbNMA code as well as the datasets used in this work is made publicly avail-

able. The sbNMA code can be found at https://github.com/htna/sbNMA-Matlab. The

locations of the datasets are given later in the paper where they are discussed.

2.2 Mean-square displacement

The mean-square displacement of the ith atom in a protein, or 〈u2i 〉, can be expressed as the

summation of two key components, using a notation similar to Kurinov and Harrison’s12,

〈u2i 〉d and 〈u2i 〉ld, with the former representing the displacement due to dynamics and the

latter the displacement due to lattice disorder. i.e.,

〈u2i 〉 = 〈u2i 〉d + 〈u2i 〉ld. (4)

Lattice disorder happens because the protein molecules in a crystal’s unit cells may not

have exactly the same conformation, nor identical position and orientation relative to the

unit cell’s origin and cell axes1,2.

Lattice disorder was thought to be temperature independent2. However, later work found

that lattice disorder increased significantly as temperature decreased12. Kurinov and Harri-

son attributed this decrease to shock freezing12. Lattice disorder also correlates strongly with

structural resolution. Structural resolution is a sensitive outward indicator of the underlying

static disorder, since crystals with low disorder will diffract well and reach high resolution
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while crystals with high disorder will diffract poorly and end up with a low resolution.

〈u2i 〉d represents the contribution from protein dynamics in the crystal and can be divided

into contributions from thermal vibrations within unit cells and acoustic waves across unit

cells7,11 as shown in the Introduction section, i.e.,

〈u2i 〉d = 〈u2i 〉v + 〈u2i 〉aw. (5)

〈u2i 〉d is often denoted by 〈∆R2
i 〉 in the normal mode analysis literature, i.e.,

〈u2i 〉d ≡ 〈∆R2
i 〉. (6)

In this work, we use 〈u2i 〉d and 〈∆R2
i 〉 nearly interchangeably to denote the contribution

from thermal vibrations: however, 〈u2i 〉d is used mostly to represent the contribution to B-

factors that is due to dynamics, while 〈∆R2
i 〉 is used to represent calculated mean-square

displacements. Note that in order to have the fairest comparison, acoustic waves, crystal

packing as well as solvent contribution also should be considered when computing 〈∆R2
i 〉.

Neither 〈u2i 〉d nor 〈∆R2
i 〉 should be confused with 〈u2i 〉 itself (Eq. (1)), which represents the

total mean-square displacements of atoms in protein crystals.

According to normal mode theory, 〈∆R2
i 〉 can be computed from the inverse of the Hessian

matrix. Most normal mode analysis work done in the past ignored the lattice disorder term

〈u2i 〉ld in Eq. (4) altogether (as well as 〈u2i 〉aw) and thus linked the predicted 〈∆R2
i 〉 value to

the crystallographic B-factor as:

Bi =
8π2

3
〈∆R2

i 〉. (7)

However, Eq. (7) holds true only if the lattice disorder term 〈u2i 〉ld in Eq. (4) is negligible.

In this work, along with earlier observations by others7,12, we show that 〈u2i 〉ld should not

be neglected since it is actually the dominant contribution to B-factors.
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2.3 The magnitudes of mean-square displacement and thermal vi-

brations of a protein

While 〈u2i 〉 and 〈∆R2
i 〉 are used to represent the magnitudes of mean-square displacement

and thermal vibrations, respectively, of individual atoms, in the rest of this paper we use 〈u2〉

and 〈∆R2〉 to denote the magnitudes of mean-square displacement and thermal vibrations,

respectively, of a whole protein, which are defined as the mass-weighted averages of 〈u2i 〉 and

〈∆R2
i 〉 over all the atoms, i.e.,

〈∆R2〉 =

∑
imi〈∆R2

i 〉∑
imi

, (8)

〈u2〉 =

∑
imi〈u2i 〉∑
imi

, (9)

where i is the index of atoms. In the rest of the paper, i will be used systematically as the

index of atoms while k the index of modes.

Alternatively, the magnitude of thermal vibrations can be computed using a subset of

atoms such as all the Cα atoms, as is commonly done. In such a case, a subscript is used

and the magnitude is denoted by 〈∆R2〉Cα or 〈u2〉Cα , to distinguish it from the magnitude

computed using all the atoms.

3 Results

3.1 Protein Dataset

PDB SELECT34,35 provides lists of representative protein chains with low mutual sequence

identity selected from the protein data bank (PDB)36. For this work, we use a list of 1,522

proteins with 1.3 Å resolution or higher and R-factor 0.19 or better, and a longer list of

12,600 proteins with 2.0 Å resolution or higher and R-factor 0.20 or better. Both lists can be
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found at https://swift.cmbi.umcn.nl/gv/select/HTML/20191101, maintained by Gert

Vriend. For convenience and easy reference in the rest of the paper, we name the first

list/dataset pdb1522 and the second pdb12600, according to the numbers of proteins in the

lists. All pdb files are then downloaded from PDB website (https://www.rcsb.org/)36.

We choose structures whose resolution is 2.0 Å or higher and R-factor of 0.20 or better as

it was found that a resolution of 2.0 Å is the lowest at which systematic errors in B-factors

are insignificant2.

The vast majority of the crystal structures were determined at around 100 K37. 100 K is

the typical cryogenic temperature in the present-day structure determination by crystallog-

raphy to reduce radiation damage. A gaseous nitrogen stream held at 90–110 K is used to

cool the crystals during the data collection37. Fig. 1 shows the histogram of temperatures

at which the 1522 structures in pdb1522 were determined. Not surprisingly, most of these

crystal structures were determined at a temperature around 100 K. There are a small num-

ber of structures whose pdb files contain NULL values instead of temperature information.

These structures are assigned a temperature of 0 K in the histogram plot in Fig. 1(A) (the

leftmost bar). Only 32 (out of 1522, or 2%) structures are determined at a temperature

higher than 270 K. Fig. 1(B) shows the distribution of chain lengths of the structures in the

data set, ranging from a few dozen to over 700 residues. Fig. 1(C) shows the distribution of

resolution, ranging from 0.48 Å to 1.29 Å.

To include a larger number of room temperature structures in our study, we also use the

larger dataset pdb12600 (whose list of proteins can be found at https://swift.cmbi.umcn.

nl/gv/select/HTML/20191101/PDB.LIS-20191101-2.0-0.20). In this dataset, there are

330 structures that were determined at temperature 270 K or higher. There are 10,574 struc-

tures determined at 100 K. Some structures in the pdb12600 dataset, e.g. 2q4o.pdb, contain

more than one model. In these cases, only the first model is used. Fig. 2 shows statistics for

the pdb12600 dataset. Whereas the distribution of resolutions extends to significantly lower
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resolutions compared to the pdb1522 dataset (Fig. 1), the distribution of chain lengths in

both datasets are very similar.

3.2 Statistical Analysis of Crystallographic B-factors

Based on dataset pdb12600, Fig. 3 shows the magnitude of the mean square displacement

〈u2〉 computed from crystallographic B-factors, as a function of structural resolution, for two

subsets of structures: a large subset of 10,574 structures determined at 100 K, and a small

subset of 330 structures determined at room temperature, between 270 K and 300 K. The

structures in each subset were first sorted by resolution and then grouped into 10 equal-size

bins (in the increasing order of resolution). Within each bin, the median 〈u2〉 and the median

resolution were computed and used to plot Fig. 3.

Remarkably, the magnitudes of mean square displacement 〈u2〉 at the two temperatures

are nearly the same, especially at higher resolution, in the range of 1.1-1.6 Å. What is

also remarkable is that at both temperatures, 〈u2〉 decreases nearly linearly as resolution

increases. 〈u2〉 is over 1.0 Å2 at resolution 1.95 Å and becomes 0.5 Å2 at resolution 1.1 Å,

reduced by half.

This approximately linear decrease is not totally surprising as the well-known theory

behind the Wilson plot38 implies a decrease of the average B-factors with increasing crystal

resolution for a model of an unstructured unit cell. The Wilson plot shows

ln
〈I(s)〉∑
k fk(s)

2
, (10)

as a function of s2, where s is the wavenumber of the Bragg peaks. I(s) is the measured

intensity, averaged over the peaks in a small s interval. The denominator depends only on the

system’s atomic scattering factors fk(s) and can be considered a normalization factor. The

Wilson plot is thus a histogram of logarithmic normalized intensities. For an unstructured
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system, in which the atoms in the unit cell are distributed randomly, the intensities are given

by

I(s) = I0 · e−2Bs2 , (11)

where I0 is proportional to the incoming beam intensity, and the Wilson plot is a straight

line with slope −2B. Deviations from a straight line indicate deviations from a random

distribution of atoms and thus an interesting structure. Many features in these deviations

can be interpreted directly, without requiring a refined structure39. B is often considered an

“average” B factor, though it is not a simple average over the atomic Debye-Waller factors,

nor in fact solely attributable to thermal fluctuations.

The resolution d of the crystal is defined as d = 1/smax, where smax is the largest wavenum-

ber at which there are detectable Bragg peaks. They correspond to the smallest detectable

intensity Imin, which, like I0, is a parameter of the experimental setup. This means that

I0 · e−2Bs2max = Imin or

B = A · d2, (12)

where A = −1
2

ln(Imin/I0) is a positive number collecting all dependencies on the experi-

mental setup. Assuming that the variation of A among crystallographic experiments is not

strongly correlated with the resolution of the collected data, one should thus expect B fac-

tors to decrease with increasing crystal resolution. The decrease appears more linear than

quadratic in Fig. 3 for two reasons: (1) we are looking at a very small range of d and (2)

there are important deviations from Wilson statistics in this particular range of d, which

corresponds to the length scales of chemical bonds in organic molecules39.

Lastly, Fig. 3 shows that if only Cα atoms are considered, the magnitudes of mean-square

displacements are significantly smaller, by as much as 0.07-0.08 Å2, as shown by the thin

lines in Fig. 3. Table 1 shows further the magnitudes of mean square displacements of other

subsets of atoms. It is evident from the table that side chain atoms have a significantly
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higher mean-square displacement than backbone atoms. Since backbone and side chain

atoms should experience a similar magnitude in most of the static disorder, the difference is

most likely due to dynamics (or thermal vibrations). This will be tested in a later section,

where the magnitudes of thermal vibrations are computed.

So what does Fig. 3 tell us? Recall that B-factors have two key components 〈u2〉v and

〈u2〉ld, representing contributions from thermal vibrations and lattice disorder respectively.

Since 〈u2〉 is nearly independent of temperature, its fast decrease with increasing resolution

seen in Fig. 3 has to come from static lattice disorder. This implies that lattice disorder

must be the dominant contribution at low resolution.

Moreover, the temperature independence of 〈u2〉 also implies that lattice disorder has

to be the dominant contribution to B-factors at low temperature (100 K), irrespective of

the resolution. Consider the percentage pT of the vibrational contribution to the total

mean-square displacement at temperature T . Experimental evidence on the glass transition

in proteins40 shows that 〈u2〉v grows superlinearly with T above Tg, the glass transition

temperature of proteins that is 200-220 K40. It is thus at least three times as high at 300 K

as it is at 100 K, whereas 〈u2〉 is almost the same at both temperatures. This implies

p100 ≤
1

3
p300. (13)

Since p300 cannot exceed 100%, the upper limit for p100 is 33.3%, and probably both percent-

ages are much lower than their theoretical maximum. This is consistent with observations

made by Kurinov and Harrison12 and by Hinsen7 on a small sample of proteins, that at

T=100 K static lattice disorder 〈u2〉ld is several times higher than thermal vibrations 〈u2〉v.

As temperature increases, 〈u2〉v increases and takes on a higher percentage of B-factor. Our

statistical analysis of a large set of protein structures shows that this phenomenon is prevalent

throughout the PDB database.
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Fig. 4 shows the box plots (with notches) of B-factors in each resolution range, with the

median resolutions of each range given at the bottom of the figure. The median 〈u2〉 values

for the 100 K case (Fig. 4(A)) are statistically significantly different at different resolutions,

since the notches on the box plots are narrow and hardly overlap. For the 300 K case

(Fig. 4(B)), some of the notches between neighboring resolutions overlap, probably due to

the fact that the number of data points, or structures determined at 300 K, is much smaller.

Nevertheless, the overall trend is the same as that in Fig. 4(A).

A curious question naturally arises: what percent of B-factors is thermal vibrations?

This is addressed in the next section.

3.3 The magnitude of thermal vibrations in proteins

In order to answer this question, we obviously need to find a different way to obtain the

magnitude of thermal vibrations than crystallographic B-factors, since the latter are tainted

with static disorder.

Thankfully, accurate force fields such as CHARMM15, Amber41, GROMOS42, etc. have

been developed for molecular modeling, MD simulations, and normal mode computations.

Parameters in these force fields are calibrated by fitting to experimental data for small

molecules, such as vibrational spectra, and also to computational results from quantum

chemistry. Therefore, one can compute the magnitude of thermal vibrations in proteins using

these force fields, using either MD simulations9 or NMA14. The drawback of running MD

simulations is that it requires fairly tedious preparation steps such as solvation, minimization,

and equilibration. Therefore, it is difficult to apply this technique to a large set of proteins.

Moreover, MD simulations for macromolecules notoriously suffer from insufficient sampling

for proteins that have flexible parts.

Since our goal is to compute just the magnitude of thermal vibrations, another approach

better suited for this task is classical normal mode analysis22–24, or cNMA. cNMA starts
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from the same force fields as MD, but constructs a harmonic approximation to the po-

tential energy surface around a local minimum. In general, this harmonic approximation

leads to a systematic underestimation of thermal vibration amplitudes. For protein crys-

tals at cryogenic temperatures, which are clearly below the protein glass transition that

occurs around 200 K, it can however be expected to be valid40. At such low temperatures,

quantum zero-point fluctuations are another candidate for introducing non-linearities into

the temperature-fluctuation dependence. We are not aware of any estimations of their im-

pact in protein crystals, but for simpler inorganic crystals, they were shown to be negligible

at 100 K43.

To run cNMA on a protein, a structure taken from PDB has to be first energetically

minimized. The process is cumbersome and, unfortunately, causes significant deviations

from the original PDB structures (for a recent study on this, see Ref. 13). To overcome this,

Na and Song13 developed a spring-based all-atom NMA model called sbNMA that maintains

most of the accuracy of cNMA and yet can be applied directly to PDB structures, without

the need for energy minimization13.

sbNMA13 (see Methods section) almost perfectly correlates with cNMA13 in predicting

thermal vibration amplitudes. Additionally, the vibrational spectrum it predicted matches

nearly perfectly with that of cNMA and with experimental results18. For these reasons,

sbNMA seems to be the best model for computing the magnitude of thermal vibrations in

proteins. In the following, we first present a novel theoretical result on the universality of the

magnitude of thermal vibrations among globular proteins, followed by computations from

sbNMA.
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3.3.1 The magnitude of thermal vibrations is universally the same among all

globular proteins: a theoretical result

One significant theoretical finding in the present work is that the magnitude of thermal

vibrations is universally the same among all globular proteins. This universality can be

proven as a direct corollary of the universality of vibrational spectra of globular proteins

that was established in earlier work16,18,30.

Let g(ω) denote the normalized density of vibrational modes. The universality of the

vibrational spectrum means that all globular proteins have the same g(ω). Fig. 5 shows the

vibrational spectrum of ubiquitin (1ubq.pdb) as computed from sbNMA.

A significant corollary of this universality is another universality: the magnitude of ther-

mal vibrations of all globular proteins is also universally the same.

Proof. First, because g(ω) is the same for all proteins, the following mean over the range of

ω is a constant, which we denote by 1
ω2
p
,

〈 1

ω2
〉 =

∫
1

ω2
g(ω) dω = const =

1

ω2
p

. (14)

We call ωp the characteristic frequency of proteins. Note that the integral is well-defined

because g(ω) = 0 for ω < ωmin, where ωmin > 0 is the frequency of the slowest vibrational

mode of the protein.

Next, let H and M be the Hessian and mass matrices, respectively, and vk and λk the kth

mode and eigenvalue. Let Hm be the mass-weighted Hessian matrix and qk its orthonormal

eigenvectors. We have:

Hm = M−1/2HM−1/2, (15)

Hmqk = λkqk, (16)

qk = M1/2vk. (17)
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Now since each mode’s mean potential energy amounts to 1
2
kBT , the amplitude Ak of

mode vk can be determined from:

1

2
A2
kv

T
k Hvk =

1

2
kBT, (18)

where kB is Boltzmann constant and T is temperature. Thus, we have,

1

2
A2
kλk =

1

2
kBT, (19)

which leads to A2
k = kBT

λk
.

Lastly, since

〈∆R2
i 〉 =

∑
k

A2
kv

2
i,k =

∑
k

kBT

λk
v2
i,k, (20)

combined with Eq. (8) and the fact that
∑

imiv
2
i,k = 1, the magnitude of thermal vibrations

is:

〈∆R2〉 =

∑
imi〈∆R2

i 〉∑
imi

=
kBT

∑
k

1
λk

∑
imiv

2
i,k∑

imi

= kBT

∑
k

1
λk∑

imi

= kBT

∑
k

1
ω2
k∑

imi

. (21)

The last summation on the numerator can be approximated with an integration. Recalling

that there are 3N-6 non-zero modes, we have,

〈∆R2〉 =
(3N − 6)kBT∑

imi

∫
1

ω2
g(ω)dω =

3kBT

mpω2
p

, (22)

where mp is defined as the characteristic average mass of atoms in a protein and is,

mp =

∑
imi

N
· N

N − 2
≈

∑
imi

N
. (23)

Our computation (see details in next section) shows mp is nearly the same among all globular
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proteins and has a median value of 7.15 g/mol, which is reasonable since about half of the

atoms in proteins are hydrogens.

In conclusion, Eq. (22) shows that the magnitude of thermal vibrations is universally the

same for all globular proteins. The magnitude is dictated by the characteristic average mass

mp and characteristic frequency of proteins ωp, and is linearly proportional to temperature

within the limits of validity of the harmonic potential approximation.

Readers familiar with the theory of liquids may recognize the similarity of the first equal-

ity in Eq. (22) with the Green-Kubo relation linking the diffusion constant to the velocity

autocorrelation function and its Fourier transform, the density of states44. In fact, it can be

seen as a variant of that relation for systems confined to a finite phase space volume, which

is the case for the internal dynamics of a protein constrained by its covalent bonds. The

use of normal modes in the above derivation is only a convenience, not a necessity, and the

relation is therefore not limited to the harmonic potential approximation.

What is the biological significance of the characteristic frequency ωp? This is a very

interesting question. The characteristic frequency ωp is clearly different from the frequencies

of the slowest vibrational modes that often correspond to functional motions. It is, however,

proportional to the overall magnitude of thermal vibrations (Eq. 22), and thus characterizes

the overall flexibility of proteins. The fact that all proteins share a similar characteristic

frequency ωp suggests that the material properties of proteins are similar, for example, having

a similar elastic modulus45. This is a consequence of the fact that all proteins share the same

elements of primary structure (amino acid residues) and secondary structure (helices, sheets,

and loops).

3.3.2 The magnitude of thermal vibrations from sbNMA computations

In practice, ωp varies somewhat from protein to protein. We apply sbNMA to all structures

in the pdb1522 dataset (which is smaller than pdb12600 and has much higher resolution) that
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were determined at 80-120K and without broken chains. There are 1,197 such structures. For

some of these structures, autopsf from VMD32 is not able not to generate protein structure

files (psf files). In the end, there are 984 structures with protein structure files successfully

generated. We apply sbNMA to all these structures. A list of PDB-ids of these 984 structures

and the magnitudes of their thermal vibrations computed from sbNMA46, as well as their

autopsf-generated pdb and psf files are publicly available at https://github.com/htna/

Bfactors.

Our computation shows ωp (see Fig. 6) of most proteins falls in the range of [75-125] cm−1

and has a median value of 102.7 cm−1, which is close to the first peak in the vibrational

spectrum (see Fig. 5) that is at about 80 cm−1. ωp is also found to be independent of protein

size (Fig. S3). Fig. 6 also shows the distribution of mp, with a median value of 7.15 g/mol.

Using the characteristic frequency of proteins ωp, which is 102.7 cm−1, and the charac-

teristic average mass mp, which is 7.15 g/mol, the expected magnitude of thermal vibrations

at 100 K is,

〈∆R2〉 =
3kBT

mpω2
p

=
0.5961 kcal/mol

7.15 g/mol × (102.7 cm−1 × 2πc)2

=
0.5961× 4, 184 Joule/mol

7.15× 10−3 kg/mol × (102.7 cm−1 × 2πc)2

= 0.093× 10−20 m2 = 0.093Å2, (24)

where c is the speed of light and is 2.997925 × 1010 cm/sec.

Fig. 7 shows the histogram of the magnitude of thermal vibrations 〈∆R2〉 for these 984

structures. The distribution has a sharp peak at around 0.093 Å2. This magnitude of thermal

vibrations is independent of the resolution of the structures selected (see Figs. S1 and S2

in Supplemental Information). To put this magnitude into perspective, 0.01 Å2 is the zero-

point vibration limit47. The variance displayed in the range is possibly due to variations in

packing density. Note that in our computation using sbNMA we consider only contributions
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of normal modes of a free protein molecule. Neither crystal packing nor the acoustic modes

in crystal are taken into account. Including crystal packing would reduce the magnitude of

the predicted 〈u2〉d marginally, while the inclusion of the acoustic modes would increase it

(by 14% for lysozyme7). Therefore it is reasonable to conclude that the actual magnitude

of 〈u2〉d is still around 0.093 Å2 at 100 K.

Table 2 shows the magnitudes of thermal vibrations of different atom types computed

from sbNMA. Note that the magnitude of thermal vibrations is similar among backbone

atoms but is about twice as high at side chains. This is consistent with Table 1, which shows

the magnitudes of mean-square displacements of the same groups of atoms from crystallo-

graphic B-factors. Both tables indicate that side chain atoms are significantly more mobile

than backbone atoms, but the effect is much more pronounced for the thermal vibrations,

with 〈∆R2〉SC/〈∆R2〉Cα being almost 2, compared to 〈u2〉SC/〈u2〉Cα around 1.2. Notice

that the magnitude of thermal vibrations shown in Table 2 is about an order smaller than

B-factors (Table 1), implying that the dominant contribution to B-factors is not thermal

vibrations, but static disorder. One implication of this is that one should not limit oneself

to Cα atoms when estimating the magnitude of thermal vibrations in a crystal. Calculations

using Cα atoms only would underestimate the magnitude of thermal vibration by 30-40%

(compared to using all atoms). Lastly, we note there are statistical uncertainties regarding

the reported magnitude of 0.093 Å2 at 100 K. As shown in Table 2, the range between the

25th and 75th percentiles is [0.077, 0.128] Å2.

Considering that a unit of kBT at 100 K is about 0.2 kcal/mol, we have:

1

2
keff〈∆R2〉 =

3

2
kBT (25)

with

keff =
3kBT

〈∆R2〉
=

3× 0.2

0.093
= 6.4 kcal/mol/Å

2
. (26)
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This implies that the average effective spring constant constraining each atom is about 6.4

kcal/mol/Å2.

keff gives us a sense of how much each atom should be constrained in a given model.

For example, if a model has a force constant in the order of 1 kcal/mol/Å2, in order for each

atom to receive on average a total constraint of about 6.4 kcal/mol/Å2, the model would

need to choose an interaction range that gives each residue/atom effectively 6-7 neighbors

on average.

3.4 The percentages of thermal vibrations and lattice disorder in

B-factors

Using the magnitude of thermal vibrations computed from sbNMA, which is about 0.093 Å2

at 100 K for most proteins (Fig. 7), Fig. 8 shows the breakdown of 〈u2〉 (solid lines) into

its two key components: thermal vibrations 〈u2〉v (dotted-dashed lines) and lattice disorder

〈u2〉ld (dashed lines) at 100 K (in blue) and 300 K (in red). At 300 K, the lower bound

(since 〈u2〉v grows superlinearly with temperature) of the magnitude of thermal vibrations

〈u2〉v is 0.279 Å2, thrice as high as the magnitude of thermal vibrations at 100 K, whereas

our estimate of 〈u2〉ld at 300 K is an upper bound.

There are a number of observations from Fig. 8 that are interesting.

Lattice disorder decreases as resolution increases. The data in Fig. 8 shows convincingly

that static lattice disorder decreases, nearly perfectly linearly, as the resolution increases,

decreasing so much that when compared with that at resolution 1.95 Å, it is reduced by more

than half at resolution 1.1 Å . If this trend remains true and we do a linear extrapolation to

the right, we expect that lattice disorder becomes 0 at resolution around 0.5 Å (more on this

later). This resolution dependence was noted by Petsko and Ringe, that “protein crystals

that diffract to very high resolution should have small lattice disorder contributions.”2.
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Lattice disorder decreases as temperature increases. If the above resolution-dependence

is expected, what comes as a little surprising is that lattice disorder is not temperature-

independent as commonly thought2, but decreases also as the temperature increases from

100 K to 300 K, by an amount of 0.12 Å2 or more. The amount of decrease is consistent

for all resolutions. This observation is not totally new but noted by Kurinov and Harrison

in their study of lysozyme12, who suggested that a strong increase in lattice disorder should

happen at low temperature due to shock freezing.

Other potential contributions to lattice disorder. Another key question is whether or not

static lattice disorder depends on crystal forms. This is probably true, and possibly on many

other factors. Fig. 4 shows that there is still some sizable variation of static disorder within

a given resolution bin (i.e., even when resolution and temperature are fixed.) The variations

may be due to crystal form, experimental condition, proteins themselves, etc.

The magnitude of thermal vibrations 〈u2〉v increases with temperature but is independent

of resolution. As an intrinsic property of proteins, the magnitude of thermal vibrations

clearly should not depend on resolution. On the other hand, it is linearly proportional

to temperature (see Eq. (20)) between the Debye temperature TD, below which 〈u2〉v is

temperature independent and equal to the zero-point vibration2, and the glass transition

temperature of about 200 K. The amplitude of the thermal vibrations at least triples as

temperature increases from 100 K to near 300 K.

The gap between contributions from 〈u2〉v and 〈u2〉ld narrows as resolution and tempera-

ture increase. Fig. 8 shows that the gap between contributions from lattice disorder (dashed

line) and dynamic vibrations (dotted-dashed line) narrows as temperature and/or resolution

increase. Consequently, at high temperature (300 K) 〈u2〉v overtakes 〈u2〉ld at high reso-

lution (1.1 Å). The overtake may take place at a lower resolution than 1.1 Å considering

the superlinear growth of 〈u2〉v with T above Tg, the glass transition temperature. This

is in agreement with what Kurinov and Harrison concluded for lysozyme after comparing
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B-factors of lysozyme with results from Mössbauer spectroscopy12.

Thermal fluctuations 〈u2〉v become the dominant contribution to B-factors at sub-1.1 Å res-

olution at 300 K. At 300 K and at 1.1 Å resolution, the amount of thermal fluctuations 〈u2〉v

is at least on par with that of lattice disorder 〈u2〉ld. By linear extrapolation (to the right),

it is expected that the contribution of lattice disorder should become even lower at higher

resolutions than 1.1 Å. The amount of thermal fluctuations should be higher than lattice dis-

order at sub-1.1 Å resolution at 300 K, while an even higher resolution (around 0.5 Å, which

is the current technological limit of X-ray crystallography) is required for this to happen for

structures determined at 100 K. As a result, thermal vibrations will become dominant in

B-factors. However, structures with such resolution and temperature are rare in the PDB.

Fig. 9 shows the amount of total mean-square displacement 〈u2〉 at sub 1.1 Å resolution.

Since 〈u2〉v remains unchanged at 0.093 Å2, it shows that indeed that 〈u2〉ld decreases further

down to be about the same as 〈u2〉v at 0.5-0.6 Å resolution. The lower bound of 〈u2〉 of

about 0.13 Å2 at 100 K sets the upper limit for 〈u2〉v at the same temperature. This upper

limit is consistent with the magnitude of 〈u2〉v predicted by sbNMA (Fig. 7), providing an

additional support to the reliability of the sbNMA computations.

The magnitude of B-factors is nearly temperature independent. Lastly, it is remarkable

that the magnitude of B-factors is nearly the same at the two temperatures (the solid red

and blue lines in Fig. 8). The increase in thermal fluctuations at higher temperature is

compensated by reduction in static disorder, by nearly exactly the same amount. A sim-

ilar phenomenon was observed by Kurinov and Harrison in their analysis of B-factors of

lysozyme12. It is worth noting here that only the magnitude of B-factors is nearly tempera-

ture independent, not B-factors themselves.

Summary. So what are the percentages of thermal fluctuations and lattice disorder in

B-factors? It depends both on the resolution and the temperature at which a structure

is determined. The percentage of thermal vibrations in B-factors is at its lowest at low
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temperature and low resolution (as surprisingly low as 8-9%), and is at its highest at high

temperature and high resolution (to nearly 60% or perhaps even higher). The finding that

the percentage of 〈u2〉v at low temperature (100K) and at low resolution (about 2.0 Å) is

only 8-9% may seem surprising, but it agrees perfectly with what Hinsen found for lysozyme

from his HCA model48 after calibrating it with experimental compressibility data7.

3.5 A case study on lysozyme

In the aforementioned study on lysozyme crystals, Hinsen7 found that thermal vibrations,

especially at low temperature, contribute only a tiny fraction to the B-factors. The two

lysozyme crystal structures used in his work are 1IEE49 and 2LYM50. The properties of these

two structures are summarized in Table 3. By fitting to the compressibility of lysozyme crys-

tals obtained from experiments, Hinsen found that the total amount of thermal fluctuations,

including both optical and acoustic modes, was surprisingly low, accounting for only 4.3%

(1IEE) and 7.2% (2LYM) of the B-factors. Choosing the highest published value on com-

pressibility increased their prediction on the contribution of thermal vibrations to B-factors

to 9.7% for 1IEE and 16.3% for 2LYM7. A general caveat is that the compressibilities were

measured for dried lysozyme crystals in order to improve their stability in the course of the

experiment. It is possible that drying modifies the compressibility itself.

On the other hand, Kurinov and Harrison12 estimated, by comparison with Mössbauer

spectroscopy, that thermal vibrations in tetragonal lysozyme should account for 50% of

the B-factors at 300 K. There is thus a significant difference regarding the percentage of

dynamics in B-factor between Hinsen’s prediction based on compressibility and Kurinov and

Harrison’s estimation based on Mössbauer spectroscopy. It should be noted that Mössbauer

active nuclei in most proteins are scarce and there is inherent difficulty in interpreting the

Mössbauer effect in protein crystal2, and consequently, Kurinov and Harrison’s result based

on comparison with Mössbauer spectroscopy is debatable.
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Here we compute the amount of thermal vibrations in 1IEE and 2LYM using sbNMA

(see Methods section). Fig. 10 shows the predicted 〈u2i 〉v (or 〈∆R2
i 〉) for each residue as

well as the mean-square displacement 〈u2i 〉 from B-factors. Both 〈u2i 〉 and 〈∆R2
i 〉 represent

mass-weighted averages over all the atoms within each residue. Taking the ratio between

the magnitude of predicted thermal vibrations 〈∆R2〉 and mean-square displacement 〈u2〉

(Eqs. (8) and (9)) from the B-factors of these two structures, we find that the percentage of

thermal vibrations in B-factors is 17% in 1IEE (110 K) and 32% in 2LYM (300 K), with the

latter being significantly less than the 50% estimated by Kurinov and Harrison2 for lysozyme

at 300 K. The difference, however, can be explained by the superlinear growth of thermal

fluctuations above Tg
40. If only Cα atoms are used, in order to allow a direct comparison

with Hinsen’s method7, we find 12% and 26% for 1IEE and 2LYM respectively, which are

larger than upper limits of 9.7% and 16.3% cited above.

Fig. 11 shows the differences between 1IEE and 2LYM in mean-square displacement,

〈u2i 〉, and the magnitude of thermal vibrations, 〈∆R2
i 〉. The figure reveals that part of

the difference in B-factors between the two structures is attributed to increased harmonic

vibrations due to the temperature increase (what is beneath the black line) and part of it

must be due to anharmonic motions and static disorder (between the black line and the

green line). 2LYM was determined at a significantly lower resolution than 1IEE and at a

higher temperature (see Table 3). It is thus not surprising that its B-factors contain a greater

amount of static disorder as well as anharmonic motions.

4 Discussion

In this work, using a very large dataset that contains over 10,000 sequence-nonredundant

proteins, we carry out a thorough, statistically sound analysis of crystallographic B-factors.

Combined with computations from all-atom sbNMA, our study reveals the following fun
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facts about B-factors, including the amounts of dynamics and static disorder in them and

their dependence on temperature and resolution. Specifically,

1. Temperature-independence. The magnitude of B-factors is nearly temperature indepen-

dent. The magnitude of thermal vibrations, or 〈u2〉v, increases with temperature, and

since it is compensated by nearly the same amount of decrease in 〈u2〉ld, the magnitude

of B-factors appears nearly unchanged as a result (Fig. 3).

2. Linearity. The magnitude of B-factors decreases linearly as resolution increases (Figs. 3

and 9).

3. The range of magnitude. The magnitude of mean-square displacement, or 〈u2〉, vary

greatly, from 0.1 to 1.1 Å2 in the resolution range 0.5-2.0 Å, displaying a 10-fold increase

(Figs. 3 and 9).

4. Universality. The magnitude of thermal vibrations, or 〈u2〉v, in proteins is nearly

universal, having a narrow distribution that peaks at 0.093 Å2 at 100 K (Fig. 7).

5. Percentage of dynamics in B-factors. Consequently, the percentage of 〈u2〉v in B-

factor ranges from 8-9% (low resolution) to nearly 70% (high resolution) at 100 K,

the temperature at which most structures were determined, again displaying a nearly

10-fold increase.

The temperature-independence and linearity of B-factor on resolution (d) implies that the

magnitude of mean-square displacement, or 〈u2〉, can be estimated by the following formula:

〈u2〉estimate = 0.1 +
1.1− 0.1

2.0− 0.5
(d− 0.5) = 0.1 +

2

3
(d− 0.5), (27)

where the numerator and denominator reflects the ranges of changes in 〈u2〉 and d respec-

tively.
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Accordingly, the percentage of dynamics in B-factors at 100 K, or p100 as defined earlier,

can be estimated by the following formula:

p100 =
〈u2〉v

〈u2〉estimate
=

0.093

〈u2〉estimate
=

0.093

0.1 + 2
3
(d− 0.5)

. (28)

Similarly, a lower bound for the percentage of dynamics in B-factor at 300 K, or p300, can

be estimated by:

p300 ≥
0.279

〈u2〉estimate
=

0.279

0.1 + 2
3
(d− 0.5)

, (29)

which utilizes also the finding that 〈u2〉 is temperature-independent.

Fig. 12, as a graphical rerendering of Fig. 8, well captures this dependence of B-factor

and its two components 〈u2〉ld and 〈u2〉v on both temperature and resolution. The figure

shows that the gap between 〈u2〉ld and 〈u2〉v narrows both with the increase in temperature

(white arrows) and with the increase in resolution (green arrow). At low resolution and low

temperature (marked on the leftmost end of Fig. 12), 〈u2〉v accounts for only a tiny fraction

of B-factor, while at high resolution and at high temperature, the contributions of 〈u2〉ld and

〈u2〉v become similar.

B-factors, being easily accessible and conveniently available, have been an appealing

benchmark for assessing elastic network models and are used widely. The fact that lattice

disorder was found to be the dominant contribution to B-factors prompted some authors to

recommend against using B-factors as a benchmark. Our present work does not disagree that

lattice disorder is the dominant contribution to B-factors at low temperature (or cryogenic

temperature, about 100 K), but shows that the dynamics component can become at least as

important at high resolution and at high temperature. This important realization brings back

hope that B-factors of structures determined at both high temperature and high resolution

still contain rich experimental data on protein dynamics that should be utilized.

One significant implication of this is that when evaluating elastic network models using
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crystallographic B-factors, one should choose structures not only with high resolution, which

is intuitively practiced mostly, but also determined at high temperature, which is not realized

nor practiced yet. This finding prompts us to propose the following hypothesis: correlation

with crystallographic B-factors should see a statistically significant improvement when using

structures determined at high resolution (1.1 Å or better) and at high (room) temperature.

Unfortunately, such structures are relatively rare in the PDB, as they are experimentally

difficult to obtain because of radiation damage. It is our hope that our work here will renew

interest in room-temperature crystallography, motivating experimental innovations (such as

serial synchrotron crystallography6) and efforts to determine many such structures in the

near future. Should this hypothesis prove true, it would help the NMA/ENM community

identify the best dataset for evaluating elastic network models.

The magnitude of thermal vibrations is nearly protein-independent. Another

interesting finding from this work is that the magnitude of thermal vibrations, or 〈u2〉v, is

nearly protein-independent with a universal value of 0.093 Å2 at 100 K. This universality

must reflect the packing density and the nature of interactions shared by crystallizable pro-

teins. And we further prove that this universality is a direct corollary of the universality

of the vibrational spectrum of globular proteins established earlier16,18,30. A number of ev-

idences from crystallographic B-factors indirectly support that these predicted magnitudes

for thermal vibrations are in the right range: (i) Out of the 10,574 structures determined

at 100 K in the pdb12600 dataset, the first 3 smallest mean-square displacements are 0.134,

0.147, and 0.148 Å2 (see also Fig. 9); (ii) Out of the 330 structures determined at 270-300 K

in the pdb12600 dataset, the first 3 smallest mean-square displacement are 0.213, 0.262, and

0.294 Å2. These mean-square displacement values from crystallographic B-factors mark the

experimental upper bound for the magnitude of thermal vibrations at these temperatures.

Solvent effect. In a protein crystal, there is plenty of space between protein molecules

that is occupied by crystallization solvent. The amount of solvent in crystal is about 40-
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60%51. Solvent effect has been considered in normal mode computations48,52–55. A recent

work by Na and co-workers56 provides a feasible approach to include the effect of solvent

in normal mode computations. As part of future work, we plan to examine how much

the magnitude of thermal vibrations is dampened by the solvent using Na and coworkers’

approach.
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Figure Legends

Figure 1.

Statistics of the pdb1522 dataset. (A) The distribution of crystallographic temperatures at

which crystal structures in the dataset were determined. (B) The distribution of the lengths

of protein chains in the dataset. (C) the histogram of resolution: the range is from 0.48 Å to

1.29 Å.

Figure 2.

Statistics of the pdb12600 dataset. (A) The distribution of the lengths of protein chains.

(B) The distribution of the resolutions of proteins.

Figure 3.

The magnitude of mean-square displacement 〈u2〉 versus structural resolution, at 100 K (in

blue) and 300 K (in red), using structures from dataset pdb12600 that were determined at

these temperatures. Of all the structures in pdb12600, those determined at 100 K (10,574

structures) and at near 300 K (330 structures) are sorted by resolution and then grouped

into 10 equal-size bins. Within each bin, the median 〈u2〉 and the median resolution are

selected and plotted. The magnitude is smaller if instead of all heavy atoms, only Cα atoms

are used, by as much as 0.07-0.08 Å2, as shown by the thin lines.

Figure 4.

The magnitude of B-factors as a function of resolution: (A) at 100 K, and (B) at 300 K.
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Figure 5.

The vibrational spectrum of ubiquitin. The vibrational spectra of all globular proteins follows

the same curve.

Figure 6.

(A) The characteristic frequency of globular proteins ωp and (B) the characteristic average

mass of atoms in globular proteins mp.

Figure 7.

The magnitude of thermal vibrations of proteins 〈∆R2〉 at 100 K. All proteins are from the

pdb1522 data, having a resolution of 1.3 Å or better.

Figure 8.

The amount of dynamics (thermal vibrations) 〈u2〉v and lattice disorder 〈u2〉ld in B-factors

as a function of structural resolution at different temperatures.

Figure 9.

The magnitude of mean-square displacement 〈u2〉 versus resolution at sub 1.1 Å resolution

and at 100 K. All structures (marked by crosses) are from the pdb12600 dataset. The blue

line represents the moving average of the data with a window size of 10.

Figure 10.

Mean-square displacement 〈u2i 〉 from crystallographic B-factors of structures 1IEE and 2LYM

as well as thermal fluctuations 〈∆R2
i 〉 computed from sbNMA. For each residue, 〈u2i 〉 and
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〈∆R2
i 〉 represent the mass-weighted averages over all the atoms within the residue.

Figure 11.

Difference between structures 1IEE and 2LYM in mean-square displacement 〈u2i 〉 from crys-

tallographic B-factors as well as thermal fluctuations 〈∆R2
i 〉 computed from sbNMA.

Figure 12.

The temperature and resolution dependence of B-factors and their two components 〈u2〉ld

and 〈u2〉v. The upper band, stretching from blue to red, represents how the contribution of

〈u2〉ld decreases at temperature increases (marked also by the white arrow), while the lower

band represents 〈u2〉v. The difference between 〈u2〉ld and 〈u2〉v, initially very large (marked

out on the leftmost end), narrows both at the increase in temperature (white arrows) and

at the increase in resolution (green arrow).
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Table 1: The magnitudes of mean-square displacements, or 〈u2〉, as computed using all the heavy
atoms (column 1), or using subsets of atoms on the backbone (denoted by subscripts N , Cα, C,
or O) or those on side chains (denoted by subscript SC). The numbers in the table represent the
median magnitudes. All units are in Å2. The magnitudes are the same at 100 K and 300 K.

〈u2〉 〈u2〉N 〈u2〉Cα 〈u2〉C 〈u2〉O 〈u2〉SC
100 K 0.79 0.69 0.71 0.72 0.74 0.86
300 K 0.79 0.69 0.71 0.72 0.74 0.86

Table 2: The magnitudes of thermal vibrations at 100 K as computed using all the atoms (column
1, using Eq. (8)), or using subsets of atoms on the backbone (denoted by subscripts N , Cα, C,
or O) or those on side chains (denoted by subscript SC). The numbers in the first row represent
the median magnitudes. All units are in Å2. The numbers in the second row represent the ranges
between 25 percentile and 75 percentile.
〈∆R2〉 〈∆R2〉N 〈∆R2〉Cα 〈∆R2〉C 〈∆R2〉O 〈∆R2〉SC
0.093 0.059 0.061 0.057 0.081 0.118

[0.077, 0.128] [0.047, 0.084] [0.049, 0.090] [0.046, 0.084] [0.068, 0.119] [0.097, 0.157]

Table 3: A summary of the properties of two lysozyme crystal structures.

PDB-id Temperature [Kelvin] Resolution [Å] R-factor
1IEE 100 0.94 0.12
2LYM 300 2.0 0.15
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Figure 7:

46



1.11.21.31.41.51.61.71.81.9

0.2

0.4

0.6

0.8

1

1.2
u

2
 @100K

u
2

ld
 @100K

u
2

v
 @100K

u
2

 @300K

u
2

ld
 @300K

u
2

v
 @300K

Figure 8:

47



0.60.81
0

0.2

0.4

0.6

0.8

1

1.2
data

moving mean (w=10)

Figure 9:

48



residue number
0 20 40 60 80 100 120

〈u
2 i
〉,

〈∆
R

2 i
〉
[Å
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