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The early visual cortex is the site of crucial pre-processing for more complex, biologically
relevant computations that drive perception and, ultimately, behaviour. This pre-
processing is often studied under the assumption that neural populations are optimised
for the most efficient (in terms of energy, information, spikes, etc.) representation of
natural statistics. Normative models such as Independent Component Analysis (ICA)
and Sparse Coding (SC) consider the phenomenon as a generative, minimisation
problem which they assume the early cortical populations have evolved to solve.
However, measurements in monkey and cat suggest that receptive fields (RFs) in the
primary visual cortex are often noisy, blobby, and symmetrical, making them sub-optimal
for operations such as edge-detection. We propose that this suboptimality occurs
because the RFs do not emerge through a global minimisation of generative error,
but through locally operating biological mechanisms such as spike-timing dependent
plasticity (STDP). Using a network endowed with an abstract, rank-based STDP rule,
we show that the shape and orientation tuning of the converged units are remarkably
close to single-cell measurements in the macaque primary visual cortex. We quantify
this similarity using physiological parameters (frequency-normalised spread vectors),
information theoretic measures [Kullback–Leibler (KL) divergence and Gini index], as
well as simulations of a typical electrophysiology experiment designed to estimate
orientation tuning curves. Taken together, our results suggest that compared to purely
generative schemes, process-based biophysical models may offer a better description
of the suboptimality observed in the early visual cortex.

Keywords: vision, cortex, plasticity, suboptimality, Independent Component Analysis, Sparse Coding, STDP,
natural statistics

INTRODUCTION

The human visual system processes an enormous throughput of sensory data in successive
operations to generate percepts and behaviours necessary for biological functioning (Anderson
et al., 2005; Raichle, 2010). Computations in the early visual cortex are often explained
through unsupervised normative models which, given an input dataset with statistics similar
to our surroundings, carry out an optimisation of criteria such as energy consumption
and information-theoretic efficiency (Olshausen and Field, 1996; Bell and Sejnowski, 1997;
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van Hateren and van der Schaaf, 1998; Hoyer and Hyvärinen,
2000; Zhaoping, 2006; Bruce et al., 2016). While such approaches
could explain why many properties of the early visual system
are closely related to characteristics of natural scenes (Olshausen
and Field, 1996; Bell and Sejnowski, 1997; Lee and Seung, 1999;
Geisler, 2008; Hunter and Hibbard, 2015; Beyeler et al., 2019),
they are not equipped to answer questions such as how cortical
structures which support complex computational operations
implied by such optimisation may emerge, how these structures
adapt, even in adulthood (Wandell and Smirnakis, 2010; Hübener
and Bonhoeffer, 2014), and why some neurones possess receptive
fields (RFs) which are sub-optimal in terms of information
processing (Jones and Palmer, 1987; Ringach, 2002).

It is now well established that locally driven synaptic
mechanisms such as spike-timing dependent plasticity (STDP)
are natural processes which play a pivotal role in shaping the
computational architecture of the brain (Markram et al., 1997;
Delorme et al., 2001; Caporale and Dan, 2008; Larsen et al.,
2010; Masquelier, 2012; Brito and Gerstner, 2016). Indeed, locally
operating implementations of generative schemes have been
shown to be closer to biological measurements (see, e.g., Rozell
et al., 2008). Therefore, it is only natural to hypothesise that
locally operating, biologically plausible models of plasticity must
offer a better description of RFs in early visual cortex. However,
such line of reasoning leads to the obvious question: what exactly
constitutes a “better description” of a biological system, and
more specifically, the early visual cortex. Here, we use a series
of criteria spanning across electrophysiology, information theory,
and machine learning, to investigate how descriptions of early
visual RFs provided by a local, abstract STDP model compare to
biological data from the macaque. We also compare these results
to two classical, and important normative schemes – Independent
Component Analysis (ICA), and Sparse Coding (SC). Our results
demonstrate that a local process-based model of experience-
driven plasticity may be better suited to capturing the RFs of
simple-cells, thus suggesting that biological preference does not
always concur with forms of global, generative optimality.

More specifically, we show that STDP units are able to better
capture the characteristic sub-optimality in RF shape reported
in literature (Jones and Palmer, 1987; Ringach, 2002), and
their orientation tuning closely matches measurements in the
macaque primary visual cortex (V1) (Ringach et al., 2002). Taken
together, our findings suggest that while the information carrying
capacity of an STDP ensemble is not optimal when compared to
generatively optimal schemes, it is precisely this sub-optimality
which may make process-based, local models more suited for
describing the initial stages of sensory processing.

MATERIALS AND METHODS

Dataset
The Hunter–Hibbard dataset of natural images was used (Hunter
and Hibbard, 2015) for training. It is available under the MIT
license at https://github.com/DavidWilliamHunter/Bivis, and
consists of 139 stereoscopic images of natural scenes captured
using a realistic acquisition geometry and a 20◦ field of view.

Only images from the left channel were used, and each image
was resized to a resolution of 5 px/◦ along both horizontal
and vertical directions. Inputs to all encoding schemes were
3 × 3◦ patches (i.e., 15 × 15 px) sampled randomly from the
dataset (Figure 1A).

Encoding Models
Samples from the dataset were used to train and test three models
corresponding to the ICA, SC, and STDP encoding schemes.
Each model consisted of three successive stages (Figure 1B).
The first stage represented retinal activations. This was followed
by a pre-processing stage implementing operations which are
typically associated with processing in the lateral geniculate
nucleus (LGN), such as whitening and decorrelation. In the third
stage, LGN output was used to drive a representative V1 layer.

During learning, 105 patches (3 × 3◦) were randomly
sampled from the dataset to simulate input from naturalistic
scenes. In this phase, the connections between the LGN and
V1 layers were plastic, and modified in accordance with one of
the three encoding schemes. Care was taken to ensure that the
sequence of inputs during learning was the same for all three
models. After training, the weights between the LGN and V1
layers were no longer allowed to change. The implementation
details of the three models are described below.

Sparse Coding
Sparse Coding algorithms are based on energy-minimisation,
which is typically achieved by a “sparsification” of activity in
the encoding population. We used a now-classical SC scheme
proposed by Olshausen and Field (1996, 1997). The pre-
processing in this scheme consists of an initial whitening of
the input using low pass filtering, followed by a trimming of
higher frequencies. The latter was employed to counter artefacts
introduced by high frequency noise, and the effects of sampling
across a uniform square grid. In the frequency domain the pre-
processing filter was given by a zero-phase kernel:

H
(
f
)
= f · e−

(
f
f0

)4
(1)

Here, f0 = 10 cycles/◦ is the cut-off frequency. The outputs
of these LGN filters were then used as inputs to the V1 layer
composed of 225 units (3◦ × 3◦ RF at 5 px/◦). The total
number of weights in the model was 50,625. Retinal projections
of the converged RFs were recovered by an approximate reverse-
correlation algorithm (Ringach, 2002; Ringach and Shapley,
2004) derived from a linear-stability analysis of the SC objective
function about its operating point. The RFs (denoted as columns
of a matrix, say ξ ) were given by:

ξ = A
[
ATA+ λS" (0) I

]−1 (2)

Here, A is the matrix containing converged sparse
components as column vectors, λ is the regularisation parameter
(for the reconstruction, it is set to 0.14σ, where σ2 is the variance
in the input dataset), and S (x) is the shape-function for the prior
distribution of the sparse coefficients [this implementation uses
log (1+ x 2)].
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FIGURE 1 | Dataset and the computational pipeline. (A) Training data. The Hunter–Hibbard dataset of natural images was used. The images in the database have a
20◦ × 20◦ field of view. Patches of size 3◦ × 3◦ were sampled from random locations in the images (overlap allowed). The same set of 100,000 randomly sampled
patches was used to train three models: Spike-timing dependent plasticity (STDP), Independent Component Analysis (ICA), and Sparse Coding (SC). (B) Modelling
the early visual pathway. Three representative stages of early visual computation were captured by the models: retinal input, processing in the lateral geniculate
nucleus (LGN), and the activity of early cortical populations in the primary visual cortex (V1). Each input patch represented a retinal input. This was followed by
filtering operations generally associated with the LGN, such as decorrelation and whitening. Finally, the output from the LGN units/filters was connected to the V1
population through all-to-all (dense) plastic synapses which changed their weights during learning. Each model had a specific optimisation strategy for learning: the
STDP model relied on a local rank-based Hebbian rule, ICA minimised mutual information (approximated by the negentropy), and SC enforced sparsity constraints
on V1 activity. DoG, difference of Gaussian; PCA, Principal Component Analysis.
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Independent Component Analysis
Independent Component Analysis algorithms are based on
the idea that the activity of an encoding ensemble must
be as information-rich as possible. This typically involves a
maximisation of mutual information between the retinal input
and the activity of the encoding ensemble. We used a classical
ICA algorithm called fastICA (Hyvärinen and Oja, 2000) which
achieves this through an iterative estimation of input negentropy.
The pre-processing in this implementation was performed using
a truncated Principal Component Analysis (PCA) transform
(d̃ = 150 components were used), leading to low-pass filtering
and local decorrelation akin to centre-surround processing
reported in the LGN. The model fit a total of 33,750 weights. If
the input patches are denoted by the columns of a matrix (say X),
the LGN activity L can be written as:

L = ŨTXC (3)

Here, XC = X−〈X〉 and Ũ is a matrix composed of the
first d̃ (= 150) principal components of XC. The activity of these
LGN filters was then used to drive the ICA V1 layer consisting of
150 units, with its activity 6 being given by:

6 = WL (4)

Here, W is the un-mixing matrix which is optimised during
learning. The recovery of the RFs for ICA was relatively straight
forward, as, in our implementation, they were assumed to be
equivalent to the filters which must be applied to a given input
to generate the corresponding V1 activity. The RFs (denoted as
columns of a matrix, say ξ ) were given by:

ξ = ŨWT
+ 〈X〉 (5)

Spike-Timing Dependent Plasticity
Spike-timing dependent plasticity is a biologically observed,
Hebbian-like learning rule which relies on local spatiotemporal
patterns in the input. We used a feedforward model based
on an abstract rank-based STDP rule (Chauhan et al., 2018).
The pre-processing in the model consisted of half-rectified
ON/OFF filtering using difference-of-Gaussian kernels based
on the properties of magno-cellular LGN cells. The outputs
of these filters were converted to relative first-spike latencies
using a monotonically decreasing function (1/x was used), and
only the earliest 10% spikes were allowed to propagate to V1
(Delorme et al., 2001; Masquelier and Thorpe, 2007). For each
iteration, spikes within this 10% window were used to drive an
unsupervised network of 225 integrate-and-fire neurones. The
membrane potential of a V1 neurone was given by:

u (t) = H (θ−u)
∑

i∈LGN

wi (t) δ (t−ti) (6)

Here, ti denotes the latency of the i-th pre-synaptic neuron, H
is the Heavisde function, and θ is the spiking threshold. During
learning, changes in the synaptic weights between LGN and
V1 were governed by a rank-based, simplified version of the
STDP rule proposed by Gütig et al. (2003). After each iteration,

the change (1w) in the weight (w) of a given synapse was
given by:

1w =

{
−α− · (w−wmin)

µ−K
(
t, τ−

)
, t ≤ 0

α+ · (wmax−w)µ
+

K
(
t, τ+

)
, t > 0

(7)

Here, 1t is the difference between the post- and pre-
synaptic spike times, the constants α± describe the learning
rates for long-term potentiation (LTP) and depression (LTD),
respectively, µ± ∈ [0,1] characterise the non-linearity of the
multiplicative updates, K is a windowing function, and τ± are
the time-scales for LTP and LTD windows. Note that w is soft-
bound such that w ∈ (wmin,wmax). The model used wmin = 0
(thalamocortical connections are known to be excitatory in
nature), and wmax = 1. Since the intensity-to-latency conversion
operates on an arbitrary time-scale, weight updates were based
on the spike-order rather than precise spike-timing (rank-based).
This meant that the window for LTP (τ+) was variable and driven
by the first 10% thalamic spikes, while the window for LTD
(τ−) was theoretically infinite. During updates, the weight was
increased if a presynaptic spike occurred before the postsynaptic
spike (causal firing), and decreased if it occurred after the
post-synaptic spike (acausal firing). The learning rates were
α+ = 5 × 10−3 and α− = 0.75 × α+, and the nonlinearities
were µ+ = 0.65 and µ− = 0.05. The model has previously
been shown to be robust to both internal and external noise,
and the parameter values were chosen from a range which best
approximates the behaviour of the model under a realistic, V1-
like regime (Chauhan et al., 2018). The neural population was
homogeneous, with each neuron described by the exact same
set of parameters.

During each iteration of learning, the population followed
a winner-take-all inhibition rule wherein the firing of one
neurone reset the membrane potentials of all other neurones.
A total of 50,625 weights were fit by the model. After learning,
this inhibition was no longer active and multiple units were
allowed to fire for each input – allowing us to measure the
behaviour of the network during testing. This also renders the
model feed-forward only, making it comparable to SC and ICA.
The RFs of the converged neurones were recovered using a
linear approximation. If wi denotes the weight of the synapse
connecting a given neurone to the ith LGN filter with RF ψi, the
RF ξ of the neurone was given by:

ξ =
∑

i∈LGN

wiψi (8)

Evaluation Metrics
Gabor Fitting
Linear approximations of RFs obtained by each encoding strategy
were fitted using 2-D Gabor functions. This is motivated by the
fact that all the encoding schemes considered here lead to linear,
simple-cell-like RFs. In this case, the goodness-of-fit parameter
(R2) provides an intuitive measure of how Gabor-like a given
RF is. The fitting was carried out using an adapted version of
the code available at https://uk.mathworks.com/matlabcentral/
fileexchange/60700-fit2dgabor-data-options (Ecke et al., 2021).
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Frequency-Normalised Spread Vector
The shape of the RFs approximated by each encoding strategy was
characterised using frequency-normalised spread vectors (FSVs)
(Ringach, 2002; Chauhan et al., 2018). For a RF fitted by a Gabor-
function with sinusoid carrier frequency f and envelope size
σ =

[
σx σy

]T , the FSV is given by:[
nx ny

]T
=
[
σx σy

]T f (9)

While nx provides an intuition of the number of cycles in
the RF, ny is a cycle-adjusted measure of the elongation of the
RF perpendicular to the direction of sinusoid propagation. The
FSV serves as a compact, intuitive descriptor of the RF shape-
invariance to affine operations such as translation, rotation, and
isotropic scaling.

Orientation Tuning
Orientation tuning curves (OTCs) were estimated by presenting
each unit in each model with noisy oriented sine-wave grating
(SWG) stimuli at its preferred frequency. The orientation was
sampled in steps of 2◦ in the interval [0◦, 180]◦. For each
orientation, the activity was averaged over phase values uniformly
sampled in the interval [0◦, 360◦] using a step-size of 5◦. The
bandwidth of an OTC was taken as its half-width at 1/

√
2 of

the peak response (Ringach et al., 2002). The whole process
was repeated 100 times, and a bootstrap procedure was used to
determine 95% confidence intervals.

Fisher Information
The information content in the activity of the converged units
was quantified by using approximations of the Fisher information
(FI, denoted here by the symbol J). If x = {x1, x2, x3, , xN} is
a random variable describing the activity of an ensemble of N
independent units, the FI of the population with respect to a
parameter θ is given by:

J (θ) =
∑N

i = 1 E
[{

∂
∂x ln P (xi|θ)

}2
]
P(xi|θ)

(10)

Here, E[.]P(xi|θ) denotes expectation value with respect to the
firing-state probabilities of the ith neurone in response to the
stimuli corresponding to parameter value θ. In our simulations,
θ was the orientation (defined as the direction of travel) of a
set of SWGs with additive Gaussian noise, and was sampled
at intervals of 4◦ in the range [0◦, 180◦). The SWGs were
presented at frequency of 1.25 cycles/visual degree, and the
responses were calculated by averaging over 8 evenly spaced
phase values in [0◦, 360◦). This effectively simulated a drifting
grating design within the constraints of the computational
models. Each simulation was repeated 100 times and a jackknife
procedure was used to estimate 95% confidence intervals. Noise
was added such that the signal-to-noise ratio (SNR) varied
between−6 and 6 dB in steps of 1 dB.

Decoding Using a Linear Classifier
In addition to FI approximations, we also used a linear decoder
on the population responses obtained in the FI simulations. The
decoder was an error-correcting output codes model composed

of binary linear-discriminant classifiers configured in a one-vs.-
all scheme. Similar to the FI experiment, ground-truth values
of the orientation at intervals of 4◦ in the range [0◦, 180◦)
were used as the class labels, and the activity generated by the
corresponding SWG stimuli with added Gaussian noise was used
as the training/testing data. The SWGs were presented at a
frequency of 1.25 cycles/visual degree, and the responses were
calculated by averaging over 8 evenly spaced phase values in
[0◦, 360◦). Each simulation was repeated 100 times, each time
with five-fold validation. A jackknife procedure was used to
estimate 95% confidence intervals.

Post-convergence Threshold Variation in STDP
To test how post-learning changes in the threshold affect the
specificity of a converged network, we tested an STDP network
trained using a threshold θtraining by increasing or decreasing its
threshold (to say, θtesting) and presenting it with SWGs (same
stimuli as the ones used to calculate the FI). We report the results
of seven simulations where the relative change in threshold was
given by 25% increments/decrements, i.e.:

θtesting−θtraining
θtraining

= {0, ± 0.25, ± 0.50, ± 0.75} (11)

Kullback–Leibler Divergence
For each model, we estimated probability density functions (pdfs)
over parameters such as the FSVs and the population bandwidth.
To quantify how close the model pdfs were to those estimated
from the macaque data, we employed the Kullback–Leibler (KL)
divergence. KL divergence is a directional measure of distance
between two probability distributions. Given two distributions P
and Q with corresponding probability densities p and q, the KL
divergence (denoted DKL) of P from Q is given by:

DKL (P||Q) =
∫
� p (x) log2

(
p(x)
q(x)

)
dx (12)

Here, � is the support of the distribution Q. In our analysis,
we considered the reference distribution p as a pdf estimated
from the macaque data, and q as the pdf (of the same variable)
estimated using ICA, SC, or STDP. In this case, KL divergence
lends itself to a very intuitive interpretation: it can be considered
as the additional bandwidth (in bits) which would be required
if the biological variable were to be encoded using one of
the three computational models. Note that P and Q may be
multivariate distributions.

Sparsity: Gini Index
The sparseness of the encoding was evaluated using the Gini
index (GI). GI is a measure which characterises the deviation of
the population-response from a uniform distribution of activity
across the samples. Formally, the GI (denoted here as 3)
is given by:

3 (x) = 1− 2
∫ 1

0 L (F)dF (13)

Here L is the Lorenz function defined on the cumulative
probability distribution F of the neural activity (say, x). GI is 0
if all units have the same response and tends to 1 as responses
become sparser (being equal to 1 if only 1 unit responds, while
others are silent). It is invariant to the range of the responses
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FIGURE 2 | Receptive field (RF) shape. (A–C) RFs of neurones randomly chosen from the three converged populations. The STDP population is shown in (A), ICA in
(B), and SC in (C). (D) Frequency-scaled spread vectors (FSVs). FSV is a compact metric for quantifying RF shape. nx is proportional to the number of lobes in the
RF, ny is a measure of the elongation of the RF, and values near zero characterise symmetric, often blobby RFs. The FSVs for STDP (pink), ICA (green), and SC
(blue), are shown with data from macaque V1 (black) (Ringach, 2002). Measurements in macaque simple-cells tend to fall within the square bound by 0.5 along both
axes (shaded in grey, with a dotted outline). Three representative neurones are indicated by colour-coded arrows: one for each algorithm. The corresponding RFs are
outlined in (A–C) using the corresponding colour. The STDP neurone has been chosen to illustrate a blobby RF, the ICA neurone shows a multi-lobed RF, and the SC
neurone illustrates an elongated RF. Insets above and below the scatter plot show estimations of the probability density function for nx and ny . Both axes have been
cut-off at 1.5 to facilitate comparison with biological data.
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within a given sample, and robust to variations in sample-size
(Hurley and Rickard, 2009). We defined two variants of the GI
which measure the spatial (3s) and temporal sparsity (3t) of
an ensemble of encoders. Given a sequence of M inputs to an
ensemble of N neurones, the spatial sparsity of the ensemble
response to the mth stimulus is given by:

3S (m) = 3
({
x1
m, x2

m,..., xNm
})

(14)

Here, xnm denotes the activity of the nth neurone in response to
the mth input. Similarly, the temporal sparsity of the nth neurone
over the entire sequence of inputs is given by:

3T (n) = 3
( {

xn1 , xn2 , ..., xnM
} )

(15)

Code
The code for ICA was written in python using the sklearn library
which implements the classical fastICA algorithm. The code for
SC was based on the C++ and Matlab code shared by Prof. Bruno
Olshaussen. The STDP code was based on a previously published
binocular-STDP algorithm available at https://senselab.med.yale.
edu/ModelDB/showmodel.cshtml?model=245409#tabs-1.

RESULTS

We used an abstract model of the early visual system with three
representative stages: retinal input, LGN processing, and V1
activity (Figure 1B). To simulate retinal activity corresponding
to natural inputs, patches of size 3◦ × 3◦ (visual angles) were
sampled randomly from the Hunter–Hibbard database (Hunter
and Hibbard, 2015) of natural scenes (Figure 1A). 105 patches
were used to train models corresponding to three encoding
schemes: ICA, SC, and STDP. Each model used a specific
procedure for implementing the LGN processing and learning
the synaptic weights between the LGN and V1 (see Figure 1B and
section “Materials and Methods”).

Receptive Field Symmetry
As expected, units in all models converged to oriented, edge-
detector like RFs. While the RFs from ICA (Figure 2B) and
SC (Figure 2C) were elongated and highly directional, STDP
(Figure 2A) RFs were more compact and less sharply tuned.
This is closer to what is observed from simple-cell recordings
in the macaque (Ringach, 2002) where RFs show high circular
symmetry, and do not seem to be optimally tuned for edge-
detection (see Jones and Palmer, 1987 for similar data measured
in the cat). To obtain a quantitative measure of this phenomenon,
we fit Gabor functions to the RFs and considered the frequency-
normalised spread vectors or FSVs of the fit (Eq. 9). The first
component (nx) of the FSV characterises the number of lobes
in the RF, and the second component (ny) is a measure of
the elongation of the RF (perpendicular to carrier propagation).
A considerable number of simple-cell RFs measured in macaque
tend to fall within the square bounded by nx = 0.5 and
ny = 0.5. The FSVs of a sample of neurones (N = 93)
measured in the macaque V1 (Ringach, 2002) indicate that 59.1%
of the neurones lay within this region (Figure 2D). Since they

are not elongated, and contain few lobes (typically 2–3 on/off
regions), they tend to be compact – making them less effective
as edge-detectors compared to more crisply tuned, elongated
RFs. Amongst the three encoding schemes, while a considerable
number of STDP units (82.2%) tended to fall within these realistic
boundaries, ICA (10.7%) and SC (4.0%) showed a distinctive shift
upwards and to the right. This trend has been observed in a
number of studies using models based on ICA and SC (see, e.g.,
Rehn and Sommer, 2007; Puertas et al., 2010; Zylberberg et al.,
2011).

The inlays in Figure 2D provide estimations of the probability
densities of two FSV parameters for the macaque data and the
three models. An interesting insight into these distributions is
given by the KL divergence (Table 1). KL divergence (Eq. 12) is
a directed measure which can be interpreted as the additional
number of bits required if one of the three models were used
to encode data sampled from the macaque distribution. The KL
divergence for the STDP model was found to be 3.0 bits indicating
that, on average, it would require three extra bits to encode
data sampled from the macaque distribution. In comparison,
SC and ICA were found to require 8.4 and 14.6 additional bits,
respectively. An examination of the KL divergence of marginal
distributions of the FSV parameters showed that STDP offers
excellent encoding of both the nx (number of lobes) and the ny
(compactness) parameter. ICA does not encode either of the two
parameters satisfactorily, while SC performance is closer to the
STDP model (especially for parameter nx).

Orientation Selectivity
Given this sub-optimal, symmetric nature of STDP RF shapes,
we next investigated how this affected the responses of these
neurones to sharp edges. In particular, we were interested
in how the orientation bandwidths of the units from the
three models would compare to biological data. Given the RF
shape, we hypothesised that orientation selectivity would be
worse for STDP compared to the ICA and SC schemes. To
test this hypothesis, we simulated a typical electrophysiological
experiment for estimating orientation tuning (Figure 3A). To
each unit, we presented noisy SWGs at its preferred spatial
frequency and recorded its activity as a function of the stimulus

TABLE 1 | Kullback–Leibler (KL) divergence of the distribution of macaque
frequency-normalised spread vectors (FSVs) from the models.

ICA SC STDP

Joint distribution[
nx ny

]T 14.6 8.4 3.0

Marginal distributions

nx 7.6 1.4 1.3

ny 14.0 3.8 0.4

The receptive-field (RF) shape of the neurones from the models and measurements
in macaque V1 (Ringach, 2002) was parametrised by estimating the frequency-
normalised spread vectors (FSVs). FSVs are characterised by two parameters
nx and ny : nx is proportional to the number of lobes in the receptive field, and
ny is modulated by its elongation perpendicular to the direction of periodicity.
The KL divergence reflects the number of additional bits required to encode the
parameter(s) of interest from the macaque data using the distributions from one of
the three models (ICA, SC, or STDP). All values are in bits.
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FIGURE 3 | Orientation encoding. (A) Orientation tuning. Sine-wave gratings with additive Gaussian noise were presented to the three models to obtain single-unit
orientation tuning curves (OTCs). OTC peak identifies the preferred orientation of the unit, and OTC bandwidth (half width at 1/

√
2 peak response) is a measure of its

selectivity around the peak. Low bandwidth values are indicative of sharply tuned units while high values signal broader, less specific tuning. (B) Single-unit tuning
curves. RF (left) and the corresponding OTC (right) for representative units from ICA (top row, green), SC (second row, blue), and STDP (bottom row, pink). The
bandwidth is shown above the OTC. (C) Population tuning. Estimated probability density of the OTC bandwidth for the three models (same colour code as panel B),
and data measured in macaque V1 (black) (Ringach et al., 2002). Envelopes around solid lines show 95% confidence intervals estimated using a bootstrap
procedure. All simulations shown here were performed at an input SNR of 0 dB.

orientation. This allowed us to plot its OTC (Figure 3B) and
estimate the tuning bandwidth, which is a measure of the local
selectivity of the unit around its peak – low values corresponding
to sharply tuned neurones and higher values corresponding to
broadly tuned, less selective neurones. For each of the three

models, we estimated the pdf of the OTC bandwidth, and
compared it to the distribution estimated over a large set of data
(N = 308) measured in macaque V1 (Ringach et al., 2002)
(Figure 3C). We found that ICA and SC distributions peaked at
a bandwidth of about 10◦ (ICA: 9.1◦, SC: 8.5◦) while the STDP
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FIGURE 4 | Orientation decoding. (A) Retrieving encoded information. Sine-wave gratings (SWGs) with varying degrees of additive Gaussian noise were presented
to the three models. The following question was then posed: how much information about the stimulus (in this case, the orientation) can be decoded from the
population responses? The theoretical limit of the accuracy of such a decoder can be approximated by estimating the Fisher information (FI) in the responses. In
addition, a linear decoder was also used to directly decode the population responses. This could be a downstream process which is linearly driven by the population
activity, or a less-than-optimal “linear observer.” (B) Linear decoding. The responses of each model were used to train a linear-discriminant classifier. The ordinate
shows the accuracy (probability of correct classification) for each level of added noise (abscissa). Results for ICA are shown in green, SC in blue, and STDP in pink.
(C) Post-training threshold variation in STDP. The SWG stimuli were also used to test STDP models with different values of the threshold parameter. The threshold
was either increased (by 25, 50, or 75%) or decreased (by 25, 50, or 75%) with respect to the training threshold (denoted by θo). The abscissa denotes the relative
change in threshold, and the ordinate denotes the estimated FI. The colour of the lines denotes the input SNR, which ranged from −6 dB (blue) to 6 dB (orange).

and macaque data showed much broader tunings (STDP: 15.1◦,
Macaque data: 19.1◦). This was also reflected in the KL divergence
of the macaque distribution from the three model distributions
(ICA: 2.4 bits, SC: 3.5 bits, STDP: 0.29 bits). Thus, while the
orientation tuning for STDP is much broader compared to ICA
and SC, it is also closer to measurements in the macaque V1,
indicating a better agreement with biology.

Decoding and Information Throughput
After characterising the encoding capacity of the models, we next
probed the possible downstream implications of such codes. The
biological goal of most neural code, in the end, is the generation of
behaviour that maximises evolutionary fitness. However, due to

the complicated neural apparatus that separates behaviour from
early sensory processing, it is not straightforward (or at times,
even possible) to analyse the interaction between the two. Bearing
these limitations in mind, we employed two separate metrics
to investigate this relationship. In both cases, the models were
presented with oriented SWGs, followed by a decoding analysis
of the resulting neural population activity (Figure 4A).

We examined the performance of a decoder built on linear
discriminant classifiers (these classifiers assume fixed first-order
correlations in the input). Such decoders can be interpreted
as linearly driven feedforward populations downstream from
the thalamo-recipient layer (the “V1” populations in the three
models), or a simplified, “linear” observer. Not surprisingly the
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accuracy of the three models increases with the SNR. We found
that SC was the most accurate of the three models under all
tested noise-levels, while ICA and STDP showed very similar
performances (Figure 4B). SC was also more robust to Gaussian
noise compared to both ICA and STDP. A major difference
between the three models tested in this study is that while ICA
and SC are based on linear generative units, the STDP model
has an intervening thresholding nonlinearity (Eq. 6). To test
the effect of this thresholding on the information throughput of
the STDP model, we ran simulations where, after training on
natural images, the value of the threshold parameter in the STDP
model was either increased or decreased (Eq. 11). The network
was presented with SWGs (same stimuli as Figure 4B), and the
average FI (Eq. 10) over the orientation parameter was estimated
for each simulation condition. Note that in all simulations the
model was first trained (i.e., synaptic learning using natural
stimuli, see Figure 1) using the same “training” threshold, and
the increase/decrease of the threshold parameter was imposed
post-convergence. The FI increased for thresholds lower than
the training threshold – possibly driven by an increase in the
overall activity of the network. On the other hand, increasing
the threshold led to lower FI due to the decreased bandwidth
of neural activity. Thus, it is indeed possible to manipulate the
information throughput of the spiking network by regulating the
overall spiking activity in the network. This trend was found to
occur robustly for all tested SNR values.

DISCUSSION

In this study, we showed that learning in a network with an
abstract, rank-based STDP rule can predict biological findings
at various scales. The FSVs of the converged RFs in the model
show strong similarities with single-cell data measured in the

macaque primary visual cortex, while the OTCs in the model
closely predict measured population tuning.

Optimality in Biological Systems
In neuroscience, normative schemes are typically used to relate
natural stimuli to an encoding hypothesis. Most normative
encoding schemes optimise a generative reconstruction of
the input by minimising an error metric (e.g., the L1 or
L2 losses) over a given dataset. An alternative approach to
studying stimulus encoding is through the use of process-
based schemes which model known biophysical mechanisms at
various levels of abstraction without making explicit assumptions
about optimality. Traditionally, process-based or mechanistic
schemes do not employ error metrics, and have been used to
study fine-grained neuronal dynamics (Kang and Sompolinsky,
2001; Moreno-Bote et al., 2014; Harnack et al., 2015). On
the other hand, normative schemes are employed to describe
population-level characteristics (Olshausen and Field, 1997; van
Hateren and van der Schaaf, 1998; Lee and Seung, 1999;
Hoyer and Hyvärinen, 2000). In this study, we show that
RFs predicted by a non-generative rank-based STDP rule are
closer to electrophysiological measurements in the macaque
V1 when compared to generatively optimal schemes such as
ICA and SC. While this study only employs the classical
variations of ICA and SC, subsequent work has demonstrated
that similar suboptimalities in RF shape can also be obtained
by generative models when biologically plausible nonlinearities
such as thresholding operations (Rehn and Sommer, 2007; Rozell
et al., 2008), or pointwise maxima operations (Puertas et al., 2010)
are introduced. However, the abstract rank-based STDP model
used here is free from generative optimisation and offers a much
more biologically plausible, normative description of “learning”

FIGURE 5 | Sparsity. (A) Sparsity indices. To estimate the sparsity of the non-spiking responses to natural stimuli, 104 patches (3◦ × 3◦ visual angle) randomly
sampled from natural scenes were presented to the three models. Two measures of sparsity were defined: Spatial sparsity Index (3S) was defined as the average
sparsity of the activity of the entire neuronal ensemble, while Temporal sparsity Index (3T ) was defined as the average sparsity of the activity of single neurones to the
entire input sequence. (B) Spatial sparsity. Estimated probability density of 3S for ICA (green), Sparse Coding (blue), and STDP (red). 3S varied between 0 (all units
activate with equal intensity) and 1 (only 1 u/U activates) by definition. (C) Temporal sparsity. Estimated probability density of 3T , shown in a manner analogous to
3S (panel B). 3T also varied between 0 (homogeneous activity for the entire input sequence) and 1 (activity only for few inputs in the sequence).
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through experience in the early visual system, where there is no
sensory “ground truth” to generate errors from.

Note that while process-based models can predict
suboptimalities observed in biological data, they cannot account
for the theoretical insights offered by generative normative
schemes. Local synaptic processes such as STDP can, in fact, be
viewed as neural substrates for the overall synaptic optimisation
employed by these schemes. The critique that gradient descent is
inherently biologically implausible is being challenged by recent
studies which frame error propagation and stochastic descent
in terms of local, biologically plausible rules (see, e.g., Lillicrap
et al., 2016; Melchior and Wiskott, 2019; Li, 2020). It has been
demonstrated that local plasticity rules can, in fact, be adapted to
describe various normative hypotheses about stimulus encoding
(Savin et al., 2010; Brito and Gerstner, 2016). A growing number
of insightful studies now employ hybrid encoding schemes which
address multiple optimisation criteria (Perrinet and Bednar,
2015; Martinez-Garcia et al., 2017; Beyeler et al., 2019), often
through local biologically realistic computation (Rozell et al.,
2008; Savin et al., 2010; Zylberberg et al., 2011; Isomura and
Toyoizumi, 2018).

Sparsity
Normative descriptions of the early visual system are grounded
in the idea of efficiency – in terms of information transfer,
and in terms of resource consumption. These assumptions,
in turn, determine the behaviour of population responses to
natural images. We quantified this behaviour by presenting the
converged models with patches randomly sampled from the
training dataset of natural images, and estimating the sparsity
of the resulting activations using the Gini coefficient (Eq. 13;
Hurley and Rickard, 2009). The sparsity was examined in two
contexts (Barth and Poulet, 2012) as shown in Figure 5A.
First, sparsity of the entire ensemble was estimated for each
presented stimulus – this is a measure of how many neurones,
on average, are employed by the ensemble to encode a given
stimulus (Eq. 14). Second, the sparsity of individual neurones
over the entire sequence of stimuli was estimated, allowing us
to infer how frequently the features selected/encoded by the
converged models occur in the sequence (Eq. 15). We denote
the former as spatial sparsity (3s), and the latter as temporal
sparsity (3t). For STDP, the indices were calculated for the
membrane potential to facilitate comparison with ICA and SC
activations. STDP membrane potential (red, Figure 5B) shows
high variability in 3s, whereas ICA (green) and SC (blue) show
much lower variance in comparison. This suggests that ICA
and SC converge to features such that each image activates
approximately equal number of units. On the other hand, the
sparsity of the STDP neurones is more variable and stimulus-
dependent, and likely driven by the relative probability of
occurrence of specific features in the dataset – thus reflecting
the Hebbian principal. ICA also exhibits a similar, small range
for temporal sparsity 3t (Figure 5C) – suggesting that ICA
encoding has uniform activation probability across its units. SC
and STDP, however, show a much broader range of temporal
sparsity across their units, with some units activating more
frequently as compared to others.

Taken together, this suggests that the ICA encoding scheme
converges to features such that the activation is distributed
uniformly across the units, both for a given stimulus, and across
multiple stimuli. This is likely to be driven by the objective
of minimising reconstruction loss while maintaining minimal
mutual information across the population. SC, on the other
hand, equalises the probability of firing over the population
for any given stimulus, but individual units may converge to
features which occur more or less frequently. Once again, this
behaviour is a consequence of the loss function which ensures
that the network activity is sparse for each stimulus, but does
not impose explicit constraints between the activity profile of
individual units. As the STDP model is unsupervised and does
not explicitly impose any generative loss function, we find high
variability in both the spatial and temporal sparsity of STDP
units. As shown in Figure 4C, this variability ensures that the
information throughput of the network can be modulated by
regulation of parameters such as the spiking threshold, even after
the initial training.

Emerging Technologies and
Process-Based Modelling in
Neuroscience
Traditionally, detailed process-based models have suffered from
constraints imposed by computational complexity, prohibitively
long execution times which do not scale well for large networks,
and hardware that is geared toward synchronous processing.
On the other hand, most normative models can leverage
faster computational libraries and architectures which have
been developed over several decades, thereby leading to more
efficient and scalable computation. However, with the growing
availability of faster and more adaptable computing solutions
such as neuromorphic hardware (event-based cameras, spike-
based chips), and event-driven computational frameworks (e.g.,
Nengo: Bekolay et al., 2014; or Brian 2: Stimberg et al., 2019),
implementations of such models are becoming increasingly
accessible and scientifically tractable. These frameworks can be
used not only to investigate detailed biophysical models or
create biologically relevant machine and reinforcement learning
pipelines, but to also investigate normative neuroscientific
hypotheses which require unsupervised learning. In the future,
we hope process-based modelling will be adopted more widely by
cognitive and computational neuroscientists alike.
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