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Abstract

The aerial-terrestrial communication system constitutes an efficient paradigm for supporting and complementing

terrestrial communications. However, the benefits of such a system cannot be fully exploited, especially when the line-

of-sight (LoS) transmissions are prone to severe deterioration due to complex propagation environments in urban areas.

The emerging technology of reconfigurable intelligent surfaces (RISs) has recently become a potential solution to

mitigate propagation-induced impairments and improve wireless network coverage. Motivated by these considerations,

in this paper, we address the coverage and link performance problems of the aerial-terrestrial communication system

by proposing an RIS-assisted transmission strategy. In particular, we design an adaptive RIS-assisted transmission

protocol, in which the channel estimation, transmission strategy, and data transmission are independently implemented

in a frame. On this basis, we formulate an RIS-assisted transmission strategy optimization problem as a mixed-integer

non-linear program (MINLP) to maximize the overall system throughput. We then employ multi-task learning to

speed up the solution to the problem. Benefiting from multi-task learning, the computation time is reduced by about

four orders of magnitude. Numerical results show that the proposed RIS-assisted transmission protocol significantly

improves the system throughput and reduces the transmit power.
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Index Terms

Reconfigurable intelligent surface, aerial-terrestrial communications, RIS-assisted transmission protocol, multi-

task learning.

I. INTRODUCTION

With the emergence of space-air-ground integrated networks, aerial-terrestrial communications play an increas-

ingly significant role in providing ubiquitous coverage and offering flexible end-to-end services [1]–[3]. Unmanned

aerial vehicles (UAVs), commonly known as aerial platforms, have been widely leveraged to complement and

strengthen existing terrestrial networks. Compared to traditional terrestrial communications, UAV-enabled aerial-

terrestrial communications have attracted increasing interest due to their prominent features of fully controllable

mobility, line-of-sight (LoS) transmission, and cost-effectiveness [4]–[6]. In particular, UAVs are gaining popularity

in various applications such as search and rescue, cargo/packet delivery, communication platforms, precise agri-

culture, etc. In general, these promising UAV-enabled applications can be classified into three types: UAV-enabled

ubiquity coverage, UAV-enabled relaying, and UAV-enabled information dissemination/data collection [7]. This

paper mainly focuses on UAV-enabled ubiquity coverage and information dissemination/data collection, where the

UAV-enabled system is employed to provide seamless wireless coverage within its serving area.

However, considering the complicated and unpredictable propagation environment in urban areas, conventional

UAV-enabled aerial-terrestrial communications may face several challenges. The first prominent challenge is the

blockage of LoS links due to obstacles that may lead to coverage and connectivity problems. Another critical

challenge is the non-stationary nature of aerial-terrestrial communications because of the high mobility of UAVs.

In addition, the severe path loss caused by long-distance transmissions has a significant impact on the transmission

rate. Recently, the technology of reconfigurable intelligent surfaces (RISs) has been proved as a potential solution

for tackling the above challenges in wireless communications. Specifically, an RIS consists of a large number of

passive reflecting elements that can be controlled to adjust the amplitude and/or phase of the incident signals, thus

dynamically reconfiguring the wireless propagation environment to provide desirable propagation properties and

diverse transmission channels [8]–[13]. Thanks to the promising characteristics of RISs, we explore an RIS-assisted

aerial-terrestrial communication system where the RIS elements can be dynamically optimized for performance

improvement. Furthermore, an efficient RIS-assisted transmission protocol based on multi-task learning for applica-

tion to aerial-terrestrial communications is designed to achieve higher data rate, higher flexibility, and more reliable

transmission and coverage.
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A. Related Works

The increasing demand for broadband wireless communications has led to the enormous success of terrestrial

networks. However, the high unpredictability of wireless environments poses serious challenges to the deployment

of terrestrial networks. Aerial-terrestrial communications offer the flexibility to overcome some of the limitations

of terrestrial communications, e.g., ubiquitous coverage [14]. In this context, UAVs can be employed as aerial base

stations (BSs), access points, or relays, to assist terrestrial communications [15]. In particular, UAV-enabled aerial-

terrestrial communications in which the UAVs are used as BSs are envisioned as a promising solution to complement

terrestrial communications [16]–[18]. Specifically, Wu et al. exploited the UAV mobility to achieve user fairness [19],

and to improve the total capacity of UAV-enabled multi-user communication systems [20]. Zeng et al. considered

the energy-efficiency and UAV mission completion time of UAV-enabled aerial-terrestrial communications [7], [21].

Mohammad et al. investigated the mission completion time of UAV as flying BSs [22] and proposed a tractable

analytical framework for the coverage and rate analysis [23]. Boris et al. analyzed the impact of the UAV altitude

that is affected by the UAV channel and directional antenna [24]. Pang et al. employed UAVs to collect data and

recharge sensor nodes [25]. You et al. investigated the data collection efficiency of UAV-enabled wireless sensor

networks [26]. Gong et al. solved the optimal UAV flight time for interval data collection [27]. Chen et al. discussed

the deployment problem of cache-enabled UAV in a cloud radio access network [28].

In the context of RIS-aided communications, Wu et al. studied the problem of joint active and passive beam-

forming [29]. To achieve high energy efficiency, Huang et al. investigated an RIS-assisted downlink multi-user

system by joint optimizing the transmit power and the passive beamforming [30], [31]. To increase the sum-rate,

Guo et al. studied an RIS-aided multi-user multiple-input single-output downlink system by jointly designing the

beamforming and RIS phase shifts [32]. To assess the effect of RIS phase shifts on the data rate, Zhang et al.

derived the required number of phase shifts for RIS-assisted communication systems [33]. Yang et al. proposed a

practical transmission protocol for RIS-enhanced orthogonal frequency division multiplexing (OFDM) system [34],

and Zheng et al. extended these investigations to reduce the channel estimation overhead [35]. Wei et al. analyzed

the RIS channel estimation in terms of accuracy and overhead [36]. To improve the channel estimation accuracy,

You et al. designed an RIS training reflecting matrix for a single-user communication system [37]. Abeywickrama et

al. investigated an RIS system by considering a practical model for the phase shift [38]. Yang et al. et al. analyzed

an RIS-assisted uplink multi-user system [39], and Wang et al. explored RIS-aided IoT networks with uplink over-

the-air computation and downlink energy beamforming [40]. The physical-layer security of RIS-assisted systems

was analyzed in [41], and MAC layer protocol for RIS-assisted multi-user system was designed in [42]. Hu et al.
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designed an RIS-assisted sensing system for posture recognition [43]. Huang et al. explored the potential of deep

reinforcement learning in RIS-aided systems [44], and Yang et al. introduced federated learning into RIS-aided

systems [45]. Deep learning technologies instead of conventional optimization methods were investigated in [46],

[47].

At the time of writing, several works have explored the application of RISs in UAV communications to improve

energy efficiency by jointly optimizing the UAV’s trajectory and RIS passive beamforming [48]–[51]. However, the

RIS-aided transmission protocol design and the joint optimization of RIS resource allocation and configuration in

aerial-terrestrial communications are still open issues.

B. Contributions and Organizations

In this paper, the RIS is used to support multiple UAV-user pairs for their communication links improvement

based on the proposed RIS-aided transmission protocol. In particular, we consider two issues in this paper: 1) how to

allocate the RIS elements (i.e., whether or not to allocate and how many to allocate); and 2) how to configure the RIS

reflecting coefficients. To tackle these two issues, we formulate an RIS-assisted transmission strategy optimization

problem, which is solved via multi-task learning more efficiently to maximize the overall system capacity. The

main contributions of this paper are summarized as follows.

• We propose an RIS-assisted transmission strategy to allocate the RIS elements and configure the RIS reflecting

coefficients for multiple UAV-user pairs. By executing the proposed strategy, the RIS controller decides for

each UAV-user pair whether to communicate via the RIS, thereby enhancing the coverage and propagation

quality of aerial-terrestrial communications.

• We design an adaptive RIS-assisted transmission protocol, which is a frame-based periodic structure. Channel

estimation, transmission strategy, and data transmissions are alternately executed in a frame. This design has

four major benefits: 1) achieving distributed aerial-terrestrial communications; 2) adapting for the dynamical

wireless environment; 3) efficient utilization of the RIS, and 4) interference reduction.

• We introduce a deep neural network-based machine learning model, called multi-task learning, to infer the

optimal transmission strategy accurately in near-real-time. Compared with conventional analytical and numerical

methods, the proposed approach can speed up the problem solution, reduce the computation complexity, and

improve the solution accuracy. We then evaluate the proposed protocol in terms of signal-to-noise ratio (SNR),

transmit power, and overall system throughput. We also discuss the accuracy and time cost for solving the

problem via multi-task learning.
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Fig. 1: An RIS-assisted multi-user downlink aerial-terrestrial communication system.

The remainder of this paper is organized as follows. Section II introduces the RIS-assisted aerial-terrestrial

communication system model. Section III describes the RIS-assisted transmission protocol. In Section IV, we

formulate the transmission strategy optimization problem for RIS configuration. Section V solves the formulated

mixed-integer non-linear program (MINLP) problem via multi-task learning. Simulation results and discussions are

provided in Section VI. Section VII concludes the paper.

Notations: Boldface letters denote column vectors or matrices. Cx×y represents the space of x×y complex-valued

matrices. diag(x) returns a square diagonal matrix with the elements in x on its main diagonal. (·)T and (·)H denote

the transpose and the conjugate transpose, respectively. | · | denotes the absolute value of a complex number.

II. SYSTEM MODEL

We consider an RIS-assisted multi-user downlink aerial-terrestrial communication system, as illustrated in Fig.

1. In this system, an RIS is attached to a building facade to assist the downlink communications of K UAV-user

pairs, denoted by the set K={1, 2,. . .,K}, and each UAV-user pair is equipped with a single antenna. We assume

that the RIS is equipped with N passive and low-cost reflecting elements denoted by the set N ={1, 2,. . ., N}. The

N reflecting elements of the RIS are arranged in a uniform planar array (UPA) configuration [8]. The RIS operates

as a nearly passive device, and in particular, only the RIS controller and configuration circuitry consume power. A

quasi-static fading channel model is considered, in which UAV-user pairs’ locations are kept fixed within a frame.

Due to the limited number of RIS elements in practice, it is difficult for the RIS to serve all UAV-user pairs.

In this case, the RIS controller needs to allocate the RIS elements to some UAV-user pairs. In each frame, we

assume that N RIS elements are equally divided into L RIS groups, denoted by the set L = {1, 2, . . . , L}. Let

L = {l1, l2, . . . , lL} denote the set of L RIS groups in a frame, where ll = {l1, l2, . . . , lN/L},∀l ∈ L denotes the
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l-th RIS group comprises of N/L elements. Note that the RIS group size and state vary with the frame, while

they keep unchanged within a frame. Moreover, the frequency channel is divided into C orthogonal sub-carriers.

Since different UAV-user pairs use different sub-carriers to communicate, the signal on a specific sub-carrier can

be decoded at the receiver, although the RIS will scatter all signals that reach it. This implies that one RIS group

can serve one UAV-user pair on one sub-carrier without inter-group interference. For simplicity, the amplitude and

phase responses are assumed to be zero outside the narrow band of a sub-carrier [34], [35]. The total bandwidth

B is divided into ω1B and ω2B, where ω1 +ω2 = 1. Specifically, the bandwidth ω1B is used for the RIS-assisted

transmissions, while the bandwidth ω2B is used for the transmissions that are not assisted by the RIS. The links

from K UAVs to the RIS are denoted by the set G = {g1,g2, . . . ,gK}, and the links from the RIS to K users

are denoted by the set H = {h1,h2, . . . ,hK}, where gk ∈ C(N/L)×1, k ∈ K and hk ∈ C1×(N/L), k ∈ K. The

direct links of K UAV-user pairs are denoted by r = {}1, }2, . . . , }K}. In the considered model, each RIS group

and each sub-carrier is used to assist one UAV-user pair at a time. Otherwise, collisions occur at the user side.

A. Channel Model

As shown in Fig. 1, the UAV-user pair’s transmission channels are composed of the direct path (i.e., the UAV-

user link) and the reflect paths (i.e., the UAV-RIS links and the RIS-user links). On this basis, the Rayleigh fading

channel model is considered for the UAV-user link and the UAV-RIS links, the Rician fading channel model is

considered for the RIS-user links [48]–[50]. Therefore, the received signal at the k-th user is denoted by

yk = }ksk︸︷︷︸
direct path

+ hkΘkgksk︸ ︷︷ ︸
reflect paths

+wk, (1)

where sk represents the signal of the k-th UAV, which is identically distributed (i.i.d.) random variable with zero

mean and unit variance, wk is additive white Gaussian noise (AWGN) at the k-th user with zero mean and variance

σ2. Θk is the RIS reflection coefficient matrix of the k-th UAV-user pair, which can be expressed as

Θk = diag(φl1k , . . . , φ
ln
k , . . . , φ

lN/L
k ), (2)

where φlnk = βlnk e
jθlnk is the reflection coefficient of element n on the l-th RIS group for the k-th UAV-user pair,

ln ∈ ll denotes element n on the l-th RIS group, {θlnk , β
ln
k } are the phase shift and amplitude reflection coefficient of

element n on the l-th RIS group for the k-th UAV-user pair. In practice, we assume that a continuous phase shift with

a constant amplitude reflection coefficient is applied to each RIS element, i.e., |βlnk | = 1, θlnk ∈ [0, 2π),∀ln ∈ ll. Let

Ψ = {θ1,θ2, . . . ,θK} denote an (N/L) ∗K dimensional RIS phase shift matrix, where θk={θl1k , θ
l2
k , . . . , θ

lN/L
k }

is an N/L dimensional phase shift vector that are aligned to the k-th UAV-user pair.
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The direct channel gain of the k-th UAV-user link, }k, is expressed as

}k =
√
h0d
−τk,Uu
k,Uu h̄, (3)

where h0 is the path loss at a reference distance d0 = 1 m, dk,Uu is the LoS distance of the k-th UAV-user pair,

τk,Uu ≥ 2 is the path loss exponent of the k-th UAV-user link, and h̄ is the random scattering component, which

is a zero-mean and unit-variance circularly symmetric complex Gaussian (CSCG) random variable.

The channel gain vector of the k-th UAV-RIS links, gk, is given by

gk =
√
h0d
−τk,UR
k,UR ḡk, (4)

where dk,UR is the distance between the k-th UAV and the RIS. τk,UR ≥ 2 is the path loss exponent of the k-th

UAV-RIS links. ḡk is the array responses, which is denoted by

ḡk = aR
(
ϕAOAk , ϑAOAk

)
, (5)

ϕAOAk

(
ϑAOAk

)
is the corresponding azimuth (elevation) angle-of-arrival (AoA) of the k-th UAV-RIS links. aR (ϕ, ϑ) ,[

1, . . . , ej
2π
λ d(lx sinϕ sinϑ+ly cosϑ), . . . ,

]T
, where lx and ly (0 ≤ {lx, ly} ≤ N/L − 1) are the length and width of

RIS group l, d is the antenna separation and λ is the carrier wavelength.

In the considered system model, both LoS and NLoS components are considered in the RIS-user k links, the

channel gain vector of the RIS-user k links is denoted by hk and is given by

hk =
√
h0d
−τk,Ru
k,Ru

(√
α

1 + α
h̄k +

√
1

1 + α
ĥk

)
, (6)

where dk,Ru is the distance between the RIS and the k-th user. τk,Ru ≥ 2 is the path loss exponent of the RIS-user

k links. α is the Rician factor, and h̄k is the LoS components vector, which is given by

h̄k = aHR
(
ϕAODk , ϑAoDk

)
, (7)

where ϕAODk

(
ϑAODk

)
is the corresponding azimuth (elevation) angle-of-departure (AoD) of the RIS-user k links.

Also, ĥk is the NLoS components vector, which follows i.i.d. complex Gaussian distributed with zero mean and

unit variance.
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B. Communication Model

Let U = {u1, u2, . . . , uK} denote the K-dimensional RIS group occupation vector of K UAV-user pairs, where

uk represents that the k-th UAV-user pair communicates via the l-th RIS group or without the assistance of the

RIS. Then, we have

uk =

 l, if UAV k transmits via RIS group l,

0, if UAV k transmits without the RIS.
(8)

Since one RIS group serves one UAV-user pair at a time, then we have

uk 6= uk′ ,∃uk 6= 0, u′k 6= 0,∀k, k′ ∈ K. (9)

In addition, we define F = {f(u1), f(u2), . . . , f(uK)} as the K-dimensional RIS-assisted transmission decision

vector of K UAV-user pairs, where f(uk) represents that the k-th UAV-user pair is assigned one RIS group or not.

Then, we have

f(uk) =

 1, uk 6= 0,

0, uk = 0.

(10)

Since one UAV-user pair either to communicate without the assistance of the RIS or to communicate with the

assistance of only one RIS group, we have
∑K
k=1 f(uk) = L.

Moreover, we define P = {p1, p2, . . . , pK} as the K-dimensional RIS element occupation ratio vector of K

UAV-user pairs, where pk is the RIS element occupation ratio of the k-th UAV-user pair. Then, we have

pk =


1∑K

k=1 f(uk)
, uk 6= 0,

0, uk = 0.

(11)

Let C = {c1, c2, . . . , cK} be the K-dimensional sub-carrier bandwidth occupation ratio vector of K UAV-user

pairs, where ck ∈ (0, 1) is the occupation ratio of the bandwidth of the k-th UAV-user pair, which is calculated as

ck =


pkω1, uk 6= 0,

ω2

K−
∑K
k=1 f(uk)

, uk = 0.

(12)

Given the channel model in Section II-A, let ρ2 be the transmitter power of the k-th UAV. Accordingly, the

received SNR at the k-th user is calculated as

SNRk =


|(}k + hkΘkgk) ρ|2 /σ2, uk 6= 0,

|}kρ|2 /σ2, uk = 0.

(13)
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C. Computation Model

In the considered computation model, the transmission strategy of the k-th UAV-user pair is denoted as Dk =

{uk,θk}, where uk values zero or nonzero, indicating whether the k-th UAV-user pair communicates via the l-th

RIS group or without the assistance of the RIS, and θk is a continuous value, representing the RIS phase shift

vector of the k-th UAV-user pair. Therefore, the transmission strategy of K UAV-user pairs is denoted by

D = {D1, . . . ,DK}. (14)

D. Power Consumption Model

The power consumption of the k-th UAV-user pair, denoted by Pk, is formulated as

Pk =


µρ2 + Pk,U + Pk,u + Pk,R, uk 6= 0,

µρ2 + Pk,U + P ′k,u, uk = 0,

(15)

where µ = ν−1 with ν being the power amplifier efficiency, Pk,U is the static hardware power consumption at

the k-th UAV, Pk,u and P ′k,u denote the static hardware power consumption at the k-th user via the RIS or not,

respectively. Also, Pk,R is the power consumption at the RIS group for serving the k-th UAV-user pair, which is

given by

Pk,R = pkPR, (16)

where PR is the power consumption at the RIS. Note that Pk,R = 0 as uk = 0.

Therefore, the overall power consumption of K UAV-user pairs can be expressed as

Po=Kµρ2+

K∑
k=1

(
Pk,U+f(uk)Pk,u+(1−f(uk))P ′k,u+pkPR

)
. (17)

III. RIS-ASSISTED TRANSMISSION PROTOCOL

The proposed RIS-assisted aerial-terrestrial transmission protocol is shown in Fig. 2 (a). In the frequency domain,

each UAV-user pair occupies a sub-carrier. In the time domain, the transmission frame can be divided into I

frames. By denoting I = {1, 2, . . . , I}, frame i (i ∈ I) consists of two phases: the negotiation phase (NP) and

the communication phase (CP). Furthermore, each NP consists of three states: synchronization (state S1), channel

estimation (state S2), and optimization (state S3), as illustrated in Fig. 2 (b). At state S1, the RIS controller sends

the pilot across the whole frequency band for synchronization and following channel estimation. At state S2, K

UAVs estimate the channel information G, and K users estimate the channel information H and r, then K users
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Fig. 2: RIS-assisted transmission protocol with three states and data communications, where K = 6.

feedback the channel information G, H, and r to the RIS controller. At state S3, the RIS controller optimizes the

transmission strategy and initiates the transmissions of K UAV-user pairs. These three states are independent and

their duration are given by the set t = {ts1, ts2, ts3}. As the CP arrives, the UAV-user pairs that are assigned with

RIS elements start their transmissions via the RIS, while the other UAV-user pairs that are not assigned with the

RIS elements communicate only via the direct link. From a practical implementation perspective, the challenges

faced in the proposed protocol focus on the RIS channel estimation and the RIS beamforming design [52], [53].

A. Channel Estimation

In the proposed protocol, the channel information (i.e., G, H, and r) can be estimated at the UAVs and users in

a frame-by-frame basis. Here, we assume that each UAV-user pair can obtain perfect channel estimation [54]. By

considering the path loss model for the urban macro scenario, as presented in 3GPP TR 38.901, the path loss h0,

at the reference distance of the LoS link, is given by

h0 = 28 + 22log10(d0) + 20log10(f), (18)
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{Θ1,Θ4,Θ5,Θ6}

{Θ5,Θ6}

;={l1,l2,l3}

L=2
Frame	>

ℱ = 1,0,0,1,1,1
;={l1,l2,l3,l4}

ℱ = 0,0,0,0,1,1
;={l1,l2}

l1 l2 l3

u1=1 u4=2 u5=3

l1 l2 l3

u6=4

l4

u5=1 u6=2

l1 l2

Fig. 3: An illustration of RIS elements allocation and RIS phase shifts configuration, where K = 6

where d0 is a reference distance, and f is the sub-carrier frequency. Based on h0 and the proposed channel model

in Section II-A, the path loss of G, H, and r can be estimated, respectively.

B. RIS Elements Allocation and Phase Shifts Configuration

At state S3, the RIS controller optimizes the transmission strategy to maximize the overall throughput of the

aerial-terrestrial communication system. Therefore, the maximized overall throughput performance can be written

as

Soverall =

(
1− TN

TF

)
R∗overall, (19)

where TN =
∑3
i=1 tsi and TF = TN + TC represent the time length of one NP and one frame, respectively,

TC denotes the time length of one CP, and R∗overall is the maximized system capacity which can be obtained by

optimizing the RIS group occupation vector (U) and the RIS phase shift matrix (Ψ).

An example related to the RIS elements allocation and RIS phase shifts configuration is shown in Fig. 3, when

F = {f(u1), f(u2), . . . , f(uK)} is optimized in one frame, all non-zero values in F are constructed as a new set

that indicates the RIS group partition, denoted by L. That is to say, L RIS groups are allocated to the L UAV-user

pairs with f(uk) = 1, in ascending order. For example, the RIS elements allocation in different frames with K = 6
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can be expressed as 

Frame 1: F={
L=3︷ ︸︸ ︷

0, 1, 1, 1, 0, 0}⇒ L={
u2,u3,u4︷ ︸︸ ︷
l1, l2, l3},

. . .

Frame i : F={
L=4︷ ︸︸ ︷

1, 0, 0, 1, 1, 1}⇒ L={
u1,u4,u5,u6︷ ︸︸ ︷
l1, l2, l3, l4},

. . .

Frame I : F={
L=2︷ ︸︸ ︷

0, 0, 0, 0, 1, 1}⇒ L={
u5,u6︷︸︸︷
l1, l2}.

(20)

Specifically, in frame 1, F = {0, 1, 1, 1, 0, 0} indicates that the RIS is divided into three equal RIS groups, l1, l2, l3,

which are assigned to the UAV-user pair 2, 3, and 4, respectively. In frame i, F = {1, 0, 0, 1, 1, 1} indicates that

the RIS is divided into four equal RIS groups, l1, l2, l3, l4, which are assigned to the UAV-user pair 1, 4, 5, and 6,

respectively. In frame I , F = {0, 0, 0, 0, 1, 1} indicates that the RIS is divided into two equal RIS groups, l1, l2,

which are assigned to the UAV-user pair 5 and 6, respectively.

C. Data Communications

Once the NP finishes, the RIS is controlled in the CP to assist the data communications of the UAV-user pairs.

As is shown in Fig. 2 (a), if uk = l, it means that the k-th UAV-user pair communicates via the allocated l-th

RIS group, then the phase shifts of the l-th RIS group are configured accordingly. Otherwise, if uk = 0, it means

that the k-th UAV-user pair communicates only via the direct link. Note that the number of RIS groups can be

calculated by L =
∑K
k=1 f(uk), and the number of elements on each RIS group equals to N/L.

IV. PROBLEM FORMULATION, ANALYSIS, AND SOLUTION

According to (19), the overall system throughput is affected by R∗overall and TN . To maximize the overall

throughput, we formulate a joint optimization problem that combines the RIS elements allocation and the RIS

phase shifts configuration. Then, we analyze and discuss its solution.

A. Problem Formulation

Given the transmission strategy Dk = {uk,θk} of the k-th UAV-user pair, the total capacity of the UAV-user

pairs with assistance of the RIS can be given by

RRIS =

K∑
k=1

f(uk)ckB log2 (1 + SNRk) . (21)
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Roveall=B

K∑
k=1

(
f(uk)pkω1log2

(
1+
| (}k+hkΘkgk) ρ|2

σ2

)
+(1−f (uk))

ω2

K −
∑K
k=1f(uk)

log2

(
1+
|}kρ|2

σ2

))
.

(25)

The total capacity of the UAV-user pairs that are without the assistance of the RIS can be written by

RDL =

K∑
k=1

(1− f (uk)) ckB log2 (1 + SNRk) . (22)

According to (13), we have

RRIS =

K∑
k=1

f(uk)pkω1B log2

(
1+
|(}k+hkΘkgk) ρ|2

σ2

)
, (23)

and

RDL =

K∑
k=1

(1−f (uk))
ω2B

K−
∑K
k=1 f(uk)

log2

(
1+
|}kρ|2

σ2

)
. (24)

Combined (23) and (24), we can calculate the overall system capacity, denoted by Roveall, which is shown in (25).

To obtain the optimal overall system capacity, R∗overall, as shown in (19), we formulate a joint optimization
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problem as

P1 (Original problem) : (26)

max
U,Ψ

Roveall

s.t. C1: uk ∈ {0, l}, ∀k ∈ K, l ∈ L

C2: uk 6= uk′ , ∃uk 6= 0, u′k 6= 0,∀k, k′ ∈ K,

C3: f(uk) ∈ {0, 1}, ∀k ∈ K,

C4:
K∑
k=1

f(uk) = L, ∀k ∈ K,

C5: L ≤ Lmax,

C6: Po ≤ Pmax, ∀k ∈ K,

C7: pk = {0, 1∑K
k=1 f(uk)

}, ∀k ∈ K,

C8: | φlnk | = 1, ∀k ∈ K, ∀l ∈ L,

C9: θlnk ∈ [0, 2π), ∀k ∈ K, ∀l ∈ L.

The constraints in problem P1 are detailed as follows: C1 is the RIS group allocation of each UAV-user pair. C2

limits one RIS group to serve one UAV-user pair. C3 denotes whether or not to allocate RIS elements. C4 and C5

constrain the number of RIS groups, where Lmax is the maximum number of RIS groups. C6 constrains the total

power consumption, where Pmax is the maximization system power consumption. C7 constraints the RIS element

occupation ratio of each UAV-user pair. C8 and C9 constrain the reflection coefficients of the RIS.

B. Problem Analysis

For problem P1 in (26), we analyze the maximized overall system capacity in terms of three cases, which are

presented as follows.

1) K UAV-user pairs communicate via the RIS: When the number of UAV-user pairs is small, each UAV-user

pair can communicate with the assistance of the RIS, which means that the RIS elements are enough to support and

improve the communications of all UAV-user pairs. In this case, we give Observation 1 to show the maximized

overall system capacity.

Observation 1. For K UAV-user pairs, the maximized overall system capacity with the assistance of the RIS is
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calculated as

R∗RIS=max
U,Ψ

K∑
k=1

f(uk)pkω1Blog2

(
1+
|(}k+hkΘkgk) ρ|2

σ2

)
(27)

=
B

K

K∑
k=1

log2

1+
ρ2
(
|}k|+

∑N
K
n=1|h

ln
k ||g

ln
k |
)2

σ2

 .

Proof. Since K UAV-user pairs communicate simultaneously via the RIS, we have f(uk) = 1,∀k ∈ K, L =∑K
k=1 f(uk) = K, ck = ω1B

K , ω1 = 1, and ω2 = 0, respectively. According to (23), for any given Θk, the overall

maximization capacity can be expressed as in (27), which can be calculated by the given channel information of

hk and gk. Note that hkΘkgk =
∑N

K
n=1 e

jθlnk |hlnk ||g
ln
k |, where hlnk ∈ hk, glnk ∈ gk, ∀ln ∈ ll,∀n ∈ (1, N/K). The

maximized overall system capacity can be obtained when the optimal phase shifts are set as θln
∗

k = arg(}k) −

arg(hlnk )− arg(glnk ) to align the direct path of the k-th UAV-user pair, i.e., enable each term in the sum with the

same phase shift as }k.

2) K UAV-user pairs communicate without the RIS : When all UAV-user pairs communicate without the RIS,

each UAV-user pair communicates relying on the direct path. With this case, we give Observation 2 to show the

maximized overall system capacity.

Observation 2. For K UAV-user pairs, the maximized overall system capacity without the assistance of the RIS is

given by

R∗DL=max
U

K∑
k=1

(1−f (uk))
ω2B

K−
∑K
k=1f(uk)

log2

(
1+
|}kρ|2

σ2

)
(28)

=
B

K

K∑
k=1

log2

(
1 +
|}kρ|2

σ2

)
.

Proof. Since K UAV-user pairs communicate without the assistance of the RIS, we have f(uk) = 0,∀k ∈ K,

L =
∑K
k=1 f(uk) = 0, ω1 = 0, and ω2 = 1, respectively. According to (24), the maximized overall system capacity

can be expressed as in (28), which is determined by the channel information }k.

3) L UAV-user pairs communicate via the RIS while K−L UAV-user pairs communicate without the assistance of

the RIS: When the number of UAV-user pairs is larger than the maximum number of RIS groups (i.e., Lmax < K),

the limited number of RIS elements cannot meet all the requirements of K UAV-user pairs. Therefore, we suppose

that L UAV-user pairs are allocated RIS elements to support their data communications, and K−L UAV-user pairs

communicate relying on the direct path without the assistance of the RIS. Here, the number of RIS group, L, is
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given by L =
∑K
k=1 f(uk). In this case, considering the RIS elements allocation and RIS phase shifts configuration,

we give Observation 3 to show the maximized overall system capacity.

Observation 3. For K UAV-user pairs, the maximized overall system capacity with limited number of the RIS

elements is written as

R∗overall=max
U,Ψ

Roverall (29)

=max
U,Ψ

(
K∑
k=1

ω1B

L
f(uk)log2

(
1+
| (}k+hkΘkgk)ρ|2

σ2

)
+

K∑
k=1

ω2B

K − L
(1− f(uk)) log2

(
1 +
|}kρ|2

σ2

))
.

Proof. Since L UAV-user pairs communicate via the RIS while K − L UAV-user pairs communicate without the

assistance of the RIS, we have f(uk) ∈ {0, 1}, L =
∑K
k=1 f(uk) ∈ (0,K), and pk = 1/L, respectively. According

to (25), the maximized overall system capacity can be expressed as in (29). The solution of (29) can be achieved

by optimizing the transmission strategy, including RIS elements allocation and RIS phase shifts configuration of

each UAV-user pair, as shown in the following Section IV-C.

C. Problem Solution

Based on the aforementioned analysis, the original problem P1 in (26) can be rewritten as

P2 : max
U,Ψ

(
K∑
k=1

ω1B

L
f(uk)log2

(
1+
| (}k+hkΘkgk)ρ|2

σ2

)
+

K∑
k=1

ω2B

K − L
(1− f(uk)) log2

(
1 +
|}kρ|2

σ2

))

s.t. C1-C6, C8-C9. (30)

The joint optimization problem P2 is an MINLP problem. To solve this MINLP problem, P2 can be further

decomposed into two sub-problems with separated objective function and constraints. On this basis, the transmission

strategy problem P2 can be solved by alternately optimizing the RIS elements allocation and the RIS phase shifts

configuration.

1) RIS elements allocation optimization: Given the RIS phase shifts configuration, Ψ, problem P2 in (30) is

transformed into

P2-1 : max
U

(
K∑
k=1

ω1B

L
f(uk)log2

(
1+
| (}k+hkΘkgk)ρ|2

σ2

)
+

K∑
k=1

ω2B

K − L
(1− f(uk)) log2

(
1 +
|}kρ|2

σ2

))

s.t. C1-C6. (31)

Referring to the proposed RIS group partition in Section III-B, the optimal U∗ will be obtained as the RIS con-

troller solves the optimal F∗. Therefore, Problem P2-1 in (31) can be transformed into an RIS-assisted transmission
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decision problem, which is illustrated as

P2-1a : max
F

(
K∑
k=1

ω1B

L
f(uk)log2

(
1+
| (}k+hkΘkgk)ρ|2

σ2

)
+

K∑
k=1

ω2B

K − L
(1− f(uk)) log2

(
1 +
|}kρ|2

σ2

))

s.t. C3-C6. (32)

When the number of UAV-user pairs is small, we can obtain a high-quality global optimal solution of problem P2-1a

by using the exhaustive method. Since f(uk) equals to “0” or “1”, the scale of F = {f(u1), f(u2), . . . , f(uK)}

is 2K . Therefore, we can solve the optimal F∗ to maximize the system capacity by searching each case of F .

According to the optimal F∗ and the proposed scheme of RIS group partition, the optimal U∗ can be solved.

2) RIS phase shifts configuration optimization: Given the RIS elements allocation, U , problem P2 in (30) can

be transformed as

P2-2 : max
Ψ

(
K∑
k=1

ω1B

L
f(uk)log2

(
1+
| (}k+hkΘkgk)ρ|2

σ2

)
+

K∑
k=1

ω2B

K−L
(1−f(uk)) log2

(
1+
|}kρ|2

σ2

))

s.t. C8-C9. (33)

When U is given, the optimal Ψ is the one that maximizes the channel gain of each UAV-user pair with the

assistance of the RIS, i.e., solve θk to maximize | (}k+hkΘkgk) |2. On this basis, the optimal problem of Ψ can

be transformed into the following problem:

P2-2a : max
θk
|}k + hkΘkgk|2

s.t. C8-C9. (34)

Due to the non-convexity of problem P2-2a in (34), in the following, we solve this problem in detail, as highlighted

in Remark 1.

Remark 1. The optimal solution of problem in (34) is θln
∗

k = arg(}k) − arg(hlnk ) − arg(glnk ), where ln ∈ ll.

With considering a same reflection coefficient for all elements in one RIS group (i.e., θlk = θlnk ,∀ln ∈ ll), we have

θl
∗

k = arg(}k)− arg(hlk)− arg(glk).

Proof. For the RIS phase shifts configuration optimization of problem P2-2a, we have the following equality

|}k + hkΘkgk|2 ≤ |}k|2 + |hkΘkgk|2. (35)

The equality in (35) holds only when RIS reflection coefficients satisfies arg(}k) , arg(hkΘkgk). To optimize
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θlnk , ln ∈ ll, let hkΘkgk = vkΦk, where vk = [vl1k , . . . , v
lN/L
k ] ∈ C1×(N/L), vlnk = ejθ

ln
k ,∀ln ∈ ll, and Φk =

diag(hk)gk. problem P2-2a can be simplified as

P2-2b : max
vk
|vkΦk|2 (36)

s.t. C10: |vlnk |
2 = 1, ∀ln ∈ ll.

It is observed that the optimal RIS phase shifts on the l-th RIS group for the k-th UAV-user pair can be obtained

by given v∗k = ej(arg(}k)−arg(diag(hk)gk)), and then we have

θln
∗

k = arg(}k)− arg(hlnk )− arg(glnk ), (37)

where hlnk ∈ hk, glnk ∈ gk, ∀ln ∈ ll,∀n ∈ (1, N/L). It is noting that if a same reflection coefficient is simplified for

all elements in one RIS group, the optimal reflection coefficient of the l-th RIS group is θl
∗

k = arg(}k)−arg(hlk)−

arg(glk), where hlnk = hlk, glnk = glk, ∀ln ∈ ll. In other words, each element on the same RIS group configures its

phase shift to the same reflection coefficient to assist one UAV-user pair’s communication.

We analyze the complexity of solving problem P2, as illustrated in Remark 2.

Remark 2. The complexity of solving the problem in (30) is dominated by calculating U in (31) and Ψ in (33), the

complexity of each is O(2K) and O(N), respectively. Hence, the total complexity of solving the problem in (30) is

O(2KN`), where ` is the number of iterations. We can see that the complexity of Problem P2 solution increases

with the number of RIS elements and the number of UAV-user pairs. Especially, when all elements of one RIS group

are assumed to maintain the same reflection coefficient, the complexity can be decreased to O(2KL`).

The real-time RIS elements allocation and phase shifts configuration are costly to implement in practice because

manufacturing such high-precision elements requires substantial computation and expensive hardware. However,

the conventional optimization procedure must be executed repeatedly as the parameters change, which will incur

high computational complexity due to numerical iterations, and its solutions are often suboptimal and do not scale

well. An artificial intelligence-based method that moves the complexity of online computation to offline training is

a feasibility scheme to improve the efficiency of obtaining the problem solution, thereby improving RIS utilization

with high accuracy and low cost. As such, the multi-task learning method is explored to address the real-time

optimization problem efficiently and improve RIS utilization.
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Fig. 4: The proposed multi-task learning model.

V. MULTI-TASK LEARNING FOR TRANSMISSION STRATEGY ON THE RIS

In this section, we present a multi-task learning model instead of the conventional iterative method to speed up

the decision process and decrease the computation complexity at the RIS controller.

A. Multi-task Learning Model

As is shown in Fig. 4, deep neural networks can be designed and trained offline to obtain a multi-task learning

model. By feeding the parameters (such as the number of UAV-user pairs, RIS size, and channel conditions) into the

trained multi-task learning model, the optimal transmission strategy of each UAV-user pair (including the optimal

RIS elements allocation and the optimal RIS phase shifts configuration) can be predicted at the output. Since moving

the complexity of online computation to offline training, the complexity of solving problem P2 is incurred by online

inference. Therefore, the solution to P2 can be obtained efficiently by performing feedforward calculation without

iterations [46], the complexity can be significantly decreased to O(1).

B. Problem Transformation

Owing to the interaction between two independent output vectors (i.e., U∗ and Ψ∗) of problem P2, we consider

the prediction of U∗ and Ψ∗ as two individual machine learning tasks. Compared to training the models separately,

the learning efficiency and prediction accuracy can be improved with the multi-task learning structure [55]. On this

basis, we formulate P2 as a multi-task learning problem in Fig. 5. We suppose that there exist total A learning

tasks {Ωi}Ai=1 that are interactive with each other, where A = 2 in our proposed multi-task learning model. Each

learning task Ωi is performed with a training dataset Υi, which consists of J training samples. Then, we have

Υi =
{

X
(i)
j ,Y

(i)
j

}
, j = 1, . . . , J, (38)
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Fig. 5: The framework of the trained multi-task learning model.

Algorithm 1: Dataset Collection
Initialization: Iteration index i = 0 and dataset Υ = ∅;
Output: Dataset Υ

1: while i < dataset size do
2: i← i+ 1;
3: Generate input parameters set (Xi) for all UAV-user pairs;
4: Solve P2 by using exhaustive searching and record the optimal solution as Yi = (Ui∗, Ψ∗i /2π);
5: Add the i-th input/output pair {Xi,Yi} to Υ.
6: end while

where X
(i)
j is the j-th training instance in Ωi, Y

(i)
j represents its label.

For the output, denote y(i)j as the j-th corresponding output from Y
(i)
j . When y(i)j is in a discrete space, e.g., y(i)j ∈

{0, 1} for the binary RIS-assisted transmission decision, the corresponding task can be regarded as a classification

problem aiming to predict RIS allocation for a given set of input parameters. If y(i)j is continuous, e.g., y(i)j ∈ R is

for the phase shift of the RIS element, the corresponding task can be transformed into a regression problem, which

aims to predict a numeric value. For simplicity, in the proposed regression model, we predict Ψ∗/2π instead of

predicting Ψ∗, which makes the prediction of the regression model becomes a normalized ratio of RIS phase shifts.

C. Dataset Collection, Offline Training, and Online Inference

The process of training dataset generation and collection are shown in Algorithm 1. Here, we obtain the dataset

using the exhaustive searching to solve the optimization problem P2. Note that although the input parameters

during offline training do not include every possible combination of the parameters, they do cover a wide range of

parameter settings, and the well-known generalization property of machine learning models will enable the trained

deep learning model to produce accurate inference of the solution, even for parameter settings not included in the

training samples. Therefore, generalization can be achieved by designing a proper deep learning model with enough

labelled data. This indicates that the dataset input to the multi-task learning model is with very good quality, which

guarantees the accuracy on solving the optimization problem.
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Algorithm 2: Offline Training and Online Inference

1 1) Offline Training;
1: Build dataset with Algorithm 1;
2: Train the classifier with loss function ιc given in (40);
3: Train the regressor with loss function ιr given in (42);
4: Achieve the weighted-sum loss function ι based (43);
5: Tune the weights of each layer using backpropagation until ι is minimized.

2) Online Inference;
Initialization: K, N , B, ω1, ω2, ρ2, Pmax, PR, Pk,U , I , Lmax, and i = 0;
Output: Optimal transmission strategy Di

∗;
1: while i < I do
2: i← i+ 1;
3: Input UAVs’ parameters to the pre-trained multi-task learning model at the RIS controller;
4: RIS controller predicts the transmission decision U∗i and RIS phase shifts Ψ∗i /2π;
5: RIS controller obtains the optimal transmission strategy D∗i = {U∗i ,Ψi

∗};
6: RIS controller manages RIS elements allocation and RIS reflection coefficients configuration according to

D∗i ;
7: end while

The framework of the trained multi-task learning model highlighted in Fig. 5, in which the offline training and

the online inference are illustrated in Algorithm 2, respectively. During the offline training, based on the collected

dataset, we use back-propagation to train the multi-task learning model. The online inference process can be divided

into one classification problem and one regression problem, both of them are combined to predict U and Ψ for all

UAV-user pairs.

For the classification problem, the probability of each class is predicted using the Softmax function, i.e., the

predicted probability for the q-th class is given as

%q(z) =
ezq∑Q
q=1 e

zq
, q = 1, . . . , Q, (39)

where Q is the total number of classes, z is the output of the last fully connected layer.

The loss function of the classification, denoted by ιc, is defined as the cross-entropy. Then, we have

ιc = − 1

Q

Q∑
q=1

Yqlng(Xq), (40)

where Xq is input devices’ context, Yq denotes the ground truth, and g(Xq) is the actual output of neurons.

For the regression problem, with Sigmoid function, the numerical ratio value can be mapped between 0 and 1,

then the prediction value is given by

%(z) =
1

1 + e−z
. (41)

We define M as the number of input samples. By using the mean square error (MSE), the loss function of the
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regression, denoted by ιr, is expressed as

ιr =
1

M

M∑
i=1

(Yi − g(Xi))
2
. (42)

The loss function of the proposed multi-task learning model is regarded as the weighted-sum of ιc and ιr, which

is given by

ι = ξcιc + ξrιr, (43)

where ξc and ξr denote the weights of the classification and the regression, respectively.

VI. SIMULATION RESULTS

We provide the simulation results to validate the effectiveness of RIS-assisted aerial-terrestrial communications.

The simulation scenario is presented in Fig. 6, where the UAV clusters and user clusters are randomly deployed

within a 3D area of 100 m ∗ 100 m ∗ 300 m, all UAVs and users maintain a certain altitude. Furthermore, we

consider the UAV-user pair only move at x-axis along the same direction, the moving speed of UAV and user is 25

m/s and 0.5 m/s, respectively. The location of RIS is fixed, and the other main parameters are set as in Table I.

Figure 7 evaluates the SNR, the transmit power, and the throughput in terms of the number of RIS groups and

the number of UAV-user pairs. Specifically, Fig. 7 (a) shows that the SNR of UAV-User pair 1 (Pair #1 in short)

varies as the number of RIS groups (L) increases when Pair #1 moves at the x-axis along the same direction.

On the one side, we can see that the SNR decreases as the number of RIS groups increases because fewer RIS

elements can be utilized in each RIS group. On another side, we also see the SNR varies as the location of Pair

#1 (i.e., the moving distance (∆d) at the x-axis for UAV 1 is (0; 50; 100; 150; 200; 250), and for user 1 is (0;
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TABLE I: SIMULATION PARAMETERS

Notation Definition Notation Definition
UAV-user pairs (K) 8 RIS elements (N) 512

RIS groups (L) [1 2 4 8] Sub-carriers (C) 8
Noise power (σ2) -94 dBm UAVs power (ρ2) 10 mW

UAV antenna gain 10 dBi Bandwidth 10 MHz
User antenna gain 5 dBi Frequency 5 GHz

UAVs altitude (250, 300) m Users altitude (0, 1) m
User 1 location [10 30 1] m Weight (ω1, ω2) 0.6, 0.4
UAV 1 location [20 80 280] m Weight (ξ1, ξ2) 0.5, 0.5

RIS location [100 75 120] m Frame length 1 ms

5; 10; 15; 25; 25), where the unit is meter (m)). It can be seen that the best SNR can be achieved at the location

[120 80 280; 20 30 1] of Pair #1, and then followed by [70 80 280; 15 30 1], [170 80 280; 20 30 1], [20 80 280;

10 30 1], and [220 80 280; 30 30 1]. The worst SNR is observed at the location [270 80 280; 35 30 1] of Pair

#1. It can be seen that the SNR is affected by the channel gain between Pair #1 and the RIS. In other words,

a higher SNR can be achieved when Pair #1 is close to the RIS, and a lower SNR exists when Pair #1 is far

away from the RIS. Figure 7 (b) shows that the transmit power changes as the number of RIS groups increases

when Pair #1 moves at the x-axis along the same direction. Compared with the SNR in Fig. 7 (a), the transmit

power displays an opposite changing trend as the number of RIS groups and the location of Pair #1 change. It

means that the fewer RIS groups and the closer distance to the RIS can reduce the energy consumption of Pair

#1. Figure 7 (c) shows that the throughput decreases as the number of UAV-user pairs (K) and the maximum

number of RIS groups (Lmax) increase. Four schemes are presented to evaluate aerial-terrestrial communications,

i.e., without the RIS, with the RIS random phase shift, with the alternating algorithm-based RIS, and with the

multi-task learning method (MTL)-based RIS. Compared to aerial-terrestrial communications without the RIS and

RIS random phase shift, RIS-assisted aerial-terrestrial communications adopted the alternating algorithm and the

proposed MTL method show significant improvement (increase from 0.06 Mbps to 28 Mbps) since the optimal

RIS configuration can enhance the links performance of UAV-user pairs. Moreover, compared to the alternating

algorithm, the MTL method achieves better throughput and also with much lower complexity. Given a fixed Lmax

as the alternating algorithm or the MTL method optimizes the RIS, the system throughput decreases as the number

of UAV-user pairs increases because the poor direct link communications need to consume the bandwidth. Besides,

given a fixed K, the system throughput decreases as the maximum number of RIS groups increases because the

less bandwidth and fewer RIS elements can be used for the UAV-user pairs that have the better channel states. Note

that the large Lmax means that the RIS can serve the more UAV-user pairs at a time to improve their links.

Figure 8 evaluates the SNR, the transmit power, and the throughput as the UAV-user pairs move (i.e., UAVs
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move at the x-axis from 0 to 250 m, and users move at the x-axis from 0 to 25 m). Figure 8 (a) first shows that

the SNR of Pair #1 changes when the number of RIS groups is 1, 2, 4, and 8. We can see that the SNR has an

apparent decrease as the number of RIS groups increases because the fewer RIS elements can be allocated to Pair

#1. Then, Fig. 8 (a) shows that the SNR varies as the moving distance (∆d) of Pair #1 increases from 0 to 250

m, where the SNR shows a slight increase and then a minor decrease as the moving distance of Pair #1 increases.

Figure 8 (b) indicates that the transmit power changes as the number of RIS groups and the moving distance of

Pair #1. By observing Figs. 8 (a) and (b), it can be seen that an opposite changing trend happens on the transmit

power compared to Fig. 8 (a), and we also see that the SNR is mainly affected by the size of the RIS groups,

and then by the moving distance of Pair #1. Finally, Fig. 8 (c) shows that the system throughput changes as the

number of UAV-user pairs and the moving distance of the UAV-user pairs. With the moving distance of UAV-user

pairs increasing from 0 to 250 m, the system throughput first slightly climb up and then has a minor descending.

This is because that the UAV-user pairs are first close to the RIS and then gradually apart from the RIS. Besides,
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Fig. 9: The accuracy of classification and MSE of regression with multi-task learning, alternating algorithm, and
spatial branch and bound.
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Fig. 10: The accuracy of classification and MSE of regression with the different number of UAV-user pairs.

the system throughput decreases as the number of UAV-user pairs increases when the maximum number of the RIS

groups is limited, which can be explained that the direct link of the UAV-user pairs without the assistance of the

RIS severely reduce the performance of aerial-terrestrial communications system.

Figure 9 evaluates that the accuracy of the classification and the mean square error (MSE) of regression as the

number of UAV-user pairs varies, where the alternating algorithm and the conventional spatial branch and bound

(sBB) are regarded as the benchmarks to compare with the proposed MTL. Figure 9 (a) shows that the accuracy

of classification varies with the number of UAV-user pairs for three methods. First, we can see that the accuracy

of MTL classification outperforms the others as the number of UAV-user pairs increases. It is also observed that

the classification accuracy of all methods decreases as the number of UAV-user pairs increases. Compared with the
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TABLE II: INFERENCE TIME COMPARISON

Method

Inference time (ms) K
2 3 4 5 6 7 8

sBB 3.2 5.8 3.5 5.4 4.8 4.1 3.8
MTL 0.0145 0.0146 0.0151 0.0155 0.0161 0.0168 0.0172

sBB and the alternating algorithm that decline significantly, MTL has only a minor decline. Figure 9 (b) shows

that the MSE varies with the number of UAV-user pairs for three methods. It can be seen that the MSE of MTL

outperforms the other two methods as the number of UAV-user pairs increases. Besides, Table II shows the inference

time of each sample for sBB and MTL. Compared to sBB, the inference time of MTL significantly declines about

four orders of magnitude of sBB. Therefore, MTL effectively speeds up the computation time with high inference

accuracy, thereby improving the performance of RIS-assisted aerial-terrestrial communications.

Figure 10 evaluates the accuracy of the classification and the MSE of regression as the percentage of training

samples and the number of UAV-user pairs vary. Figure 10 (a) shows that the accuracy of classification changes

as the percentage of training samples when the number of UAV-user pairs is 2, 5, and 8. It can be seen that the

accuracy of MTL classification is best at k = 2, followed by k = 5 and k = 8, i.e., the accuracy declines as the

number of UAV-user pairs increases. We also see that the accuracy of MTL classification increases as the percentage

of training samples increases from 10% to 90%, and the biggest gap of the accuracy exists when the number of

UAV-user pairs is 8. Figure 10 (b) shows that the MSE changes as the percentage of training samples and the

number of UAV-user pairs. It can be seen that the MSE decreases as the percentage of training samples increases,

and the biggest MSE gap is shown when the percentage of training samples is set 10% and 90% for two UAV-user

pairs.

VII. CONCLUSION

In this paper, we investigated an RIS-assisted multi-user downlink aerial-terrestrial communication system.

To improve the coverage and the link performance of UAV-user pairs, we proposed a frame-based RIS-assisted

transmission protocol, especially when the LoS wireless links are blocked or seriously deteriorated. In the proposed

protocol, the RIS controller can adaptively make a transmission strategy for all UAV-user pairs by addressing

the following issues: the RIS elements allocation and the RIS phase shifts configuration. To address these two

issues, we formulated a transmission strategy optimization problem to maximize the system capacity. To speed

up a solution to the proposed MINLP problem, we trained and then deployed a multi-task learning model at the

RIS controller instead of the conventional mathematical optimization methods. Simulation results show that the
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system throughput of RIS-assisted aerial-terrestrial communications is improved by hundreds-fold compared to that

without the RIS. In addition, benefiting from multi-task learning, the computation time solving the MINLP at the

RIS controller is decreased by four orders of magnitude compared to the conventional mathematics method, and the

inference performance is also significantly improved. To realise the full potential of UAV’s mobile controllability,

the proposed RIS-assisted transmission strategy will be deeply explored considering the trajectory and deployment

of UAVs in our future work.
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