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We investigate dynamic fracture of heterogeneous materials experimentally by measuring dis-
placement fields as a rupture propagates through a periodic array of obstacles of controlled fracture
energy. Our measurements demonstrate the applicability of the classical equation of motion of cracks
at a discontinuity of fracture energy: the crack speed jumps at the entrance and exit of an obstacle,
as predicted by the crack-tip energy balance within the brittle fracture framework. The speed jump
amplitude is governed by the fracture energy contrast and by the combination of rate-dependency
of fracture energy and inertia of the medium, which allows the crack to cross a fracture energy
discontinuity at constant energy release rate. This discontinuous dynamics and the rate-dependence
cause higher effective toughness, which governs the coarse-grained behavior of these cracks.

Many biological materials, such as bone, nacre and
tooth, have intricate microstructures which are respon-
sible for remarkable macroscopic mechanical proper-
ties [1, 2]. Carefully designed microstructures combined
with advances in micro-fabrication techniques allow for
the development of new materials with unprecedented
properties [3–8]. Understanding how to harness small-
scale heterogeneities is, however, necessary to achieve
the desired macroscopic properties. For fracture prop-
erties, recent research focused either on disordered mi-
crostructures, where randomly located obstacles distort
the crack front and cause toughening by collective pin-
ning [9–12], or on elastic heterogeneities, where compli-
ant inclusions provide toughening by effectively reducing
the energy flow into the crack tip [13, 14]. However, a
complete and fundamental theory for effective material
resistance against fracture remains missing, and experi-
mental observations, which are key for establishing such
theoretical knowledge, are scarce.

Theoretical fracture mechanics, based on the seminal
work of Griffith [15, 16] states that a crack will propagate
as soon as the released elastic energy per unit increment
of crack length GS = −∂lΩ, where Ω is the elastic energy
in the medium and l the crack length, balances the local
fracture energy Γ (i.e., the energy necessary for creating
two unit surfaces). During dynamic crack propagation,
the energy balance further includes inertia of the sur-
rounding medium and possible rate-dependence of the
fracture energy Γ(v), where v = l̇ is the crack speed.
Using Linear Elastic Fracture Mechanics (LEFM) theory
[17], one can derive the equation of motion of a crack from
this energy balance by assuming steady state crack prop-
agation in an unbounded homogeneous domain. Under
these circumstances the crack has no inertia (there is no
term involving l̈ in the equation of motion) and its speed
adapts abruptly to accommodate changes in fracture en-
ergy. However, it remains unclear if these idealized con-

ditions are valid at discontinuities within heterogeneous
materials and how they affect the coarse-grained behav-
ior of the crack during dynamic propagation.

In this Letter, we analyze these questions in depth
through the experimental investigation of crack propa-
gation in heterogeneous media with fracture energy dis-
continuities. Usually, fracture mechanics experiments are
based on global measurements, thus, only capture av-
eraged quantities. In contrast, our experimental setup
and simplified 2D geometry with periodic heterogeneities
allows local measurements of the near-crack-tip fields,
which support the uncovering of fundamental mecha-
nisms. While the elastic energy release rate is constant
as the crack faces a fracture energy discontinuity, the
speed at which the crack propagates is observed to vary
discontinuously. We study the amplitude of the speed
jumps as the crack crosses the interface between regions
of different fracture energy and show that it stems from
the combination of rate-dependency of fracture energy
and inertia of the medium. Rate-dependent effects result
from the non-equilibrium nature of fracture problems and
are prevailing in materials. Thus, rate-dependent frac-
ture energy applies to a wide range of materials and has
been observed, for instance, on rock [18, 19], glassy poly-
mers [20–26] and metals [27]. The discontinuous dynam-
ics and the rate-dependent effects significantly affect the
effective toughness of heterogeneous materials, as we will
show with our experimental observations.

Our experimental setup (see FIG. 1a) consists of a ta-
pered double cantilever beam, made of multi-material
3D-printed polymers (Stratasys Objet260 Connex3),
a high-speed camera (Phantom v2511) and an elec-
tromechanical testing machine (Shimadzu AG-X Plus).
The matrix material is VeroClear with static fracture
energy ΓM

0 ≈ 80 J/m2 and Young’s modulus EM ≈
2.8 ± 0.2 GPa. The obstacle material is VeroWhite-
DurusWhite (ΓO

0 ≈ 106 J/m2, EO ≈ 1.9 ± 0.2 GPa),
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FIG. 1. (a) Model heterogeneous material made of multi-
material 3D-printed polymers in a tapered double cantilever
beam geometry with applied forces F . The displacement field
u = (ux, uy) is measured in the area within the blue box by
digital image correlation. (b) Closeup view shows two differ-
ent materials in a periodic stripe geometry. The transpar-
ent material constitutes the matrix with width wM and the
opaque (darker) areas are obstacles of higher fracture energy
ΓO/ΓM ≈ 1.3 with width wO. (c) Closeup of crack tip at
l ≈ 35mm and v ≈ 50m/s. The crack interface is slightly vis-
ible running from left to center. A random speckle pattern
is applied onto the surface, which is compared to its refer-
ence pre-cracked configuration to find u. (d) Infinitesimal
strain εyy = ∂yuy found by differentiating u. Approaching
the crack tip, εyy diverges. (e) εyy assuming the Williams
eigenfunctions as basis for u.

which is tougher and more compliant. We prescribe
a constant crack mouth displacement rate δ̇ ≈ 25mm/s.
Hence, the elastic energy in the system is gradually in-
creased, until a planar crack initiates from a pre-existing
notch. The elastic energy release rate at initiation is
proportional to the bluntness of the notch, which we
can tune to explore a range of initial crack speeds from
moderate up to 350 m/s ≈ 0.4cR, where cR ≈ 800m/s
is the Rayleigh wave speed. The crack propagates then
dynamically through a series of periodic obstacles (see
FIG. 1b). During crack propagation no additional en-
ergy is added to the system (δ is constant) and the ta-
pered geometry causes exponentially decaying released
elastic energy GS ∼ δ2e−l/lsys , where lsys ≈ 17.5 mm is
a structural length scale directly related to the sample
size [28]. Thus, the crack speed gradually decreases on
average. All properties are constant through the sample
thickness and the overall behavior is quasi-2D. We ana-
lyze the crack dynamics by measuring the near-tip dis-
placement field u using Digital Image Correlation. We
apply a random speckle pattern (see FIG. 1c) onto the

20 30 40 50 60
0

100

200

300

400

20 30 40 50 60
0

50

100

150

200

0 100 200 300 400
0

100

200

300

0 100 200 300 400
0

100

200

300

FIG. 2. (a,b) Experimental results for three specimens
with ∆l/lsys = 0.57. (a) v undergoes abrupt deceleration
(l = {30, 40, 50}mm) and acceleration (l = {35, 45, 55}mm)
when the crack front is trapped and untrapped, respectively,
at the interface. (b) Discontinuities in Γ occur at trapping and
untrapping with higher values within the obstacle. (c) Trap-
ping: speed prior to entering the obstacle vM is plotted vs.
speed immediately after vO. When the approaching velocity
vM < vc ≈ 130 m/s the front arrests. (d) Untrapping: speed
after exiting the obstacle vM is plotted vs. speed immediately
before exiting vO. (c,d) Solid black line is the theoretical
model (2) with ±10% variation in Γ (dotted lines).

surface of the specimen using aerosol paint. The tempo-
ral evolution of the speckle is tracked using high speed
photography at 250,000 fps. The auto-correlation length
of the pattern corresponds to 4-6 pixels, where the pixel
size is ≈ 45µm. u (see color in FIG. 1c) is found by
minimizing the difference between the pattern at a given
time t mapped back to its pre-crack configuration [29].
The resulting infinitesimal strain field εyy is depicted in
FIG. 1d. An alternative approach (see FIG. 1e) is the In-
tegrated Digital Image Correlation (IDIC) [28, 30], which
assumes the analytical solution for a singular crack in an
infinite elastic medium – the Williams eigenfunctions ex-
pansion [31] – as basis for u [29]. The first term of the
series has singular strains at the crack tip εij ∼ 1/

√
r,

where r is the distance from the tip and its amplitude
is related to the stress intensity factor K. Note that for
both methods the amplitude of ε is similar. IDIC has
the advantages of precisely determining the crack tip po-
sition l and directly computing K, from which, one can
find the dynamic energy release rate G = K2

E A(v) that
provides a measure of the fracture energy Γ at the crack
tip [17, 29, 32]. The effects of elastic heterogeneity are
minor in our setup, but give rise to an interaction between
the size of the K-dominant region (r <∼ 5mm) with the
size of the heterogeneity and are discussed in [29].

Typical experiments are illustrated in FIG. 2a&b. The
crack first propagates through the matrix material with
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propagation speed v being maximum immediately after
initiation, then v gradually decreases as crack length in-
creases. v undergoes abrupt deceleration (acceleration)
as the front enters (leaves) an obstacle. Simultaneously,
Γ also abruptly increases (decreases). However, the rela-
tive jumps of the dissipation rate are significantly smaller
than the ones observed on crack speed. We calculate
the speed in the obstacle vO and matrix vM by selecting
the mean speed over 12µs before and after the obstacle
boundaries. All speed jumps at material discontinuities
were studied for a collection of 30 experiments with dif-
ferent period ∆l = wO +wM and constant obstacle den-
sity β = wO

wO+wM = 1/2. Jumps as the crack enters (trap-
ping) and leaves (untrapping) an obstacle are shown in
FIG. 2c&d, respectively. Results show that the crack dy-
namics at the matrix/obstacle interface is independent
of obstacle width and is symmetric with respect to the
direction of propagation, i.e., the jumps are the same for
trapping and untrapping. This implies that the crack
dynamics only depends on local fracture properties.

In order to understand the jumps and their effect on ef-
fective material properties, we analyze the fracture prop-
agation with a crack-tip energy balance. In our experi-
ments, failure mechanisms occur at time scales 4 orders
of magnitude smaller than the viscous relaxation time
typical of the polymers used in this study [29] so that
an elastic response of the sample can be safely assumed.
Moreover, the failure mechanisms are too fast for a craze
to develop [33], making the fracture process essentially
brittle. Thus, we develop a theoretical model based on
LEFM to interpret the experimental observations.

As the crack advances, elastic energy GS is released
from the specimen and is in part dissipated as fracture
energy Γ to create new surfaces and in part radiated away
as elastic waves. Analyzing the near-tip fields of a steady-
state dynamic crack, Freund [17] showed that the energy
release rate of a dynamic crack G(l, v) is related to the
energy release rate for a corresponding static crack GS(l)
by g(v), a universal function of v. The crack-tip energy
balance provides the equation of motion for a crack [29]

Γ(v) = GS(l)g(v) ≈ GS(l)(1− v/cR), (1)

which implies that within the framework of LEFM, a sub-
Rayleigh crack in an infinite medium has no inertia and
v adjusts instantaneously to fluctuations in Γ or GS [29].
Note that for rate-dependent materials, the fracture en-
ergy Γ(v) is not constant.

We analyze the rate-dependence of the matrix and ob-
stacle material by independently plotting Γ vs. v (see
averaged data as dashed line in FIG. 3 or full data in
FIG. S3 of [29]). We observe that our measurements are
in good agreement with a model [25] (solid line in FIG. 3)
that considers the actual dissipative mechanism taking
place within the process zone. Within the matrix or ob-
stacle material, the fracture energy follows this kinetic
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FIG. 3. Experimental results for the same specimens shown
in FIG. 2a&b – with same color-code. Data points repre-
sent crack speed and fracture energy at the moment of tran-
sition of material property. Γ(v) is separated in two distinct
clusters corresponding to the matrix and obstacle material.
Black dashed lines are the average fracture energy measure-
ments based on 30 heterogeneous and 10 homogeneous sam-
ples [29]. Solid black lines are the rate-dependent fracture
energy law [25] for the obstacle ΓO(v) and matrix ΓM (v) ma-
terials. The transition from one branch to the other is de-
scribed by GS(l)g(v) – the equation of the gray arrows (1).

law. At the material boundaries, however, the rupture
needs to jump from one kinetic law to the other. The
jump amplitude is governed by the equation of motion
(1). The jump trajectory in the Γ-v space corresponds
to the right-hand side of (1), which, since GS(l) is con-
stant across the boundary, corresponds to a diagonal line
GSg(v) (arrows in FIG. 3).

Thus, at a discontinuity in material property the equa-
tion of motion of a crack becomes

GS = ΓM (vM )/g(vM ) = ΓO(vO)/g(vO) , (2)

which captures the experimentally observed velocity dis-
continuity at trapping and untrapping with no fitting pa-
rameter (see FIG. 2c&d). Eq. (2) cannot be solved explic-
itly. However, assuming a linear rate-dependent fracture
energy Γ(v) ≈ Γ0 + γv, for the purpose of discussion, the
velocity jump becomes

vM − vO ≈ ∆Γ0
1− vM/cR
γ + ΓM

0 /cR
, (3)

where ∆Γ0 = ΓO
0 − ΓM

0 is the jump in fracture energy.
This simple result highlights that (i) the jump amplitude
is the same for trapping and untrapping (FIG. 2c&d) and
(ii) during trapping the velocity right after the interface
is zero if vM is smaller than a critical incident velocity
vc below which the obstacle causes crack arrest

vc ≈ ∆Γ0/
(
γ + ΓO

0 /cR
)
. (4)

All these features are discernible from our experimen-
tal data and are captured fairly well by the model.
Eq. (3) as well as a parameter study of (2) (see FIG. S3
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in [29]) reveal that the speed jump and vc are propor-
tional to the toughness discontinuity ∆Γ0. The lat-
ter is particularly noisy because of variations of frac-
ture properties of both matrix and obstacle material,
i.e., Var[∆Γ0] = Var[ΓM

0 ] + Var[ΓO
0 ], assuming ΓO

0

and ΓM
0 are uncorrelated. In the limit of small rate-

dependency γ � Γ0/cR, inertia controls the speed jumps,
that are then given by vM − vO ≈ (∆Γ0/Γ

M
0 )(cR − vM )

and the corresponding condition for crack arrest becomes
v < vc ≈ (∆Γ0/Γ

O
0 )cR. Conversely, in the limit of large

rate-dependency γ � Γ0/cR and quasi-static propaga-
tion v � cR, inertia can be neglected and the speed
jumps become constant vM − vO ≈ ∆Γ0/γ ≡ vc.

How does such a trapping/untrapping dynamics im-
pact the effective fracture properties Γ̄ of heterogeneous
materials? We compute the homogenized fracture energy
Γ̄ by integrating over an interval ∆l of uninterrupted
crack propagation starting at li, the beginning of each
matrix/obstacle period,

Γ̄(v̄) =
1

∆l

∫ li+∆l

li

Γ
(
v(l̃)

)
dl̃ . (5)

As Γ in each phase depends on crack speed, Γ̄ depends on
it too. Thus, we report Γ̄ as a function of the apparent
crack velocity v̄ = ∆l/

∫ li+∆l

li
v−1dl.

First, we assume ∆l� lsys, i.e., a clear separation be-
tween the micro-structural scale and the specimen scale.
Hence, it is possible to define intrinsic homogenized frac-
ture properties, decoupled from the specimen size and
the details of applied boundary conditions. Under this
assumption, GS remains constant during the entire crack
propagation. Thus, v and Γ are constant within each
material phase (insets in FIG. 4a), which allows us to
calculate the dissipation rate from (5)

lim
∆l/lsys→0

Γ̄ = βΓO(vO) + (1− β)ΓM (vM ) (6)

and the apparent crack speed

lim
∆l/lsys→0

v̄ =
(
β/vO + (1− β)/vM

)−1
, (7)

with β = 1/2. Note that (7) is a weighted harmonic
mean, which is dominated by its lower argument, vO,
so v̄ is effectively lower than the arithmetic mean
(〈v〉 = βvO + (1− β)vM ). As a result, the apparent ki-
netic law Γ̄(v̄) is shifted “horizontally” towards lower
speeds in comparison to Γ̄(〈v〉). This leads, in prac-
tice, to a resistance to failure Γ̄ larger than the tough-
ness spatial average 〈Γ〉 = βΓO(v̄) + (1− β)ΓM (v̄), but
lower than the obstacle toughness ΓO predicted by rate-
independent theory (see FIG. 4).

However, when comparing the infinite system size pre-
diction (6) and (7) to our experimental measurements we
observe higher effective toughness (see FIG. 4b). The in-
terplay between the size of the heterogeneity ∆l and the
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FIG. 4. Homogenization of fracture energy Γ̄ vs. average
velocity, v̄. (a) Γ̄ assuming the scale separation condition
∆l� lsys. Blue and red dots represent the state of the crack
within the two materials, which are related by (2) depicted
as a gray arrow. The black dot is the corresponding homoge-
nized state (Γ̄, v̄) computed using (6) and (7). By varying GS

one can derive the entire homogenized fracture energy law
Γ̄(v̄) (black solid line in a&b). (b) Γ̄(v̄), measured experi-
mentally using (5), is depicted as colored circles for a range of
∆l ≈ lsys. Colored solid lines are the theoretical solution for
∆l ≈ lsys derived using (5), (1) [29] (theory and experiment
colors correspond). (a,b) Dash-dotted line and dashed line
are ΓO(v) and ΓM (v) from FIG 3.

structural length scale lsys makes homogenization of frac-
ture properties particularly challenging. The emerging
effective toughness depends on the ratio ∆l/lsys, and (6)
and (7) only represent a lower bound of Γ̄(v̄). The larger
∆l/lsys, the higher Γ̄(v̄), which can even exceed ΓO(v̄)
of the obstacle material. This additional toughening, re-
lated to the structural problem with ∆l ≈ lsys, is quan-
titatively captured by the theoretical solutions for Γ̄(v̄),
which we derive from (5) and (1), assuming GS ∼ e−l/lsys .
Note that as we approach ∆l� lsys, the experimental
toughness converges towards the theoretical one; and for
∆l� lsys the rupture arrests before reaching ∆l required
for homogenization of fracture properties.

How do these observations translate to macroscopic
measurements? While measurements from total elas-
tic energy input (see FIG. S5 in [29]) present increased
toughness compared to the matrix material, they do not
exceed the obstacle material. This is because the addi-
tional toughening observed at the small scale is a "hori-
zontal shift" of the kinetic law. However, we observe that
the macroscopic fracture energy is independent of ∆l and
corresponds to the average of matrix and obstacle mate-
rial, which validates (6). Furthermore, crack arrest, as
described by (4), may play an important role in further
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increasing the macroscopic toughness. Even very thin
obstacles may cause the crack to arrest, which raises in-
teresting questions of practical importance for material
design. How to design flaw insensitive materials, whose
resistance to crack propagation – or ability to prevent
a crack to grow indefinitely – is directly proportional to
the obstacle toughness but independent of its size? What
are the strategies to translate this local toughening to
the macro-scale and improve the mechanical integrity of
structures through the use of damage-tolerant compos-
ites?

In summary, our study shows that the classical LEFM
equation of motion of cracks quantitatively predicts crack
dynamics at toughness discontinuities. The crack ar-
rests if it is slower than a threshold speed that is pri-
marily dependent on the toughness contrast and inde-
pendent of the characteristic size of the microstructure
(i.e., obstacle thickness), i.e., (4). When the crack pen-
etrates the tougher/weaker obstacle, it reacts by instan-
taneously adapting its speed, which is mediated by the
rate-dependent fracture energy combined with inertia,
i.e., (3). Finally, the heterogeneous material presents an
increased effective (homogenized) toughness because of
high fluctuations in crack speed between obstacles and
matrix, and the rate-dependent nature of the fracture
energy. Direct experimental validation of (3) and (4) is
challenging due to limited temporal resolution and fluctu-
ations in Γ, but increased toughness contrast and focus
on a single interface could provide a path to overcome
these limitations.

The authors thank Dr. Thiago Melo Grabois and Dr.
Julien Scheibert for useful discussions.
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