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We propose a novel hybrid method for accurately and efficiently analyzing microcavities and nanoresonators.
The method combines the marked spirit of quasinormal mode expansion approaches, e.g., analyticity and physi-
cal insight, with the renowned strengths of real-frequency simulations, e.g., accuracy and flexibility. Real- and
complex-frequency simulations offer a complementarity between accuracy and computation speed, opening new
perspectives for challenging inverse design of nanoresonators. © 2021 Optical Society of America

https://doi.org/10.1364/JOSAA.428224

1. INTRODUCTION

Plasmonic and Mie resonators that confine light in tiny vol-
umes play an essential role in nanophotonics [1]. With the
recent deployment of inverse design and artificial intel-
ligence algorithms, there are new opportunities for their
design and optimization in enlarged parameter spaces with-
out a priori information on materials and geometries [2–4].
However, the design is computationally expensive and time-
consuming because nanoresonator modeling requires solving
Maxwell’s equations. In typical settings, for example, using the
adjoint-based optimization method, hundreds to thousands
of electromagnetic simulations are needed before convergence
is achieved [2]. Deep-learning algorithms allow navigating
toward a nearly optimum design almost instantaneously by
querying the generalization capabilities of neural networks
[5–7]. However, to train the network, a huge data set of
instances of optical responses for a myriad of structures needs
to be generated [3]. More importantly, inverse design methods
and deep-learning algorithms often operate as “black boxes”
and do not provide physical insight into the designed structure.
Complementary approaches, with a better balance between
physics and numeric, are desirable.

Here lies the worth of the present hybrid method that
combines real- and complex-frequency simulations to
enable an accurate and effective analysis of microcavities and
nanoresonators. The complex-frequency simulations provide
analyticity and physical insight by intuitively considering the

dominant natural resonances, e.g., localized surface plasmon
modes for metallic nanoantennas, Mie leaky modes for dielec-
tric resonators, or whispering gallery modes for microdisks.
These resonances are referred to as quasinormal modes (QNM)
in the following and are computed by solving the source-free
Maxwell’s equations at complex frequencies [1].

The QNM machinery does not have only advantages. For
nanoresonators on metal substrates or gratings, high accu-
racy may be achieved only by considering a large set of modes
[8–11]. The latter include QNMs with frequencies far away
from the spectral window of interest, numerical modes that
originate from the discretization and the truncation of the per-
fectly matched layer (PML) [8,9], static modes at null frequency
[9,12,13], or accumulation points encoding material resonances
[9,14]. All these modes are quite unimportant for some applica-
tions, e.g., nonlinear harmonic conversion [15,16] or structural
color generation [17,18]. However, for other studies, e.g., pre-
dicting the quantum yields of emitters coupled to nanoantennas
or the nonlinear dynamics behavior of optomechanical systems
[19,20], a quantitative knowledge of the coupling to numerical
modes and QNMs outside the spectral range is essential. In
the hybrid approach, we get around the necessity to consider
many modes by complementing the QNM analysis with a few
additional computational results performed at real frequency.
The principle is that, in typical cases, the impact of the contribu-
tion of numerical modes and QNMs laying outside the spectral
window of interest can be accurately interpolated in the spectral
domain from a few interpolation points.
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The idea is certainly not new. For instance, it is deeply
rooted in the Riesz projection method [21,22], which exploits
Cauchy’s residue theorem to show that all the salient features
of a spectral response can be captured with a restricted set of
dominant QNMs and the nonresonant contribution accessed
by contour integrals in the complex frequency plane. Hereafter,
we rather propose to compute the nonresonant contribution
directly at few real frequencies and to perform an interpolation.
This offers a balance between analytical description and direct
numerical computation, which not only preserves insight into
the modal expansion method but also guarantees high accuracy
of the computed results.

Our paper is organized as follows: Section 2 offers a peda-
gogical step-by-step presentation. In Section 3, we give details
on the implementation of the hybrid scheme and describe the
toolbox that we have incorporated into the freeware MAN [23].
We also test the convergence performance for several interpo-
lation schemes. Section 4 is devoted to a real-size test that is
often encountered in nanophotonics. From the test, we quantify
the computational speed and discuss advantages. Section 5
concludes the work.

2. STEP-BY-STEP PRESENTATION OF THE
METHOD

To simply present the method, we consider a hybrid dielectric-
metal resonator composed of a silicon cylinder 2 nm above a
5 nm thick silver film. The system is excited by a z-polarized
dipole emitter placed at an off-axis coordinate, shown with
the red arrow in Fig. 1(a). The structure supports a wealth of
hybrid plasmonic modes offering ultratight field confinement in
the gap.

We choose this particular structure not only owing to its
potential for studying novel light–matter interaction phenom-
ena [26] but also owing to its relevancy to test the efficiency
of the present method. First, the reconstruction accuracy is
particularly impacted by QNMs that lie outside the visible
frequency range of interest. This property is not encountered
with classical metallic-nanoparticle-on-metal geometries; it
results from the significant increase of the refractive index of Si
in the blue and ultraviolet, which enables higher-order Fabry–
Perot resonances at high frequencies with Si-insulator-Ag gap
plasmons. Second, owing to the presence of the silver film, the
Green’s tensor has branch cuts in the complex frequency plane
and many numerical modes in addition to the QNMs to be
considered [1].

A. QNM Reconstruction at Complex Frequencies

To reconstruct the optical response of the system, we first
compute the QNMs. We use the QNMEig solver [9] of the
freely available package modal analysis of nanoresonators
(MAN) [23], which relies on the finite element method imple-
mented in COMSOL Multiphysics. The solver normalizes the
QNMs with the PML-normalization method [24]. COMSOL
Multiphysics uses the ARPACK package [27] for computing
eigenvectors of large sparse or structured matrices. The package
is developed based on the implicitly restarted Arnoldi method,

Fig. 1. Set of QNMs excited by a dipole emitter for a hybrid
dielectric-metal resonator. (a) Sketch of nanocavity geometry chosen to
test the capability of the approach. It is formed by a silicon nanocylin-
der (diameter 160 nm, height 100 nm) on a 5 nm thick silver film
with a gap g = 2 nm. The z-oriented dipole emitter (the red arrow) is
located in the middle of the gap and at ρ = 53 nm from the axisym-
metry axis. P denotes the symmetric point. (b) Eigenfrequencies in
the complex plane computed with the QNMEig solver of MAN. Size
of the markers visualizes the spectrally integrated excitation coeffi-
cient, Ām =

∫ λe
λs
|αm(

2πc
λ
)|2dλ from λs = 450 nm to λe = 850 nm.

The five dominant (physical) QNMs offer the largest Ām and are
unambiguously identified by changing the PML parameters [9].
They are labelled with Roman numbers, I, II . . . (c) Electric field
Re(Ẽm,z) in the center of the gap (z= 0) of the five dominant
QNMs with the largest contributions for the reconstruction. QNM
near-fields are normalized with the PML method [24]. The per-
mittivity of Si is given by a multipole Lorentz model [25]: εSi(ω)=

1+
∑4

i=1(Ai/(ω−ωi )− A∗i /(ω+ω
∗

i )) with ω1 = (7.99−1.83i)×
1015 rad/s, ω2 = (0.788+ 0.134i)ω1, ω3 = (0.671+ 0.07i)ω1,
ω4 = (0.613+ 0.12i)ω1, A1 = (−1.53− 0.624i)ω1, A2 =

(−1.17−0.778i)ω1, A3 = (−1.15+ 0.565i)ω1, and A4 =

(−0.440+ 0.216i)ω1. The silver permittivity is approximated by
a single-pole Drude model εAg(ω)= ε∞ − ε∞ω

2
p/(ω

2
+ iωγ ) with

ε∞ = 1,ωp = 1.37× 1016 rad/s, and γ = 0.0023ωp .

a Lanczos-type algorithm, which may compute several eigen-
pairs at one time of calculation. Because the Arnoldi method
preferentially computes the modes with the largest eigenvalue
magnitudes [27], in ARPACK, a shift and invert spectral trans-
formation is implemented, so that only the eigenmodes in
the concerned interval of the spectrum are returned. In our
work, we chose the solver MUMPS [28], a parallel sparse direct
solver based on LU decomposition, to perform the spectrum
transformation.

In the present work, the spectral transformation is performed
such that the ARPACK solver first finds eigenvectors with
eigenfrequencies close to f p = 5× 1014 Hz, a central fre-
quency of the spectral interval of interest. We asked the solver to
return 30 modes in total. We use a perfect-magnetic-conductor
boundary condition in the (ρ, z) plane containing the emitter,
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and, thanks to this symmetry, i.e., the calculation per QNM,
generally lasts 0.8 min on our desktop computer (Intel Xeon
Processor E5-2643) with ≈7.6× 105 degrees of freedom for
the mesh. The per-mode computational speed is determined
by many factors, e.g., the frequency f p , the density of eigen-
modes, and the number of the eigenmodes that are computed.
We empirically observe that when only two to three modes are
computed, the per mode computation time is about 5 min.
However, once more modes are returned, the computational
time per mode is readily reduced to less than 1 min, which is sim-
ilar to the CPU time required for performing one real frequency
simulation.

The frequency positions in the complex-frequency plane of
the 30 modes are shown in Fig. 1(b). Note that the exp(−iωt)
convention is used throughout the article for all the figures and
formulas. We compute more modes than needed for the recon-
struction to guarantee that all the relevant QNMs are found.
However, computing additional modes is not a pure waste of
time. They contribute to improve the accuracy of the recon-
struction, as will be discussed in the following. Furthermore,
they can be useful for computing the nanoresonator response
for other driving currents, for which the additional modes may
become quite relevant. Finally, in an iterative inverse-design
approach based on an ultrafast computation of the QNMs using
high-order QNM perturbation theory, these additional modes
may reinforce the accuracy of the approach, even when large (up
to 50% in volume) deformations are considered to rapidly span
the parameter space [29].

In the second step, we calculate the excitation coefficient of
every individual mode with a closed-form expression [24]:

αm(ω)=
ω

ω̃m −ω
Ẽm (r0) · p, (1)

Ẽm being the normalized electric field of the mth QNM, ω̃m its
QNM complex frequency, p= pez with p = 1 C ·m the dipole
moment placed at position r0. Note that analytical expressions,
similar to Eq. (1), also exist for far-field illumination [30].

The total field E(r) radiated by the source at the real
frequencyω is then reconstructed as

E(0) (r)=
∑M

m=1
αm(ω)Ẽm (r) . (2)

Note the superscript (0) introduced in the left-hand term.
Its significance will become clear when we introduce inter-
polation points. The expansion of the field converges toward
the exact result as the truncation rank M tends toward infin-
ity due to completeness of the basis formed by the QNMs
and the numerical modes [8–10,22]. Among the 30 modes,
five modes have a spectrally integrated excitation coefficient,
Ām =

∫ λe
λs
|αm(2πc/λ)|2dλ, which is much larger than the

other modes. They will be considered as the true physical
QNMs that dominantly impact the reconstruction. We have
also checked that their complex frequencies are nearly independ-
ent of the PMLs used in the computation [9]. Their normalized
fields, e.g., the electric-field z component of Re(Ẽm,z), are
highly confined beneath the dielectric cylinder, indicating that
they are Fabry–Perot resonances formed by the bouncing of gap
plasmons [see Fig. 1(c)].

Fig. 2. Step-by-step presentation of the hybrid method for recon-
structing the spectrum of Re(E z(x , 0, 0)) at point P (x =−53 nm).
(a) Precomputed data before interpolation. Black circles represent
“exact” data Re(E z) computed by performing light-scattering sim-
ulations at eight Chebyshev points; blue curve corresponds to the
QNM reconstruction Re(E (0)

z ) with M = 30 QNMs. (b) Difference
between the exact data Re(E z) and the reconstructed result Re(E (0)

z ).
The violet curve is interpolated from the circles. (c) The interpolated
result Re(E (8)

z ) obtained as the sum of the blue curve in (a) and violet
curve in (b). (d) Relative errors of the reconstructed result, without,
RE(ω, 0), and with interpolation, RE(ω, 8).

In Fig. 2(a), the solid curve shows the reconstructed spectrum
of the z component of the radiated electric field computed at
the mirror-image point of the emitter [the point is denoted by
“P” in Fig. 1(a)]. M = 30 modes are used for the reconstruction.
However, only the five QNMs with the largest Ām significantly
contribute to the reconstructed spectrum with sharp variations,
the contribution of the other 25 modes being essentially flat
spectrally.

B. Interpolation with Real-Frequency Simulation
Results

Indeed, a large number of irrelevant modes with low-quality
factors or frequencies outside the spectral window are expected
to smoothly contribute to the reconstruction in a non-negligible
manner. The accuracy of the reconstruction can be increased
by increasing the truncation rank M [8–10] or by using a con-
tour integral in the complex-frequency plane [21]. Instead, we
simply complement the truncated QNM reconstruction with
a few real-frequency computational data obtained with light-
scattering simulations. These real-frequency results are obtained
with COMSOL Multiphysics, but they can also be obtained
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with any frequency-domain numerical method. The data are
shown with circles in Fig. 2(a) and are considered as “exact” data
because their accuracy can be made arbitrarily high by refining
the mesh.

The real-frequency computational data slightly differ from
the QNM prediction spectra. The difference,

u(ω)= E z(ω)− E (0)
z (ω), (3)

is shown with circles in Fig. 2(b). In the spectral range
[ωs , ωe ] of interest, the difference u(ω) is found to be a slowly
varying function of the frequency. Thus, it can be approx-
imated with a polynomial expansion, u(ω)≈ u(N)(ω)=∑N

k=1 u(ωk)ϕk(ω) [31]. We use the Lagrange polynomials
ϕk(ω)=

∏N
j=1, j 6=k(ω−ω j )/(ωk −ω j ), but the choice is

rather unimportant as discussed hereafter. For the interpola-
tion points at frequency ωk , k = 1, 2, . . . , N, one may rely
on regularly spaced interpolation points and use a spline or
cubic interpolation, as proposed in the MATLAB software, for
instance. Here, we adopt Chebyshev points, but similar con-
vergence has been obtained with other interpolation methods
(see Section 3 for details). As N increases, the solution converges
toward the exact solution.

By fitting u(ω)with only N = 8 Chebyshev points, a faithful
prediction E (N)

z = u(N)(ω)+ E (0)
z of E z = u(ω)+ E (0)

z can be
readily obtained [see the solid curve in Fig. 2(c)]. To quantify the
precision of the interpolation, we define the relative error

RE(ω, N)= 2

∣∣∣∣ F (ω)− F (N)(ω)

F (ω)+ F (N)(ω)

∣∣∣∣, (4)

where F stands for an arbitrary field component or physical
quantity obtained with direct solutions of the scattering prob-
lem, and F (N) is the result reconstructed with M modes plus
interpolation data with N Chebyshev points. Such a definition
equally handles large F data as well as small. With the direct
solver MUMPS implemented in COMSOL Multiphysics, we
have computed F = E z for 300 frequencies regularly spaced
in the interval [ωs , ωe ]. As can be seen in Fig. 2(d), without
interpolation, the relative error RE(ω, N = 0) is ≈ 10−1. On
the other hand, RE(ω, N = 8) remains smaller than a few
percent almost over the entire spectral range. We will see that
the relative error rapidly decreases with N. The enhanced error
at short wavelengths is mainly due to the existence of many
high-frequency QNMs that contribute to the response in the
blue. As we shall see in Section 3, their impact, which is directly
observed in Fig. 2(b), can be drastically reduced by intention-
ally adding more interpolation points at short wavelengths
(2πc/ω < 500 nm). Alternatively, it may also be leveraged by
considering more QNMs in this spectral range.

3. IMPLEMENTATION AND CONVERGENCE
TESTS

Interpolation methods are well-documented in the literature
[32]. Their predictive force strongly depends on the “smooth-
ness” of the function. For periodic structures, e.g., gratings,
the field is continuous with the frequency ω but not derivable
at cutoff frequencies, where a propagating diffracted order
becomes evanescent. Otherwise, for resonators with finite sizes,

the electromagnetic fields have continuous derivatives with the
frequency ω of all orders [33]. Therefore, we do not anticipate
important difficulties with the interpolation.

We first study the convergence of the result obtained
with Chebyshev points ωk =ωs + (1+ xk)(ωe −ωs )/2,
xk = cos[(2k − 1)π/(2N)] being the points in the interval
[−1, 1]. The approach avoids large oscillations of the sum
of the Lagrange polynomials that are observed with even
point distribution at the edges of the interpolation interval
(Runge’s phenomenon). Furthermore, its performance is well-
documented [34]. Note that the Runge’s phenomenon may also
be avoided by using Clenshaw–Curtis points or Leja points.

Figure 3(a) shows the convergence of the relative error
RE(ω, N) for the field F = E z(x , y ) in the median plane
of the gap z= 0 for a wavelength of 565 nm, which does not
correspond to any frequency of the discrete set of Chebyshev
points. The first two panels show the “exact” results for Re(E z)

and Im(E z). Three values of N are considered, N = 0 (QNM
reconstruction without interpolation), N = 8, and N = 20.
The relative error is reduced by more than a factor of 10 for
N = 8, and, from the rightmost panel, we see that the error is
further reduced by another factor of 10 for N = 20. RE(ω, 20)
is small almost everywhere. The maximum values ≈ 10−2 are
obtained at locations where |E z| ≈ 0. Note that it is difficult to
define a relative error for small F values. With the conventional
definition |(F − F (N))/2F |, the relative error is infinite for
F = 0, even for arbitrarily small (thus highly accurate) values of
F (N). With the definition of Eq. (4), this value is always 2.

To quantitatively measure the convergence performance, we
consider a spectrally and spatially averaged relative error denoted
as 〈RE〉, where 〈·〉 denotes spectral and spatial averaging, respec-
tively, performed over 300 frequencies uniformly distributed in
the spectral interval [ωs , ωe ] = [2πc/850 nm, 2πc/450 nm]
and over 11× 11 points of a centered square of size D2 (D being
the diameter of the Si cylinder) placed in the median plane of
the gap. The curve “Che” in Fig. 3(b) shows 〈RE〉 for increasing
values of N and for Chebyshev points. The averaged error 〈RE〉
follows the same trend as that presented in Fig. 3(a), reaching
10−2 for N = 8 and 10−3 for N = 20. Further increasing N
leads to a relatively slower decrease of 〈RE〉, as can be seen from
the inset in Fig. 3(b). We do not precisely know the origin of the
two-slope convergence observed in the inset Fig. 3(b). We have
tested the interpolation approach on slowly varying analytical
(C∞) functions, e.g., sine, and we observed the same behavior,
with a faster convergence rate nevertheless.

Besides interpolation with Lagrange polynomials, we have
also tried the cubic and spline methods with MATLAB to inter-
polate the Chebyshev points. The corresponding values of 〈RE〉
are shown with the curves labeled “Spline Che” and “Cubic
Che.” The convergence rates of “Spline Che” and “Che” are
similar. A slightly better convergence is observed for the cubic
interpolation labeled “Cubic Che” for small values of N.

Chebyshev points change with increasing N, implying for
instance that the set of ωk for N + 1 points is completely dif-
ferent from the set of ωk for N points. This is a drawback. If
one decides to add a new interpolation point to increase the
accuracy, real-frequency simulations should be performed again
for all new sets of points. Thus, in practice, it is convenient
to consider recursive interpolation schemes that allow us to



1228 Vol. 38, No. 8 / August 2021 / Journal of the Optical Society of America A Research Article

Fig. 3. (a) Upper panels: E z in the plane z= 0 at λ= 562 nm.
Lower panels: Relative error RE of the reconstructed field for N = 0,
8, and 20. M = 30 QNMs are used in the expansion of Eq. (2).
N = 0 corresponds to the QNM reconstruction without interpola-
tion. (b) Spatially and spectrally averaged relative error 〈RE〉 of E (N)

z
as a function of N for five interpolation methods: “Che,” “Spline
Che,” and “Cubic Che” are obtained for Chebyshev points using the
Lagrange polynomials, spline, and cubic methods, respectively; “Spline
ω” and “Cubic ω” are obtained for uniformly distributed frequency
points using the spline and cubic methods, respectively. Inset shows the
convergence of the “Che” and “Cubicω” methods up to N = 150.

increase N by reusing available interpolation points. Thus, we
consider cubic and spline interpolation schemes with inter-
polation points uniformly distributed in the spectral interval
[ωs , ωe ]. The convergence of these methods is shown with
the curves labeled with “Spline ω” and “Cubic ω” in Fig. 3(b).
Interestingly, from the inset, we find that the convergence rates
of the “Spline ω” and “Che” methods are similar for large N.
On the other hand, for small N, the relative errors of these two
methods are larger compared with those relying on Chebyshev
points. This is simply due to the fact that the Chebyshev points
are more densely distributed for small wavelengths for which the
difference u(ω)= E z(ω)− E (0)

z (ω) varies more rapidly.

4. APPLICATION

In cavity-quantum-electrodynamic experiments, the exact
position or polarization of the emitter is rarely known with
accuracy, and the emission spectrum might be broad. Therefore,
a quantitative interpretation of the experimental results often
requires many electromagnetic simulations to explore a large
parameter space. Inspired by this example, this section aims at
quantifying the strengths and weaknesses of the hybrid method.
Specifically, we consider the variation of the normalized decay
rate γ /γ0 =

2
~γ0

Im[p∗ · E(r0)] with the frequency ω and posi-
tion of the emitter r0, where E(r0) is the field radiated by the
dipole and γ0 =ω

3
|p|2/(3πε0~c 3) is the spontaneous decay

rate of the same dipole in free space [24]. We restrict the study

to vertically polarized dipoles positioned in the median plane
of the gap; other polarizations and positions may be similarly
considered, however. We denote by Nλ and Nr0 the number
of wavelengths and emitter positions considered to span the
parameter space.

Figure 4(a) shows the QNM reconstruction of γ (0)/γ0

obtained with M = 30 QNMs, computed for Nr0 = 20 x
positions of the emitter and, for each position, Nλ = 300 wave-
lengths. Consequently, 6000 different instances of the dipole
position and frequency are considered. The QNM reconstruc-
tion is fast and does not depend on Nλ and Nr0 , owing to the
availability of closed-form expressions [see Eqs. (1) and (2)].
Typically, the CPU time to compute one QNM being≈ 1 min,
the whole decay-rate map is obtained in τ = 30 min. We
recall that a single symmetry plane is used in the computation.
Reconstructions with QNM expansions may provide highly
accurate predictions of the decay rate. For instance, they may
quantitatively predict quenching, an effect of great significance
that limits the brightness of the nanoresonators. However, the
quenching prediction with QNM expansion is rarely met in the
literature [9], as it remains challenging even for advanced QNM
solvers to compute several hundreds of high-order QNMs. The
present approach solves this problem: Because quenching is a
slowly varying function of the frequency, it is accounted for with
the interpolation step.

From Fig. 4(a), we see that the decay-rate spectra of off-axis
emitters are characterized by several sharp peaks. This indi-
cates that the responses are dominated by a few QNMs with
high-quality factors. On the other hand, the spectra of nearly
on-axis emitters show broad resonance peaks. The latter is due
to QNMs with small azimuthal numbers. These QNMs have
relatively low-quality factors and high radiative loss.

Figure 4(b) shows the normalized decay rate γ (7)/γ0 map
using seven Chebyshev points for each of the Nr0 = 20 emitter
positions. This step is the most demanding in the computa-
tional resources. Because the estimated CPU time for each
real-frequency simulation is ≈ 1 min (as a rule of thumb, we
have noted that the CPU times to compute one QNM or to
run one real-frequency simulation with the same mesh are
nearly identical); in addition, the 7× 20 real-frequency sim-
ulations are performed in ≈ 2 h. By contrast, computing the
6000 different instances for the same map with fully vecto-
rial frequency-domain computation would require almost
four days.

We also test the accuracy of the present method by comparing
the predictions with those obtained with “exact” reference
data obtained with real-frequency simulations performed with
COMSOL Multiphysics. Two emitter positions are consid-
ered. For x0 = 53 nm, the total decay-rate spectrum is strongly
impacted by four high-Q QNMs. Reversely, a smooth spectral
response is obtained for x0 = 27 nm. Figure 4(c) shows the
relative errors RE(ω, 7) for both positions. The error is kept
below 3.2× 10−2 over the full spectral range. RE(ω, 7) for the
x0 = 53 nm is relatively larger, as an off-axis emitter is capable
of exacting more modes compared with an on-axis emitter. We
have observed that, for a larger set of QNMs, the relative errors
become equal and significantly smaller (RE(ω, 7) < 8× 10−3

for M = 120).
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Fig. 4. Reconstruction maps of the total decay rate spectrum γ (ω)/γ0 of single emitters placed at various positions on the x axis. Only positive x
values are considered for symmetry reasons. (a) Reconstruction obtained with M = 30 QNMs without interpolation. The CPU times of τ = 30 min
are independent of Nλ and Nr0 . (b) Interpolated results γ (7)/γ0 with seven Chebyshev points. Nr0 = 20 x coordinates are considered, requiring a
total CPU time of 20× 7= 140 min. (c) Relative error RE(ω, 7)= 2|(γ (7) − γ )/(γ (7) + γ )| for two emitter positions: x0 = 53 nm and 27 nm.
Chebyshev points are shown with the black dots.

Table 1. CPU Times Estimated for Computing γ/γ0 with an Intel Xeon Processor E5-2643 with ≈ 3.2× 105 Degrees
of Freedom for the Real-Frequency Simulation and 7.6× 105 for the QNM Computation

b

Nλ Nr0

QNM
Reconstruction

M = 30
Interpolation

N = 7

Total M = 30,
N = 7 (Relative
Error

a
< 3.2%)

Total M = 120,
N = 7 (Relative
Error

a
< 0.8%)

Total M = 30,
N = 9 (Relative
Error

a
< 0.7%)

“Exact”
Real-Frequency

Simulations

101 20 30 min 140 min 2.8 h 4.7 h 3.5 h 1.4 days
1001 20 30 min 140 min 2.8 h 4.7 h 3.5 h 14 days
101 200 30 min 23 h 24 h 25 h 30 h 14 days

aEstimated for x0 = 53 nm.
bThe numbers of mesh elements used for the two kinds of simulations are the same. The difference between the degrees of freedom is due to the use of the auxiliary

fields in the QNM computation.

Based on these observations, Table 1 summarizes our esti-
mations of the CPU times required to fully study the emission
spectrum of a localized dipole for several values of Nλ and Nr0 .
Comparison with “exact” data obtained with real-frequency
simulations shows that the present method may provide signifi-
cant CPU accelerations. Since the latter strongly depends on Nλ

and Nr0 , we let the readers draw their own opinions.

5. DISCUSSION

For the sake of fairness, we stress that the CPU times for the
“Exact” real frequency simulations in Table 1 are estimated for
the cases where the frequency sweepings are conducted with
brute force. By utilizing more advanced techniques, such as the
block flexible restarted GMRES [35], a method designed for
solving large linear systems of equations with several right-hand
sides, e.g., Maxwell’s equations with multiple excitations, much
better computational efficiencies can be achieved. Therefore,
the CPU-time saving of the present method may be overesti-
mated, especially for scientists using or developing advanced
numerical tools. However, the present method that addresses
the slow convergence issue of the modal expansion method
can be particularly useful for a broad audience relying on com-
mercial software, which does not implement advanced matrix
solvers. The simplicity of the method may even allow the readers
to easily implement it by downloading the models in MAN
[23]. Furthermore, note that the computational speed of our
method can also be benefit from the utilization of advanced
matrix-solving techniques to significantly reduce the CPU

time for the computation of the interpolation points. How the
present method may benefit from the advanced matrix-solving
techniques is a likely direction for future work.

Because the acceleration is primarily due to the predictive
force of the QNM expansion that provides an analytical treat-
ment for the frequency dependence, it is natural to wonder
how the present method compares with the finite-difference
time-domain (FDTD) method. Such comparisons between
completely different methods are always difficult to make fairly
[36]. They significantly depend on the material dispersion that
must be included for realistic modeling and, additionally, on the
geometry itself and on the capability to accurately mesh deep
subwavelength domains with rounded corners. The present
results are obtained with an element polynomial degree of 2,
but higher order is available and with a careful meshing of the
5 nm thin silver film and the 2 nm thin air gap. We believe that
achieving a similar accuracy with the FDTD method requires
advanced implementation skills. For comparison, one should
also consider that the FDTD method requires repeating the
entire computation whenever one considers different instances
of the driving field, such as the pulse shape or duration, polari-
zation, or incidence angle. This is not the case with the present
approach, at least for the first computational step leading to the
QNM reconstruction. Furthermore, a fair comparison would
also require considering, in addition to computational speed
and accuracy, the gain of the physical insight brought by the
QNM expansion used in the present approach.

The hybrid scheme that combines complex and real fre-
quency simulations is mostly dictated by simple intuition:
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The incorporation of a few “exact” data regularly sampled in
a given spectral interval should enhance the accuracy of the
reconstruction. The approach leads to abrupt dips in the relative
error curve, exemplified by the curve RE(ω, 8) in Fig. 2(d).
A more effective approach may consist of replacing the real-
frequency points by complex-frequency points (computation at
complex frequencies can be easily performed with COMSOL
by renormalizing the permittivity and permeability, see [30])
chosen close to the real axis in the upper-half complex-ω plane,
where the field is analytical owing to causality [37]. Exact data
at complex frequencies are expected to represent a spectrally
averaged response over a spectral range given by the imaginary
part of the complex frequency [38]. They may regularize the
interpolation over the whole spectral range, replacing the dips
by a smoother curve. We thus anticipate that the intuitive hybrid
scheme proposed in this work can be further refined. There are
also opportunities for accelerating the method. In the present
implementation, the QNM and real-frequency computations
are performed completely independently. However, since the
rate of convergence of iterative solvers is impacted by the condi-
tion number of the shifted system, knowing the QNMs in the
interval of interest and including them in the Krylov subspace
may enhance the effective condition number and reduce the
computation loads for the interpolation points.

6. CONCLUSION

We have presented a hybrid approach for accurately and
effectively analyzing microcavities and nanoresonators. The
approach combines the respective forces of real- and complex-
frequency simulations. It alleviates difficulties encountered with
purely frequency approaches, for which the lack of initial knowl-
edge on the resonance frequencies imposes a fine sampling in the
frequency domain for carefully displaying the linewidths and
amplitudes of the resonance peaks, especially for high-Q dielec-
tric systems. It also gets around difficulties encountered with
QNM expansion techniques, which may require a great number
of QNMs and numerical modes to achieve high accuracy.

The effectiveness of the method is provided by the analy-
ticity of the QNM expansion. Its accuracy results from the
interpolation performed with a few additional real-frequency
simulations. More importantly, the method preserves the force
of modal-expansion approaches to provide a physically trans-
parent interpretation of all the salient features of the resonator
response.

The hybrid method is implemented in the freeware MAN,
which relies on COMSOL Multiphysics. It benefits from the
versatility of the QNM Solver QNMEig [9], which can be
applied to a variety of geometries and materials, even with com-
plicated dispersion relation, as is the case for the nanoresonator
analyzed in the present work. The user may further choose the
interpolation method (spine, cubic, Chebyshev. . . ) and define
the number of real-frequency interpolation points and number
of QNMs used for the initial reconstruction without inter-
polation. We expect that the hybrid method may contribute
to the deployment of efficient inverse design tools, benefiting
from the possibilities offered by QNM expansions to accelerate
computations and interpret the results.
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