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ABSTRACT
With the rapid emerging of Internet of Things (IoT) devices and the proliferation of cloud-based ap-
plications, the cloud computing industry is becoming a vital element for ensuring our daily services.
However, cloud computing uses large scale data centers equipped with energy-hungry servers and
huge power facilities that massively consume power. This presents a real challenge which can nega-
tively influence the power grid, while exposing the environment to global warming issues. Therefore,
minimizing cloud data center power consumption is a challenging problem and has to be addressed.
In this paper, we look at renewable energy in the context of a smart grid-cloud architecture and in-
vestigate the issue of grid power dispatching to cloud data centers. Since cloud data centers have a
non-cooperative nature regarding power demand from the power stations, we model our power allo-
cation problem as a non-cooperative game. Afterwards, we prove the existence and the uniqueness
of Nash equilibrium. Moreover, we formulate the payoff function of our game as a non-linear op-
timization problem before resolving it using Lagrange multipliers and KarushKuhn-Tucker (KKT)
conditions. Thus, we determine the assigned optimal quantity to each data center based on three main
criteria : renewable energy usage, number of critical running applications and workload charge. Ex-
tensive simulations are performed by comparing our scheme with an existing work. Results show that
our scheme outperforms the comparing approach with a percentage of 31.2% in terms of power load
rate and significantly reduces emissions of carbon dioxide.

1. Introduction
In today’s world, everything is being digitized and con-

nected to a network in order to communicate and interact
with its environment. According to Cisco, 500 billion de-
vices are expected to be connected to the Internet by 2030 [1].
This will generate a large amount of data that need to be pro-
cessed by cloud applications. These services are carried out
by computing, networking and storage ressources of a large
number of data centers. Therefore, cloud data centers are
playing a vital role for ensuring a connected world but they
tend to massively consume power from the grid. In fact, the
data centers are expected to consume 8% of the worldwide
power supply in the next five years [2] [3]. Also, they are
responsible for 2% of total greenhouse gas emissions [4].
The smart grid is a modern intelligent power grid that al-
lows bidirectional communications between the consumer
and the utility company. This is done via a real time data
transport in a communication infrastructure like: Powerline
Communication (PLC), Cellular Network Communication,
etc. [5] [6]. This feature allows the smart grid controller to
have a complete view on its consumers’ power behavior and
to propose personalized and adapted solutions for its cos-
tumers. Moreover, smart grids allow integrating Distributed
Energy Resources (DERs) [7], which can enhance the con-
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sumer’s energy efficiency and reduce gas emission.
The smart grid seems to be a relevant technology that could
provide energy efficient solutions to cloud data centers [8] [9].
Based on [10] and [11] works, data centers compete for the
most power from the smart grid, in order to store their energy
and run as many users’ applications as possible. This selfish
behavior of data centers in demanding power does not con-
sider the smart grid energy production capacity. Since smart
grid is in charge of supplying multiple systems, this could
lead to significant grid outages such as blackouts and loss
of energy. Also, it can deprive a data center of having the
sufficient amount of energy while satisfying the other data
centers.
1.1. Main contributions

To overcome the above mentioned problems, we focus
in this paper on the power management of cloud data cen-
ters from the smart grid’s perspective. Unlike our previous
work [12], that considers the smart grid as the only source of
energy for the data centers, in this paper, we define a group
of geographically scattered data centers that are powered by
power grid as well as their own renewable energy. Our ap-
proach optimally dispatches power among the data centers
according to their metrics. Our objective is to avoid power
imbalance between the data centers and try to fairly allocate
power between the data centers. To do so, we define five data
centers’ metrics based on: their workload charge, the num-
ber of their running critical applications, and their renewable
energy usage. The major contributions in this paper are as
follows:

• Weconsidered renewable energy in a smart grid - cloud
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architecture and use a non-cooperation game to model
the allocation of power to cloud data centers.

• We demonstrated our game solution by proving the
existence and uniqueness of Nash Equilibrium.

• We designed the payoff function of our game as a non-
linear optimization problem and determined the opti-
mal solution using KKT conditions.

• Wecompared our proposal with an existing powermin-
imization approach, and found that our game scheme
is more efficient in terms of power load rate with a per-
centage of 31.2% and significantly reduces carbon gas
emission.

1.2. Organization
The rest of this paper is organized as follows. Next sec-

tion gives a literature review of the related work. The system
architecture and game formulation are detailed in Section 3.
In Section 4, we demonstrate the existence and the unique-
ness of Nash Equilibrium and calculate our game solution.
Section 5 discusses the simulation results of our approach.
Finally, Section 6 concludes this paper.

2. Related work and motivation
This section presents the related works and discusses our

motivations to do this work. We present in section 2.1 a lit-
erature review of two categories of related works. In sec-
tion 2.2, we present the strengths and weaknesses of the re-
lated work’s schemes and detail the main contributions of
our work regarding these works.
2.1. Literature review

Enhancing energy efficiency is one of the most difficult
challenges in data centers. The huge power consumption
problem of cloud data centers has been a subject of lot of
research works. Different solutions have been proposed for
greening cloud data centers. We can classify these works
into two major categories detailed bellow. The first cate-
gory tries to improve data centers’ energy efficiency and pro-
poses local solutions applied in IT data centers’ infrastruc-
ture (servers, network equipments, etc.) while the second
category considers a smart-grid cloud architecture and takes
advantage of the features offered by the smart grid to im-
prove power efficiency of cloud data centers.
2.1.1. Local based solutions

Since servers incur the biggest part of power consump-
tion in a data center [19], managing data centers’ servers for
a better energy efficiency is the principal research topic of
this first category of research works. Liu et al. [20] con-
sider various sources of energy, and propose a power man-
agement architecture called DiPSN that efficiently connects
different power sources to appropriate servers. Energy aware
resources allocation and Virtual Machines (VMs) migration
have been widely considered. Dai et al. [21] formulate the
VM placement into servers in the data center as an integer

programming problem. They develop two approximation
algorithms called MinES and MinCS to achieve the opti-
mal solution that minimizes energy and guarantees the ten-
ants’ Service Level Agreements (SLA). Sharma et al. [22]
propose an hybrid approach that combines a Genetic Algo-
rithm (GA) and Particle Swarm Optimization (PSO) called
HGAPSO that allows VM migration while reducing energy
consumption and avoiding SLA violation. Thuan et al. [23]
propose two Multi-level Joint VM placement and migration
algorithms to minimize energy consumption in cloud data
centers. They formulate the optimization problem as a joint
multiple objective function and solve it by leveraging the
framework of convex optimization.
2.1.2. Smart grid - Cloud based solutions

While the latter category considers a data center indi-
vidually, the second category concentrates on the energy ef-
ficiency of inter data center networks and focuses on large-
scale internet data centers with a diverse regional footprint,
such as those owned and run by Amazon, Google, etc. The
works of this category study the interaction of the smart grid
with the cloud data centers and propose energy-saving solu-
tions based on smart grid features [24]. Among the principle
techniques used for this purpose, we note: (i) Demand Re-
sponse (DR) and dynamic pricing mechanisms for reducing
energy cost and (ii) incorporating renewable energy sources
for energy optimization of geo distributed data centers. The
general idea is to route user demands towards one or more
data centers that can minimize electricity bills or gas emis-
sions or maximize the utilization of renewable energy. Gu
et al. [13] consider a smart-grid cloud system in which data
centers are supplied by their own green energy and the power
grid. They propose a request scheduler algorithm that min-
imizes cloud data centers’ energy cost. This work has been
extended in [10] by proposing a green scheduling algorithm
for cloud data centers that reduces both energy costs and car-
bon emissions. In an another work, Wang et al. [14] consider
the active decisions of both the cloud data centers and the
smart grid in energy efficiency. First, they balance power
load using dynamic pricing. After that, responding to en-
ergy prices, the cloud aggregator assigns the incoming work-
load to data centers in a way to minimize the total energy
cost. Wang et al. [11] propose a renewable energy-aware de-
mand response algorithm in order to minimize energy cost.
Their proposal jointly optimizes energy supply and comput-
ingworkload allocation in cloud data centers. Kiani et al. [15]
try to maximize the profit associated with running geograph-
ically distributed green data centers. They consider in their
system both renewable energy production, and electricitymar-
kets dynamic pricing. Ding et al. [16] develop a stochastic
resource planning scheme to optimize the energy cost and
carbon footprint in data centers. They consider the stochastic
characteristics of renewable generation, electricity market
price, and workload distribution. Markus et al. [17] investi-
gate how data centres can benefit from variable energy prices
in a smart grid environment. They propose two schedul-
ing schemes for minimizing energy cost. The first one sim-
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Table 1
A comparative study of some smart grid driven data centers energy efficiency works

Proposed Scheme Price aware Gas emission aware Power load aware Renewable aware

Gu et al [13] X X
Gu et al [10] X X X
Wang et al [14] X X
Wang et al [11] X X
Kiani et al [15] X X X
Ding et al [16] X X X
Markus et al [17] X X X
Hu et al [18] X X
Benblidia et al [12] X X
This work X X X X

ply uses current smart meter values to dispatch the tasks,
while the other one considers the future energy price in the
grid based on weather forecasts. The two policies have a
significant positive impact on the use of renewable energy
and energy cost reduction. Hu et al. [18] consider a cost-
efficient workload scheduling with a coordination between
a cloud service provider operating geographically scattered
data centers and smart grid. They investigate the flexibil-
ity of data center power demands in order to lower cloud
service provider costs while also smoothing power load on
smart grids.

2.2. Discussion
A comparison of the above-mentioned works, particu-

larly those from the second category, is presented in Table
1. The comparison is based on considering four characteris-
tics: price aware, gas emission aware, power load aware and
renewable energy aware. We notice that the majority of the
proposed schemes in a smart grid-cloud architecture are im-
plemented on the cloud provider’s end, and we can see that
energy price and renewable energy are still two of the most
important factors in improving cloud data centers’ energy
efficiency. However, few works have considered the role of
the smart grid in managing power allocation to cloud data
centers. Furthermore, the proposed schemes do not detail
how they can impact the power grid, since they do not take
into account the limited amount of energy that a smart grid
controller can deliver.
As mentioned in Table 1, our previous work do not consider
renewable energy in dispatching power among the data cen-
ters and do not investigate gas emissions problem.
In this paper, we consider a set of geographically dispersed
data centers powered by both a smart grid controller and
their self generated renewable energy. We optimally dis-
patch power among the data centers according to their met-
rics. Compared with our previous work, more real metrics
are considered in this paper which globally consider renew-
able energy, data center’s charge and the number of running
applications. Our objective is to avoid power imbalance be-
tween the data centers and try to fairly allocate power be-
tween the data centers thus reducing power load on smart

grid and lowering dioxide carbon emissions.
We present in the following section more details about

our architecture and system model.

3. System model
This section presents our system model and details our

game scheme. Subsection 3.1 gives our system architecture
and the problem formulation. Subsection 3.2 describes our
game and details our payoff function formulation. We re-
sume the principal parameters used in our system in the Ta-
ble 2.
3.1. System architecture and problem formulation

As illustrated in Figure 1, we consider, in our system,
a smart grid supplier that manages its comsumers’ energy
supply. The smart grid controller is connected to power sta-
tions that provide power to geographically distributed data
centers. The data centers are managed by different cloud
providers that collect the incoming client’s demands and as-
sign them to their respective data centers. In order to per-
form their functions and execute their client requests, the
data centers consume electricity from two sources: the main
grid and their self generated renewable energy by wind tur-
bines. We use wind turbines as the only renewable energy
source due to their efficiency in terms of production of power
rate and carbon emissions compared to solar panels [25] [26].
To handle wind power intermittency, the data centers are
supplied with batteries to store energy.
In a smart grid architecture, a bi-directional communica-
tion is established between the utility company and its con-
sumers. Hence, in our system, the data centers periodically
exchange power informations with the smart grid utility via
Power Line Communication. Therefore, the smart grid has
a global vision on each data center’s power behavior.

The smart grid supplies a set of geographically distributed
data centers. We denote by dk data center k; ∀k ∈ K with
K = {1, 2,… , k,… , n}. We consider in our system a power
assignment period of T = {1,… , t,… , �} and we divide the
daily horizon time into � = 24. We assume that each data
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Figure 1: Our renewable energy-aware Smart Grid-Cloud architecture

center dk, in each time slot t ∈ T , has a number of active
servers stk and a state of energy charge SEC tk stored on its
battery. We assume that the grid can supply each data cen-
ter dk with a maximum quantity of power qmaxk . Also, each
data center dk has five metrics DC tk, CAtk, TAtk, GEC tk and
REP tk ∈ [0, 1] ∀k ∈ K,∀t ∈ T defined as follows [27]:

1. The data center’s charge metric DC tk: reflects in each
time slot t ∈ T the metric of a data center in terms of
its state of energy charge value SEC tk and its number
of active servers stk.

2. The critical applications metric CAtk: represents in
each time slot t ∈ T the ratio of the number of crit-
ical running applications in a data center, to its total
running applications. We consider in our system real
time applications as the critical applications.

3. The total critical applications metric TAtk: calculatesfor each data center the ratio of its number of critical
running applications to the total critical applications
running in all the data centers present in the system.

4. Green Energy coefficient metric GEC tk: reflects in
each time slot t ∈ T the green power consumption
of a data center compared to its total power consump-
tion.

5. Renewable Energy Production metric REP tk: com-
pares the renewable energy production of a data center
to the renewable energy production of all the data cen-
ters of the system.

In order to improve the benefits of their respective cloud
providers, the data centers try to run as many client applica-
tions as possible. To do so, the data centers are competing
to have the maximum of power from the smart grid with-
out considering its power production capacity. This selfish
behavior in demanding power may damage the power trans-
mission lines or power distribution systems.
3.2. Game description and payoff function

formulation
We use a non-cooperative game to model the data cen-

ter’s power allocation. We note the game: G =
(

K,Stk, Gnk
)

k∈Kwith:
• K: is a set of data center players, d1,… , dk,… , dnwhere n is the number of the game players.
• Stk; ∀k ∈ K: Denotes the player dk’s actions at anypoint during the game. In our context, the action re-

flects the amount of power required by a data center;
we denote this quantity as qk and its maximum value
as qmaxk. Therefore, the required power quantity canvary between zero and qmaxk . So, Stk =

[

0, qmaxk
] and

the strategy profile of all players is St = ∏n
k=1 Stk =

[

0, qmax1
]

×⋯ ×
[

0, qmaxk
]

×⋯ ×
[

0, qmaxn
].

• Gnk :Stk → ℝ represents the payoff function of player
dk,∀k ∈ K . The goal of each player is to maximize
its payoff function, Gn, 0 ≤ Gnk ≤ qmaxk ,∀k ∈ K , for
the purpose of increasing profits.
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Table 2
Nomenclature

K Set of data centers
T Time horizon span
dk Data center k
qmaxk Maximum power quantity that a

data center can demand
qtk Optimal power quantity assigned to

a data center dk
DC t

k Data center’s charge metric
CAt

k Critical applications metric of
a data center dk

TAt
k Total applications metric of

a data center dk
GEC t

k Green Energy coefficient metric of
a data center dk

REP t
k Renewable Energy Production metric of

a data center dk
Gnk Game’s payoff function
k(qtk) Utility function
�k(qtk, DC

t
k) Charge cost function

SEC t
k The stored energy state of

a data center dk
stk Number of active servers of

a data center dk
�k(qtk, CA

t
k) Critical applications cost function

rttk Real time applications running in
a data center dk

appstk Total running applications in
a data center dk

�k(qtk, TA
t
k) Total real time applications cost function

'k(qtk, GEC
t
k) The cost function of green power usage

GC t
k The green power consumption of

a data center dk (renewable)
PC t

k The total power consumption of
a data center dk
(renewable + non renewable)

PUEt
k Power Usage Effectiveness of dk

Cpeak Server’s peak power
Cidle Server’s idle power
uttk Servers’ utilization
%k(qtk, REP

t
k) Renewable energy production cost function

GPk Quantity of renewable energy produced by
a data center dk

�, �,  , !,$, # Preferences coefficients
DECk Dioxide carbon emission of

a data center dk
Gce Carbon emission rate of grid energy
Wce Carbon emission rate of wind energy

We aim to provide an equitable power allocation to data
centers. Hence, in our system, the smart grid controller dis-
patches power according to the five, previously defined, data
centers’ metrics. Therefore, the payoff function is designed
to include six functions: a function that calculates the high
power quantity demands of the data centers (utility function),
and a cost function for each data center’s metric.
The six functions are defined as follows:

1. Utility function k(qtk): it is designed in such a manner

that the higher is the power quantity value of a data
center, the greater is its profit. We choose to design
this function with a commonly used utility function in
network research studies [28], the logarithm function,
which is strictly concave. Hence, we formulate the
player dk’s utility function as follows:

k(qtk) = log (qtk + 1),∀k ∈ K,∀t ∈ T (1)
Where qtk is the quantity of power that a data center dkdemands in a time slot t ∈ T .

2. Charge cost function: is the cost that a data center
must pay based on its demanding power quantity qtkand its DC tk metric. The latter goes high when a data
center has low stored energy values and less active
servers. This cost function is defined as follows :

�k(qtk, DC
t
k) = qtk ×DC

t
k,∀k ∈ K,∀t ∈ T (2)

Where
DC tk = 1 − 1

(Cidle ∗ stk) + SEC
t
k

(3)

and Cidle is the idle power of a server in the data cen-ter.
3. Critical applications cost function: represents the cost

that a data center must pay based on its demanding
power quantity qtk and its critical application metric
CAtk. We calculate this metric based on the ratio of
the real time applications rttk running on data center dkto its total running applications appstk. This functionis defined as follows:

�k(qtk, CA
t
k) = qtk × CA

t
k,∀k ∈ K,∀t ∈ T (4)

Where :

CAtk = 1 −
rttk
appstk

(5)

4. Total applications cost function: involves the data cen-
ter’s demanding power quantity qtk and its TAtkmetric.
A data center has a lower cost when the number of its
real time applications compared to the total number of
real time applications of all the data centers goes high.
We formulate this cost function as follows:

�k(qtk, TA
t
k) = qtk × TA

t
k,∀k ∈ K,∀t ∈ T (6)

Where:

TAtk = 1 −
rttk

∑n
k=1 rt

t
k

(7)

5. The cost function of green power usage: considers
the data center’s demanding power quantity qtk and its
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GEC tk metric. This cost function promotes the data
centers with high green power consumption. GEC tkcalculates the data center’s green energy coefficient
GEC [29]r. Thus, we define the function as follows:

'k(qtk, GEC
t
k) = qtk × GEC

t
k (8)

We formulate the green energy coefficientGEC to in-
volve two data center’s parameters. The first one is the
green power consumption of a the data center dk de-noted by GC tk and the second one is the total power
consumption of a data center dk denoted by PC tk. We
formulate GEC tk as follows :

GEC tk = 1 −
GC tk[kwℎ]

PC tk[kwℎ]
∀k ∈ K,∀t ∈ T (9)

Where
0 < GC tk ≤ PC tk,∀k ∈ K,∀t ∈ T (10)

We formulate the data center’s total power consump-
tion PC tk using the model presented in [13]:

PC tk = stk[Cidle+(Cpeak−Cidle)uttk]PUE
t
k (11)

WhereCpeak is the peak power of a data center’s serverand Cidle is its idle power. uttk is the average data cen-ters servers’ utilization. PUEtk represents the Power
Usage Effectiveness of a data center dk in time slot t.
(PUE) is the most popular data center metric regard-
ing energy efficiency. It is the ratio of the total energy
consumed by the data center to the energy consumed
by its IT equipements [30].

6. The cost function of renewable energy production: con-
siders the data center’s demanding power quantity qtkand its renewable energy productionmetricREP tk. Themetric REP tk is calculated as the quantity of renew-
able energy produced by a data center divided by the
renewable energy produced by all the data centers. Thus,
we have:

%k(qtk, REP
t
k) = qtk × REP

t
k (12)

Where:

REP tk =
GPk

∑n
k=1GPk

(13)

Since we consider that the data centers produce their
renewable energy using wind turbines, we choose to
estimate the wind energy production by using theWei-
bull distribution method. This method is one of the
widely acceptable methods for estimating wind en-
ergy [31]. Hence, wemodel the renewable energy pro-
duction of a data center as a Weibull random variable

GPk with a probability density function [32]:
fGPk (GPk; �1, �2) =

{�2
�1
(GPk�1

)�2−1e−(GPk∕�1)�2 ;GPk ≥ 0

0 ;GPk < 0
(14)

Where �1 > 0 is the scale parameter and �2 > 0 is the
shape parameter of the distribution.
Considering the above detailed functions, we give the
payoff function of our game as follows:
Gntk(q

t
k, q

t
−k) = �k(qtk)−��k(q

t
k, DC

t
k)− �k(q

t
k, CA

t
k)−

!�k(qtk, TA
t
k) −$'k(q

t
k, GEC

t
k) − #%k(q

t
k, REP

t
k)

(15)
Where:

• qt−k = {qto}(o ∈ K) and k ≠ o represents the
strategies (quantity of power) of all the data cen-
ters expect the data center dk.

• st = (qtk, q
t
−k) ∈ St is the strategy profile.

The preference coefficients �, �,  , !,$ and # are set by the
smart grid controller to the functions k, �k, �k, �k, 'k and
'k, respectively, in order to satisfy its objective and require-ments. The preference coefficients must be strictly greater
than zero and there sum equal to 1.

After having detailed the different data center’s metrics
and formulated our game’s payoff function, it is necessary
to find and prove that our game has a solution. This is the
subject of the next section.

4. Game solution
Before calculating our game solution, it is necessary to

demonstrate that our non-cooperative game has a solution.
Therefore, we prove in this section the existence of a Nash
Equilibrium (NE), and demonstrate its uniqueness. After
that, we detail our game solution.
4.1. Nash Equilibrium Existence

Nash Equilibrium (NE) is a principal concept in game
theory. It determines the stable state of all players, where
each player in the game has anything to gain in changing its
strategy and continues to adopt the same action. Hence, a
game has a solution if and only if a NE exists [33].
In our game model G=(K,Stk, Gnk

)

k∈K a set of strategies
st∗ =

[

q∗1 ,… , q∗k ,… , q∗n
]

, st∗ ∈ St is a NE if no player in
the game can have a better score when changing its strategy.
Formally, NE is a K-tuple {q∗k} satisfying:

Gnk(q∗k , q
∗
−k) ≥ Gnk(qk, q∗−k),∀q

∗
k , qk ∈ Stk, qk ≠ q∗k∀k ∈ K

(16)
M.A Benblidia et al.: Preprint submitted to Elsevier Page 6 of 12
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Weuse the followingNikaido-Isodra theorem [34] to demon-
strate that it exists at least one NE: [Nikaiido-Isoda] The
game G=(K,Stk, Gnk

)

k∈K has at least one NE if and only
if, ∀k ∈ K , Stk is compact and convex, and Gnk(qk, q−k)is concave in Stk and continuous in the profile strategies
st ∈ St.

• The strategy set for all players is St =
∏n

k=1 Stk,where 0 ≤ Stk ≤ qmaxk , ∀k ∈ K . As Stk =
[

0, qmaxk
],

the strategy set of each player is closed and bounded.
Hence, the set Stk is compact, ∀k ∈ K .
Let z1, z2 ∈ Stk be two points and � = [0, 1]. There-
fore, we have 0 ≤ �z1 + (1 − �) z2 ≤ qmaxk , which
means that the point �z1+(1 − �) z2 ∈ Stk. Thus, wecan say that Stk is convex; ∀k ∈ K .

• To prove that the payoff function is concave, we calcu-
late the Hessian matrix ofGn(s), with st = {

qk
}

∀k ∈
K , as follows:

H (st) =

⎡

⎢

⎢

⎢

⎣

A11 A12 ⋯ A1n
A21 A22 ⋯ A2n
⋮ ⋮ ⋱ ⋮
An1 An2 ⋯ Ann

⎤

⎥

⎥

⎥

⎦

(17)

Where Akl =
(

)2Gnk
)qk)ql

)

,∀k, l ∈ K .

Akl = )
)ql

[

)Gn
)qk

(ql, qk)
]

= )
)ql

[ �
(qk+1)

− �DCpk −
 CApk − !TApk −$GECpk − #REPpk]

Therefore, we obtain:

Akl =

{

− �
(qk+1)2

< 0 if k = l; ∀k, l ∈ K

0 if k ≠ l; ∀k, l ∈ K
(18)

Regarding the leading principal minor of H(st), we
notice that for all strategies st ∈ St, A(st) is nega-
tive definite, thus, Gnk(qk, q−k) is strictly concave in
Stk,∀k ∈ K . Considering these conditions and based
on Nikaido-Isodra theorem [34], it exists at least one
NE in the game G.

4.2. Nash Equilibrum Uniqueness
We use Rosen’s theorem [35] to prove the uniqueness

of NE. Rosen’s theorem states that if diagonally strict con-
cavity is met, then the uniqueness is guaranteed. We note
a random vector of positive parameters v= (

v1, v2,… , vn
)

and define the weighted positive sum of the payoff function
Gnk(qk, q−k), ∀k ∈ K as follows :

&
(

qk, q−k; v
)

=
n
∑

k=1
vkGnk(qk, q−k), vk ≥ 0. (19)

Where the pseudo-gradient of & (qk, q−k; v
) is given by:

f
(

qk, q−k; v
)

=

⎡

⎢

⎢

⎢

⎣

v1∇Gn1
(

q1, q−1
)

v2∇Gn2
(

q2, q−2
)

⋮
vn∇GnL

(

qn, q−n
)

⎤

⎥

⎥

⎥

⎦

(20)

We give:
∇Gnk(qk, q−k) =

�
(qk+1)

−��k(qk, DCpk)− �k(qk, CApk)−
!�k(qk, TApk) −$'k(qk, GECpk) − #%k(qk, REPpk)

Also, we define the Jacobian matrix JA (

qk, q−k, v
) of f as

follows:

JA
(

qk, q−k, v
)

=

⎡

⎢

⎢

⎢

⎣

C11 C12 ⋯ C1n
C21 C22 ⋯ C2n
⋮ ⋮ ⋱ ⋮
Cn1 CL2 ⋯ Cnn

⎤

⎥

⎥

⎥

⎦

(21)

Where Ckl = vkAkl; ∀k, l ∈ K .
Therefore, we notice that the symmetric matrix [JA + JAT

]

is negative definite for all qk, q−k ∈ St. And according to
Rosen’s theorem [35], the function & (qk, q−k; v

) is diago-
nally strictly concave. Hence, the game G has a unique NE.
4.3. Optimal solution

To calculate our optimal solution, wemodel a constrained
non linear optimization problem. We use Lagrange multipli-
ers method to resolve the problem.
Each data center in our game tries to maximize its profit by
maximizing its power demands. Hence, we model our prob-
lem (F’) as follows:

Maximize
qtk

Gntk
(

qtk, q
t
−k
)

subject to qtk ≥ 0,
qtk − q

max
k ≤ 0, ∀k ∈ K.

To solve the problem (F’), we use two Lagrange multi-
pliers lk and l′

k. We give the Lagrange function as follows:

Mk
(

qtk,lk,l
′
k
)

= Gntk
(

qtk, q
t
−k
)

+lkq
t
k+l′

k
(

qmaxk − qtk
)

(22)
Therefore, the defined Lagrange function satisfies the fol-

lowing KKT conditions for each player dk :
lk,l

′
k ≥ 0
qtk ≥ 0

qmaxk − qtk ≥ 0

∇qtkGn
t
k
(

qtk, q
t
−k
)

+ lk∇qtkq
t
k+

l′
k∇qtk

(

qmaxk − qtk
)

= 0

lkq
t
k + l′

k
(

qmaxk − qtk
)

= 0

(23)

After resolution, we determine the optimal power demand
(qt∗k ) for data center dk, ∀k ∈ K , as follows:

qt∗k =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if cdt 1
qmaxk if cdt 2

�
��k(qtk,DC

t
k)+ �k(q

t
k,CA

t
k)+!�k(q

t
k,TA

t
k)

otherwise
+$'k(qtk,GEC

t
k)+#%k(q

t
k,REP

t
k)
− 1
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(24)
Where cdt 1 and 2, respectively, are:
��k(qtk, DC

t
k) +  �k(q

t
k, CA

t
k) + !�k(q

t
k, TA

t
k) +

$'k(qtk, GEC
t
k) + #%k(q

t
k, REP

t
k) ≥ �

(25)
��k(qtk, DC

t
k) +  �k(q

t
k, CA

t
k) + !�k(q

t
k, TA

t
k) +

$'k(qtk, GEC
t
k) + #%k(q

t
k, REP

t
k) ≤

�
qMax
k +1

(26)
After determining the optimal solution, we exploit this

result to show the efficiency of our scheme in the following
section.

5. Simulation and Experimental Results
This section presents our simulation results and studies

the performance of our scheme compared with an existing
work.
5.1. Simulation Setup and Parameters

We consider three geographically dispersed data centers
that purchase from the smart grid amaximumpower of qmaxk =
10MWℎ. In addition, each data center uses its own wind
turbines to produce renewable energy. Each data center has
the same number of 400NE-3000 wind turbines which are
geographically distributed in regions with different climates.
We use function (14) to simulate the wind energy produc-
tion. Also, each data center is equipped with 6000 homo-
geneous servers. We run our simulation over 24 hours, and
measure the data center’s power demand every 2 hours in
two separate periods: on-peak times (from 6 am to 10 pm)
and off-peak times (from 10 pm to 6 am). We note that
the coefficient values of the payoff function are set by the
smart grid controller according to its requirements. We set
� = 0.5 in order to incentive the data centers to highly pur-
chase power from the grid, also because the sum of the penal-
ties (�, ,!,$ and #) is equal to 0.5.
The simulations were performed using Matlab on a Dell Op-
tiPlex 7050 (Intel Core i7 CPU 2.90GHz with 32G RAM).
Determining the optimal solution has allowed us to execute
our program in 0.94 seconds with 100 iterations. Parameter
setting of our simulation are detailed in Table 3.
We have to note that we are not allowed to share our source
code in a public repository for confidential reasons.

To evaluate our approach, we compare it with two ap-
proaches:

• Renewable Energy Based (REB) scheme: an existing
approach presented in [11]. The authors of this work
consider renewable energy in order to minimize cloud
data centers’ energy cost by optimizing grid power
consumption. They tackle the data centers’ energy
management problem from the cloud provider’s per-
spective and try to assign client requests to the data

Table 3
Simulation parameters

Parameters Values

qmaxk 10 MWh
Number of data centers (n) 3
stk [1 − 6000]
Servers’ utilization (uttk) [2.2 − 3]
Cidle [70 − 100] MW
Cpeak [200 − 300] MW
PUEt

k [1.1 − 2]
�,�, ,!,$,# (0.5, 0.1, 0.1, 0.1, 0.1, 0.1)
On-peak times [6am − 10pm]
Off-peak times [10pm − 6am]
Wind energy CER 22.5 (gCO2e∕kwℎ)
Grid energy CER 968 (gCO2e∕kwℎ)

center with a sufficient renewable wind energy.

• Price based approach: we suppose that this scheme
tries to assign power according to the grid energy price.
So, we suppose that it allocates 90% of grid power at
off-peak times and 70% at on-peak times. The rest of
the needed power is supplied by green energy.

In our simulations, we globally set the same parameters
used in [11] (number of servers stk, servers’ utilization (uttk),
Cpeak and Cidle) and consider the same renewable energy
supply in each data center. The availability of the wind gen-
erated energy on each data center over a day (24 ℎours) is
depicted in Figure 2.
5.2. Data centers game results

Figure 3 gives for each data center the varying costs of
their respective metrics during one day. We observe in Fig-
ure 3-a that the data center’s charge (DC) cost of the three
data centers is low during off-peak hours when the data cen-
ter do not have many active servers and stored energy, and
high during on-peak hours when they have charged their en-
ergy and have a high number of active servers. In our sim-
ulation, we set much more real time applications during on-
peak hours (with an average of 29%) compared to the number
of applications running during off-peak hours, according to
smart systems workloads during the day like Smart Homes,
Industry 4.0, Autonomous vehicles, etc. Hence, the varying
costs of CA depicted in Figure 3-b are higher during off-
peak hours than they are during on-peak hours. In addition,
we can observe that the costs of TA in Figure 3-c vary cor-
rectly depending on the number of real time applications of
each data center compared to the total number of real time
applications running in all the data centers. Furthermore,
we see in Figure 3-d that the costs of the REP metric of the
three data centers are varying according to their wind en-
ergy production depicted in Figure 2. Moreover, we model
our scheme in a way that the data center promotes the use of
the grid energy with a low price during off-peak hours and
stores the wind energy for a later use during on-peak hours
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(a) DC1 (b) DC2 (c) DC3

Figure 2: Data centers’ renewable energy production

(a) DC varying cost (b) CA varying cost (c) TA varying cost (d) REP varying cost (e) GEC varying cost

Figure 3: Data centers’ varying costs

when the grid energy price is high. We can verify this in Fig-
ure 3-e where the costs of the GEC in each data center are
high during off-peak hours and low during on-peak hours.

Figure 4 gives the power that has been assigned for each
data center during 24 hours using our non-cooperative game
approach, price based scheme and REB scheme [11]. We
can see that the price based approach allocates power in cloud

data centers with a constant quantity at off-peak times and
a lower constant quantity at on-peak times. It reduces the
power allocated to data centers, but it does not consider the
data centers priorities, and may deprive other data centers
that need more power than others. On the other hand, we
observe that the quantity of power allocated to data centers
using the REB scheme is low during off-peak hours and
high during peak hours. This corresponds to their renew-

(a) DC1 (b) DC2 (c) DC3

(d) Total power assignment (e) Fairness comparison

Figure 4: Performance of our game approach compared to REB scheme and price based
scheme
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able energy supply depicted in Figure 2, where they have a
high renewable energy supply during off-peak hours and a
low renewable energy supply during on-peak hours. Similar
to the REB approach, the power allocated using our game
scheme is low during off-peak hours and high during on-
peak hours, however, our approach allows to have a balance
between the use of grid and renewable energy. In fact, our
scheme penalizes the data centers for having more power
when they have a high REP value and a low GEC value.
This means that our proposal incites the data centers to be
more efficient in terms of green energy usage and to con-
sume more renewable energy in parallel with the grid en-
ergy. To better show the performance of our approach, we
give in Figure 4-d the total power assigned for each data cen-
ter during one day. We can remark that the power assigned
using our scheme is less than the power assigned usingREB
approach and price based approach. This is due to our non-
cooperative game scheme where the smart grid controller
fairly dispatches power among the data centers by penaliz-
ing the data centers according to their different metrics, in
contrary toREB scheme which considers only the data cen-
ters’ renewable energy supply.
To better show the fairness of our proposal, we depict in Fig-
ure 4-e the Jain’s fairness index of our game scheme compar-
ing it to REB scheme and price based scheme.
Jain’s fairness index is the measure of fairness among the
active flows (which are the data centers in our case) in a net-
work. The index ranges between 1

n and 1, representing worst
and best fairness respectively [36]. We calculate the Jain’s
fairness index using the following function [37]:

Jain(Y ) =

[
∑n
k=1 Yk

]2

∑m
i=1 Y

2
i

(27)

Where

Yk =
qmaxk
qk

(28)

We have to note that the allocation tends to be fairer
when Jain’s index is closer to 1, and we can see in Figure 4-e
that our scheme allows a fair allocation comparing to REB
scheme. Obviously, the price based scheme has a better re-
sult, because it dispatches constantly and equally a higher
quantity of power among all the data centers.
5.3. Power load rate and Carbon Emission

Performance
In this subsection, we consider two metrics to evaluate

our game scheme: carbon emission, and power load rate.
The power load rate is the proportion of the total power as-
signed by the main grid to the maximum amount of power
that can be allocated in a single day. The carbon emission
metric measures the emitted quantity of Co2 by each data
center in a single day. We give the following function to
calculate the dioxide carbon emission DCEk of each data

center:

DECk =
T
∑

t=1
(qtk ∗ Gce) + ((qmaxk − xtk) ∗ Wce) (29)

Where Gce and Wce are respectively the carbon emission
rate CER [25] of grid and wind energy. We present in Fig-
ure 5-a the power load rate of each data center using our
non-cooperative game, price based scheme and the REB
scheme. We notice that, at each data center, our proposal
has less power load rate than the REB scheme and price
based scheme. Indeed, our game scheme outperforms REB
with a percentage of 31.2% and price based scheme with a
percentage of 72%.
The effectiveness of our proposal in terms of gas emissions
is shown in Figure 5-b. We can see that our approach out-
performs REB approach and price based scheme and sub-
stantially lowers carbon dioxide emissions. This can be ex-
plained by the fact that our game balances the use of grid and
renewable energy by promoting the use of renewable energy
while fairly dispatching grid power among the data centers.

(a) Power load rate evaluation (b) Carbon emission evaluation

Figure 5: Performance of our game in terms of carbon emis-
sions and power load rate

6. CONCLUSION
In this paper, we consider renewable energy for power

allocation in cloud data centers. We formulate the main grid
power dispatching to cloud data centers as a non-cooperative
game, then we calculate the optimal quantity of power to be
delivered to each data center. Experimental results showed
that our game approach assigns power to data centers in a
fair way according to their different metrics. In order to val-
idate our proposal, we compared it with an existing power
minimization approach, and found that our game scheme is
more effective in terms of power load rate with a percent-
age of 31.2% and greatly reduces carbon dioxide emissions.
In addition, we prove the fairness of our power allocation
scheme using Jain’s fairness index.
This work can be improved by considering the security side
of our data centers agents for communicating biased param-
eters.
Furthermore, for futurework, we aim at considering dynamic
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pricing in a smart grid - cloud architecture. We intend to deal
with client requests dispatching issue by minimizing energy
cost of cloud data centers while considering the client secu-
rity requirements.
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