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Abstract. Computational fluid dynamics (CFD) is often applied to the study of combustion, enabling to optimize the
process and control the emission of pollutants. This numerical methodology enables the analysis of different flame prop-
erties, such as the components of velocity, temperature, and mass fractions of chemical species. However, reproducing the
behavior observed in engineering problems requires a high computational cost associated with memory and simulation
time. Reduced order model (ROM) is a machine learning technique that has been applied to several engineering applica-
tions, aiming to develop models for complex systems with reduced computational cost. In this way, a high-fidelity model
of complex systems is created from available data to learn its behavior and its main characteristics. In this work, different
ROMs are created using CFD simulation data. The CFD model solves the mass, species, energy, and momentum conser-
vation equations for a methane/air laminar diffusion flame, stabilized on the Gülder burner. Chemistry is modeled using
a 19-species skeletal chemical kinetic mechanism. The static reduced order model uses the singular value decomposition
(SVD) algorithm to decompose the CFD data and obtain the system’s modes. Then, genetic aggregation response surface
interpolation is applied on the higher SVD modes, creating the static ROM. This work analyzes the effect of different data
preprocessing approaches on the ROM. The first analysis is the impact of reducing the number of learning data points,
showing that this decrease does not directly impact the energy of the SVD modes, but, in the reconstruction field is possible
to notice a degradation of the reconstruction. The second analysis is related to the effect of creating a ROM for each un-
coupled flame property or treating the properties as a coupled system. The results of the coupled and uncoupled reduced
order models are quite similar in terms of properties field reconstruction. However, in the energy analysis the coupled
ROM converges rapidly, similarly to the uncoupled temperature ROM, while the uncoupled chemical species ROMs have
a slower convergence.

Keywords: machine learning, computational fluid dynamics, diffusion flames, methane/air combustion

1. INTRODUCTION

Computational fluid dynamics (CFD) is widely used to analyze complex flow problems that are of interest to industry,
such as combustion processes, because it enables the analysis of different flow properties. However, the high-fidelity
calculation of engineering problems requires a significant computational burden associated with the simulation time and
demanded memory (Kieckhefen et al., 2020). Reduced order model (ROM) is a technique that aims to represent high-
dimensional systems in a low-dimensional model, without compromise the accuracy and the efficiency of the model
(Brunton et al., 2020; An et al., 2020). To construct a reduced model it is necessary to, first, collect a set of data from a
system, where the variable parameters are the inputs of the model, then apply a reduction method and a machine learning
algorithm (Da Costa Ramos et al., 2020). In the particular situations of combustion process, this input variable parameter
might be an initial condition or a source term, any parameter that characterizes a property of the flow.

Regarding the data used in the learning process, machine learning approaches can be divided into two groups, online
and offline. Online models learn the characteristics of the system at the same time the data is being collected, e.g., neural
networks applied to image recognition (LeCun et al., 2015). Another example of this application is given by Pyta and
Abel (2017), which estimated the eddy viscosity using an online identification, enabling the adaption of the reduced order
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model to the changes in the flow configuration. On the contrary, offline models learn the behavior based on previously
collected data, using a decomposition algorithm to represent the sample data in reduced form, and an integration method
to predict the result. For instance, Xiao et al. (2015) created a non-intrusive ROM of the Navier-Stokes equations of a
flow passing a cylinder using a offline data collection.

Concerning the combustion process, machine learning techniques applications have been used for over a decade, as
highlighted in the reviews of (Kalogirou, 2003; Ananthkrishnan et al., 2005). Chakravarthy et al. (2015) built a reduced
order model using CFD simulations for oxy-coal combustion. Where was possible to quickly estimate the average outlet
temperature of the burned gases for a given fuel and oxidant mass flow rates. And also determine the inlet mass flow rate
to obtain the desired temperature. Wang et al. (2019) proposed a non-intrusive reduced order model using the POD-NN
method, which combines the POD decomposition with a feed-forward neural network to construct a reduced order model
to an unstable flow. Also using a non-intrusive methodology, Aversano et al. (2021)created a digital twin of a furnace
was created, using CFD simulations and real-time measurements of an industrial system using the proper orthogonal
decomposition and the Kriging method to find a response surface to an unexplored operation condition.

In this work, reduced-order models are constructed using CFD data of non premixed methane/air laminar flames,
where the fuel inlet velocity is the variable input parameter. The objective is to analyze the influence of preprocessing
the learning data on the results obtained by ROM. The first analysis is the influence of decreasing the amount of data
provided to create the reduced model, comparing these results with those obtained by Junqueira et al. (2020). The second
is the effect of building a ROM using the properties as a coupled system, i.e., using all the flow and combustion properties
together as one only, instead of creating different models for each property as is done by Da Costa Ramos et al. (2020).

The combustion process is a multi-scale physics, which means that different processes occur at time scales spanning
several orders of magnitude. Due to the diffusion present in flames, these time scales manifest as length scales (Law,
2006). However, the modeling of turbulent flames employing the methods developed for non-reacting turbulent flows
ignores also this multi-scale nature of combustion by treating turbulence as a single-scale problem (Peters, 2009). This is
why this work studies laminar flames, even though turbulent flames are more relevant to practical combustion processes.
It is expected that a problem with multiple time and length scales will increase the complexity of the learning process.

The structure of this manuscript is as follows. First, the numerical model used to calculate the reactive flow is pre-
sented, outlining the hypothesis, chemical model, computational domain, boundary condition, solution methods, and
mesh. Then, the steps to construct the reduced order model and the different ROM studied are given. Finally, the CFD
and the ROM methodology results are discussed.

2. METHODOLOGY

In this section is presented the procedure used to model a non premixed flames, and the steps to construct reduced
order model are described.

2.1 Computational fluid dynamics

The modeling of reactive flow involves the conservation of total mass, individual species, energy and momentum (Law,
2006), under the hypotheses of steady state, incompressible flow, ideal gas in the absence of gravity effects. The chemical
reactions in methane/air flames, time scales are accounted for by using a skeletal mechanism (DRM19), a reduced kinetic
based on GRI-Mech 1.2, to describe this mixture chemical pathways. This model contains 19 species plus N2 and Ar and
83 chemical reactions (Kazakov and Frenklach, 1984). Such mechanism was used to calculate a premixed methane/air
flames in heated tubes and the Sandia flames (Gauthier et al., 2012; Labahn et al., 2017). The species transport equations
considers the Soret thermal diffusion effect and the diffusion energy source. The mixture properties are considered
incompressible ideal gas for the density; mixing law is applied for the specific heat; ideal gas mixing law for thermal
conductivity, viscosity; and kinetic theory for the mass diffusivity and the thermal diffusion coefficient.

The finite volume numerical model of the laminar non premixed flame stabilized on the Gülder burner (De Castro and
Figueira da Silva, 2019) was created using the Ansys software Fluent 2019 R3 (Junqueira et al., 2020). So, it is important
to define, first, the geometry and the mesh. Then, is outlined the numerical simulation setup, such as the boundary
conditions and the calculation methods.

The studied Gülder burner presents an axial symmetry flow and it has two inlets, as shown in Fig. 1 (Jerez et al.,
2019). The air enters through an annular region with a radius of 50 mm, and the fuel enters through the central tube,
which the diameter is 11 mm. Since the studied flame is axisymmetric, a two dimensional geometry is used. The domain
is divided into two parts allowing different mesh refinements along the domain. The internal part (A) is composed of the
central tube, where there is only fuel flow, and the estimated mixture region, where the chemical reactions are supposed to
occur. The external part (B) includes only the air entrance and the outlet, in other words, only air and burned gases flows.

Regarding the boundary conditions, Fig. 1 presents a schematic domain of the boundary conditions using different col-
ors to represent them. The axis of symmetry is the 160 mm yellow line; the four grey lines are the walls, the outlet and the
two inlets are represented by the red line and the blue lines, respectively. There are two category of walls in this domain;
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Figure 1: Representation of the Gülder
burner domain and its dimensions. (A): in-
ternal part, (B): external part.

the burner wall, which has an adiabatic and a no-slip condition, and the one
representing the outer boundary, which has a slip and constant temperature
condition. The walls between the burner inlets are denominated as burner
walls, and the free boundary is the external right boundary, with a length of
150 mm. Concerning the inlets, it is specified the species molar fraction, the
inlet velocity and temperature. Following (Junqueira et al., 2020), the air
prescribed inlet velocity is uniform, va,i = 60 cm/s and the fuel prescribed
inlet velocity (vf,i) is uniform and varies between 1.75 and 4.38 cm/s. In this
work, the air is composed by 21% O2 and 79% N2 and the fuel is methane.
Air and fuel have prescribed temperature and pressure of 300 K and 1 atm,
respectively.

This multi-scale problem uses the following solution methods: coupled
for the pressure-velocity coupling, Presto for the spatial discretization of
pressure, and the second order upwind to calculate the spatial discretization
of energy, species and momentum. The method used to calculate the reac-
tion rate of the species transport equation is the stiff chemistry solver with
the ISAT table as integration method and with an error tolerance of 10−4.

To properly describe the chemical reaction length scales, a refined mesh
is necessary, and this is one of the reasons why the domain is divided into
two parts. Therefore, to reduce the computational burden, it is adopted dif-
ferent mesh size along the domain and a mesh adaptation is applied. Since
the internal part (A) is the estimated reactive zone, it has a more refined
mesh. The external part (B) has a uniform mesh with a size of 1 mm. The
internal part has a rectangular mesh, with a size of 100 µm and 1 mm in the
radial and axial directions, respectively. Mesh adaptation is used to refine
the mesh in specific regions. In this work, a gradient mesh adaptation based
on the temperature with a refinement and coarsening thresholds of 10 K/m
and 300 K/m, respectively. The mesh adaptation tool is applied every 25 it-
erations, and in the end a mesh of 93,168 nodes is obtained, 81501 nodes more than the original mesh.

2.2 Reduced order model

Reduced order model (ROM) is a machine learning technique that enables to decrease the computational cost of
describing complex systems of high dimension, preserving the main characteristics associated to it, while controlling the
accuracy and efficiency of the model (Brunton et al., 2020). This technique has been applied to different engineering
problems (Zhao, 2021; Aversano et al., 2021). In this work, the software Static ROM from Twin Builder is used to
construct the reduced order models.

The construction of the ROM begins with the division of the sample data into two groups; the learning data, which
is used to build the model, and the validation data, used to assess the error. Typically 60% of the dataset is used as
learning data, and the remaining 40% as validation data. The division of the dataset is done randomly, however, to avoid
extrapolation of the reduced model, the parametric variable limits must be included among the learning data. Note that
the data set consists of different cases, where each case contains the values of a computed property as a function of the
variable property.

After setting the learning and the validation data, the learning data is organized into a matrix, where the number of
columns equals the number of cases, and the number of rows equals the number of mesh points in the CFD simulation.
The singular value decomposition (SVD) algorithm is used to decompose this matrix (Trefethen, 1997). Then, the first
singular modes are retained, as these contain the most important characteristics of the system, and thus this is the reduced
base of the learning data that describes the complex system.

The last step of the ROM is the interpolation of the modes. The interpolation method used is the Genetic Aggrega-
tion Response Surface (GARS) which is a meta model constructed using four different integration methods; polynomial
regression, Kriging, support vector regression and moving least squares (Ostertagová, 2012; Kaymaz, 2005; Smola and
Schölkopf, 2004; Lancaster and Salkauskas, 1981; ANSYS, 2020). The GARS uses a selection process to determine the
combination of response surface (RS) that best describes the system (Viana et al., 2009; Ben Salem et al., 2017). Ben
Salem and Tomaso (2018) proposed a surrogate model selection algorithm based on the Genetic Aggregation using a
penalized predictive score (PPS), i.e.
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Âm(x) =

m∑
l=1

ωlŝ
(l)(x), (1)

where, Âm represents the aggregation of the m surrogates models (ŝ) weighed by ωl, which is calculated using the
PPS method (Ben Salem and Tomaso, 2018). The genetic aggregation algorithm is applied in the reduced base to create a
model that describes the behavior of the system for an arbitrary value of the variable parameter. Then, the prediction of
the validation data is performed.

2.3 ROM construction specifics

Here, the nomenclature chosen to classify the reduced order models studied summarizes the main information about
the learning data. It states the number of learning cases, the number of modes used, and whether the ROM has uncoupled
or coupled combustion properties.

ROM
(c|w|p)
(i,j) , (2)

the subscript (i, j) refers to the number of learning cases and the number of modes, respectively; and the superscript
(c|w|p) refers to the data. For instance, if the combustion properties are treated as uncoupled (u) or coupled (c), if any
normalization is applied (n) or not (w), and the specific property studied for example: vx and vy for the axial and radial
velocity or T for the temperature. In the case of the coupled ROM, different nomenclature is used (pc, ps). Meaning that
first is presented the properties that are coupled, and then the property of interest.

Since the amount of data is related to the accuracy of the model, the first analysis focus on the effect of the quantity
of data (i) on the learning set. To this end, two ROM are created, with the same number of modes (j). The second
effect studied is the properties coupling. Indeed, the properties of the flame are closely coupled via the chemical reaction.
Since the non-premixed flame studied is multi-scale, normalization of temperature and the velocity components effects
are investigated.

T ∗ =
T (k)− T0
Tad − T0

, u∗ =
u(k)

umax
, umax = u0

Tad
T0

(3)

Where T ∗ and u∗ are the normalized temperature, and the normalized velocity component; T0 is the temperature of
fresh gas, 300 K; Tad is the adiabatic flame temperature of stoichiometric methane/air mixtures, 2236 K, and u0 is the
air inlet velocity, 60 cm/s. It is interesting to highlight that it is possible to estimate the temperature and velocity bounds
in the reactive case. Indeed, the reference temperature in the chemical equilibrium (Tad) and the velocity are known
beforehand. However, each chemical species concentration is unknown a priory, so it is more complicated to estimate a
reference. Thus, to understand the influence of normalization, a reduced order model using the properties coupled without
the normalization and with the normalization of temperature and velocity are studied.

3. RESULTS AND DISCUSSION

This section presents and analyzes the results obtained through the computational fluids dynamics and reduced order
model. First is presented the flame structure for the lower and higher fuel inlet velocities studied. Then, the influence of
decreasing the number of learning data and the effects of coupling the properties to create the ROM is analyzed.

3.1 Flame structure

In order to discuss the flame structure and the influence of the prescribed fuel inlet velocity, Fig. 2 shows a qualitative
comparison of the classic flame structure at the extremes of the studied velocity range. The first figures (2a, 2b and 2c)
present the velocity components and the temperature, whereas the remaining figures (2d, 2f and 2e) reproduce the mass
fraction field of three chemical species characteristic of the methane/air combustion, i.e., OH, CH2 and CO. The axial and
radial components of the velocity field are shown in Figs. 2a and 2b, respectively. Note that, along the flame, the axial
component of the velocity increases as it gets further from the fuel tube exit. This behavior is explained by the increasing
temperature, which affects the density within the reaction zone, and by the conservation of the total mass equation and
the hypothesis of ideal gas: as the temperature increases the velocity increases. As for the radial component, most of the
domain, fuel inlet tube and the regions far from the flame front, have zero velocity for both cases as expected. However,
when comparing the two cases, the region of positive radial velocity is larger for the case of vf,i = 4.38 cm/s.



26th ABCM International Congress of Mechanical Engineering (COBEM 2021)
November 22-26, 2021, Florianópolis, SC, Brazil

The temperature profile, Fig. 2c, shows the high temperature region, i.e., the flame region. The maximum temperature
is 2, 138 K for the slowest fuel inlet velocity, and for the largest velocity is 2, 153 K, both are close to the adiabatic flame
temperature for methane (2, 236 K). Downstream the maximum temperature, the usual temperature decrease is observed
along the y axis, due to the combustion products mixture with air, which is at 300 K. As expected, the velocity has a
significant influence on the flame, and this is seen in the temperature profiles; as the fuel input velocity increases, the
flame becomes longer. It is worth noticing that, for the lowest fuel velocity case, there is a region within the fuel tube that
has a temperature greater than 300 K, which causes the preheating of fuel.

Figures 2d, 2e and 2f show the mass fraction fields of the chemical species: hydroxyl (OH), carbon monoxide (CO)
and methylene (CH2), respectively. The position and shape of the flame are often estimated using the OH mass fraction
profile. The highest concentration of OH is present near the tube walls for both inlet velocity values. However, for the
higher fuel velocity, the region of maximum OH concentration and the flame height are longer. Carbon monoxide is
present within the flame region also, and for the case of lower fuel velocity CO is found within the fuel inlet tube. This
is associated to the increase in fuel temperature inside the tube, seen in Fig. 2c, which is related to the shorter flame
length due to the smaller fuel flow rate. It is worth to stress that for the higher velocity case, the region of maximum
concentration of this chemical species is wider than the region found for the lower fuel velocity case.

Examining the mass fraction field of CH2, Fig. 2e, it is observed that the concentration of this species is of the order of
10 ppm and that the concentration region of CH2 is quite narrow (approximately 0.5 mm). It is important to highlight that
this species is the one with the thinnest scale, since it is quickly created and consumed inside the reactive region, and this
is an effective indicator of the flame front (Da Costa Ramos et al., 2020). The maximum concentration is located near the
burner wall, and for the lowest fuel inlet velocity case is 29 ppm. This property was used as the convergence parameter,
i.e., when the field of the mass fraction of CH2 stops varying, all other variables are assumed as converged.

It should be stressed that each CFD computation required around 15 days to reach convergence, using 18 cores of a 24
CPU in a computer with 32 GB of memory using windows 10.

(a) Axial velocity compo-
nent ∈ (0, 67.7) [cm/s].

(b) Radial velocity component ∈
(−17.2, 17.2) [cm/s].

(c) Temperature
∈ (300, 2158) [K].

(d) OH mass fraction
∈ (0, 3.89e− 3).

(e) CH2 mass
fraction∈ (0, 2.67e− 5).

(f) CO mass fraction
∈ (0, 5.11e− 2).

Figure 2: Comparison of the flame structures obtained with CFD for the lower, vf,i = 1.75 cm/s, (left) and higher,
vf,i = 4.38 cm/s, (right) prescribed fuel inlet velocity. The color map goes from blue (minimum) to red (maximum).
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3.2 Number of learning cases influence

Since each CFD computation is time consuming, but the ROM generation typically requires 1 minute only, the first
analysis performed concerns the number of learning cases that influence the ROM features. To this end, first, is ana-
lyzed for the uncoupled properties ROM, without resorting to normalization, the energy distribution in each of the SVD
modes for two reduced order models, one using 4 learning cases

(
ROM

(u|w|p)
(4,3)

)
, and the other, using 12 learning cases(

ROM
(u|w|p)
(12,3)

)
. Then, a comparison of the results obtained through CFD and the reduced order models, via a qualitative

analysis, of six properties: axial and radial velocity components; temperature; OH, CH2 and CO mass fraction.
Therefore, the energy required to reconstruct the decomposed matrix can be characterized by the singular values.

Figure 3 shows the singular values normalized by their sum as a function of the number of modes for each property
analyzed in this work. As expected from the SVD theory, all the flame properties have the same behavior, the highest
amount of energy is located in the first mode, and then this energy decreases as the number of modes increases. Further
more, the energy distribution for ROM (u|w|p)

(4,3) and ROM (u|w|p)
(12,3) are similar, and the number of learning cases exerts a

small influence on the energy for a given the number of modes. Indeed, for the components of velocity and the temperature,
the first mode has more than 80% of energy, and the second mode decreases to less than 15%. In contrast, for the species,
the first modes has less than 60% of energy, and the second and third modes has energy around 20% and 10%, respectively.
So, it is easier for the ROM to learn the behavior of the temperature and velocity components than the chemical species,
since its first modes contains more information. It is important to notice that, with the notable exception of the ROM for
the CH2 mass fraction, the fourth mode contains less than 10% of energy for all species.

Figure 3: Singular values normalized by the sum × number of modes. Filled symbols: ROM using 4 learning cases; non-
filled symbols: ROM using 12 learning cases. 5: temperature; ?: axial velocity component; ◦: radial velocity component;
�: OH mass fraction; �: CH2 mass fraction;4: CO mass fraction.

To characterize the influence of decreasing the number of cases used to learn the model, Fig. 4 exhibits a qualitative
comparison of the computational fluids dynamics results (a, d, g, j, m and p), the reduced order models with 12 learning
cases (b, e, h, k, n and q) and with 4 learning cases (c, f, i, l, o and r). It is noticed that the results for the axial and
radial components are quite similar for both reduced order models. The axial velocity (Fig. 4a, 4b and 4c) presents a
slower velocity inside the fuel inlet tube and a higher velocity near the external wall and the air inlet. However, for the
ROM

(u|w|vx)
(4,3) (Fig. 4c) a region with a velocity higher than 67.7 cm/s is observed in white. On the other hand, the radial

velocity (Fig. 4d, 4e and 4f) profiles are almost identical, in particular, both results present most of the domain with zero
velocity, a positive area near the fuel outlet and a small negative area in the air region.

Concerning the temperature fields (Fig. 4g, 4h and 4i) ROM (u|w|T )
(4,3) exhibits a region of maximum temperature that

is smaller than that calculated with CFD and, also, the predicted by the ROM (u|w|T )
(12,3) . Indeed, the maximum temperature
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predicted by theROM (u|w|T )
(12,3) is 2091 K, and for theROM (u|w|T )

(4,3) 2016 K, which correspond to errors of 50 K and 125 K,
respectively, when compared with the CFD calculated maximum temperature (2141 K).

(a) CFD vx. (b)
ROM

(u|w|vx)

(12,3) .
(c)
ROM

(u|w|vx)

(4,3) .
(d) CFD vy . (e)

ROM
(u|w|vy)
(12,3) .

(f)
ROM

(u|w|vy)
(4,3) .

(g) CFD T (h)
ROM

(u|w|T )

(12,3) .
(i)
ROM

(u|w|T )

(4,3) .
(j) CFD OH. (k)

ROM
(u|w|OH)

(12,3) .
(l)
ROM

(u|w|OH)

(4,3) .

(m) CFD
CH2.

(n)
ROM

(u|w|CH2)

(12,3) .
(o)
ROM

(u|w|CH2)

(4,3) .
(p) CFD CO. (q)

ROM
(u|w|CO)

(12,3) .
(r)
ROM

(u|w|CO)

(4,3) .

Figure 4: Comparison of the results obtained with computational fluid dynamics (CFD), and reduced order model using
12 learning cases

(
ROM

(u|w|p)
(12,3)

)
and 4 learning cases

(
ROM

(u|w|p)
(4,3)

)
, for the validation case with prescribed fuel inlet

velocity of vf,i = 2.11 cm/s. The axial component of the velocity (a,b and c) varies between 0 to 64.6 cm/s; the radial
component of velocity (d, e and f) varies (−16, 16) cm/s; the temperature (g, h and i) varies between (300, 2, 141) K. The
OH mass fraction (j, k and l) varies between 0 to 3.71 · 10−3; the CH2 mass fraction (m, n and o) varies [0, 2.83 · 10−5];
the CO mass fraction (p, q and r) varies between [0, 5.1 · 10−2]. The color map goes from blue (minimum) to red
(maximum). The fuel inlet is located in the bottom right side, and in the left side is the air inlet.

The OH mass fraction (Fig. 4j, 4k and 4l) results also show that upon increasing the number of learning cases, the re-
construction error decreases, and thus the description of the flame front improves fromROM

(u|w|OH)
(4,3) toROM (u|w|OH)

(12,3) ,

becoming more similar to the CFD result. Thus, it is possible to notice that in theROM (u|w|OH)
(12,3) , the OH mass fraction is

not as spread as theROM (u|w|OH)
(4,3) result. Another important aspect is that the ROM results exhibit a region with negative

mass fraction, but with different order of magnitude, i.e., for the ROM (u|w|OH)
(4,3) the minimum value is−6 · 10−5 whereas
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for the ROM (u|w|OH)
(12,3) it is −3 · 10−13.

The reconstructed CH2 mass fraction fields also present regions with negative values in both ROM results as may be
seen in Fig. 4n and 4o. Furthermore, in accordance with the CFD result, the ROM (u|w|CH2)

(12,3) has a longer profile and a
less spread than the reduced order model with 4 learning cases. Regarding the maximum mass fraction, both ROM led
to values smaller than the calculated with CFD

(
2.83 · 10−5

)
, 2.54 · 10−5 and 2.03 · 10−5 for the ROM (u|w|CH2)

(12,3) and

ROM
(u|w|CH2)
(4,3) , respectively.

Concerning now the mass fraction of CO, depicted at Figs. 4p, 4q and 4r, it is seen that the maximum concentration
region is smaller for ROM (u|w|CO)

(4,3) than the CFD field, but both ROMs show a longer CO region than that calculated

by CFD, in particular downstream the flame front. Furthermore, for ROM (u|w|CO)
(12,3) , the maximum CO concentration is

0.0516, whereas the CFD value is 0.0510. It is worth noting that both reconstruction exhibit a negative mass fraction
region in the domain, but ROM (u|w|CO)

(12,3) presents smaller regions.

3.3 Coupled properties

The results discussed in the preceding section establish that 12 learning cases and three modes lead to a ROM that
better describe the CFD data when the properties are reconstructed as uncoupled fields. In order to assess the effect of
coupling, the comparison of the energy for the reduced order model with the properties treated uncoupled

(
ROM

(u|w|p)
(12,5)

)
and treated as coupled

(
ROM

(c|w/n|all)
(12,5)

)
is given in Fig. 5. This figure depicts two cases of coupled properties, one

without normalization (w), and the other with temperature and velocity normalized using Eq. 3. The results show that
the energy required to reconstruct the ROM using the properties coupled without a normalization is similar to that of
the temperature ROM. This occurs because the singular values are controlled by the higher absolute value property, in
this case, the temperature. Despite the normalization, the energy content is similar to that required to reconstruct the
temperature. A possible reason for that is the fact that some species have small concentrations, such as CH2 or OH, which
vary between the order of magnitude (1 · 10−6, 1 · 10−3) whereas the temperature varies between (0, 1).

Figure 5: Singular value normalized by the sum× number of modes. 5: temperature; �: OH mass fraction;×: Properties
treated as coupled, without normalization; +: Properties treated as coupled, with temperature and velocity components
normalized.

The three reduced order model compared here are reconstructed using five modes and 12 learning cases. Since the
number of modes is chosen based on the energy (Fig. 5), and after the sixth mode, the energy varies very slightly,
each mode having a value smaller than 0.1%. Due to that, the energy does not decrease more, and then, five modes is
considered as the optimum number of modes to reconstruct the problem. The first is the uncoupled ROM, where the
data of one property is used separately to reconstruct the model

(
ROM

(u|w|p)
(12,5)

)
. The other ROM uses the 22 properties
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coupled (temperature, velocity components, and 19 chemical species).

(a)
ROM

(u|w|vx)

(12,5) .
(b)
ROM

(c|w|all,vx)

(12,5) .
(c)
ROM

(c|n|all,vx)

(12,5) .
(d)
ROM

(u|w|all,vy)
(12,5) .

(e)
ROM

(c|w|all,vy)
(12,5) .

(f)
ROM

(c|n|all,vy)
(12,5) .

(g)
ROM

(u|w|T )

(12,5) .
(h)
ROM

(c|w|all,T )

(12,5) .
(i)
ROM

(c|n|all,T )

(12,5) .
(j)
ROM

(u|w|OH)

(12,5) .
(k)
ROM

(c|w|all,OH)

(12,5) .
(l)
ROM

(c|n|all,OH)

(12,5) .

(m)
ROM

(u|w|CH2)

(12,5) .
(n)
ROM

(c|w|all,CH2)

(12,5) .
(o)
ROM

(c|n|all,CH2)

(12,5) .
(p)
ROM

(u|w|all,CO)

(12,5) .
(q)
ROM

(c|w|all,CO)

(12,5) .
(r)
ROM

(c|n|all)
(12,5) .

Figure 6: Comparison of the results obtained with reduced order model using 5 modes for the properties treated uncoupled(
ROM

(u|w|p)
(12,5)

)
, coupled without normalization

(
ROM

(c|w|all)
(12,5)

)
and coupled with the temperature and components of

velocity normalized
(
ROM

(c|n|all)
(12,5)

)
; for the validation case with prescribed fuel inlet velocity of vf,i = 2.11 cm/s. The

axial component of the velocity (a,b and c) varies between 0 to 64.6 cm/s; the radial component of velocity (d, e and f)
varies (−16, 16) cm/s; the temperature (g, h and i) varies between (300, 2, 141) K. The OH mass fraction (j, k and l)
varies between 0 to 3.71 · 10−3; the CH2 mass fraction (m, n and o) varies [0, 2.83 · 10−5]; the CO mass fraction (p,
q and r) varies between [0, 5.1 · 10−2]. The color map goes from blue (minimum) to red (maximum). The fuel inlet is
located in the bottom right side, and in the left side is the air inlet.

Explaining first the axial and radial velocity components, given in Fig. 6a−6f the ROM results are similar, and with
the same maximum for the axial velocity, 67.7 cm/s. It is also interesting to observe that ROM (u|w|p)

(12,5) and ROM (u|w|p)
(4,3)

(Fig. 6a and 4b; Fig. 6d and 4e) results are also very similar, which means that decreasing the number of modes does not
significantly influences the reconstructed velocity components. The reconstructed temperature, with the properties cou-
pled, normalized or non-normalized are nearly identical exhibiting the same maximum temperature (2,148 K). However,
the normalized ROM result (Fig. 6i) presents a small white area, which means that the temperature is slightly smaller
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than 300 K. Comparing these results, the ROM (u|w|T )
(12,3) , Fig. 4h, and the CFD result (Fig. 2c) shows that the maximum

temperature is closer to that calculated by CFD than that predicted by the ROM with 3 modes, but it slightly exceeds 7 K
of the one calculated.

Regarding the species OH, CH2 and CO mass fraction (Fig. 6j−6r), all the results forROM (u|w|s)
(12,5) andROM (c|w/n|all,s)

(12,5)
resemble each other quite closely, with the maximum concentration varying very slightly between them. It is remarkable
that forROM (c|w/n|all,OH)

(12,5) (Figs. 6k and 6l) the OH mass fraction is a little more defined, less spread out near the axis of
symmetry, in addition to having a smaller region of a negative mass fraction. The CH2 mass fraction, on the other hand,
is a little longer for the ROMs with 5 modes than the ROM using 12 learning cases and 3 modes. Although the length of
the CH2 mass fraction for these ROMs is close to the CFD field calculated, the region of maximum concentration is still
much smaller. However, for the carbon monoxide the opposite happens, and for ROM (u|w|CO)

(12,5) , the CO concentration is
a little larger than the coupled ROMs.

Comparing the maximum mass fractions value with those calculated by CFD, the predictions made by ROM (u|w|p)
(12,5)

and ROM (c|w/n|p)
(12,5) are slightly larger than the calculated ones for OH and CO. For example, the mass fraction found for

CO is 0.053, whereas the calculated by CFD is 0.051. Furthermore, the maximum CH2 mass fraction predicted by ROMs
is a little lower than the calculated one, 2.8 · 10−5.

Regarding the effect of increasing number of modes, ROM (u|w|p)
(12,3) (Fig. 4) and ROM (u|w|p)

(12,5) (Fig. 6), the results
for the chemical species are more similar to those calculated by CFD, e.g., in the particular case of OH, the flame front
is less spread out and the region of maximum concentration is longer when the ROM uses 5 modes to reconstruct the
field. Another example of this effect is the CH2 reconstruction, wherewith the uncoupled ROM using five modes has the
description of the flame front longer than the ROM with 3 modes; and the CO field, where the maximum concentration is
closer to the calculated by CFD, and also, the region of maximum concentration is longer when compared with the ROM
using fewer modes.

All the reduced order models studied here present a white region indicating the presence of negative values for species
properties, the only exception is the ROM (u|w|OH)

(12,3) , which has a zero minimum value. It is also noticed that for the CH2

reconstruction fields these white areas are more dispersed and without a pattern than the OH or CO reconstructions. And
this might be caused by the typical CH2 profile, that is, a species with a very narrow concentration field and only present
around the flame anchoring region when compared to the others species. In addition to being a minority species in the
process, i.e. with a mass concentration on the order of magnitude of ·10−5.

4. CONCLUSIONS

In this section, the conclusion of the different reduced order models of a laminar diffusion flame are presented.

• The analysis of the amount of data available to construct the reduced order model shows that the number of learning
cases has low influence in the energy required. However, the properties reconstruction, mainly the species, show a
slight loss, but still preserve the main characteristics.

• It is easier to reproduce the temperature and velocity components than the chemical species, since the first mode
has a energy higher than 80%.

• Although the coupling of the properties converges rapidly in the analysis of the energy as a function of the number
of modes, e.g., after 3 modes the energy of each mode becomes smaller, less than 0.6%, the results obtained for
the chemical species still show error in the description of the flame front, the maximum value and negative mass
fraction.

• The normalization of temperature and velocity has little influence on the energy curve, staying very close to the
ROM curve without normalization. While the curves of the chemical species have a slightly different behavior, they
do not converge as fast. Which may indicate that only the proposed normalization may be insufficient, since some
minority species are of the order of magnitude of 10−6.

• The majority of the reduced order models constructed present some region with negative mass fraction, which is
not physically possible. This indicates that the interpolation methods do not preserve the monotonicity, which is
paramount for combustion modelling.
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