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Abstract Epithelia, which consists of cell sheets lying on a substrate, are prevalent structures
of multicellular organisms. The physical basis of epithelial morphogenesis has been intensely
investigated in recent years. However, as 2D mechanics focused most attention, we still lack a
rigorous description of how the mechanical interactions between the cell layer and its substrate
can lead to 3D distortions. This work provides a complete description of epithelial mechanics
using the most straightforward model of an epithelium: a thin elastic bilayer. We first provide
experimental evidence in Drosophila tissues that localized alterations of the cell substrate (the
extracellular matrix) can lead to profound 3D shape changes in epithelia. We then develop
an analytical model modifying the Föppl–von Kármán equation with growth for bilayers.
We provide a complete description of all contributions from biophysical characteristics of
epithelia. We show how any localized inhomogeneity of stiffness or thickness drastically
changes the bending process when the two layers grow differently. Comparison with finite
element simulations and experiments performed on Drosophila wing imaginal discs validates
this approach for thin epithelia

1 Introduction

Biological cell assemblies are often organized in laminar structures called epithelia. Epithelia
cover most of our hollow organs, such as the esophagus [1], intestine [2,3], and stomach.
The skin is also an epithelium constituted of several cell layers. The structure of epithelia is
of one or several attached cell layers, which rest on a more disorganized polymeric substrate,
called the extra-cellular matrix (ECM). Even the simplest epithelium, constituted of a single
cell layer, must rest on an abutting ECM layer.
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In the past decade, a lot of emphasis has been put on the role of the cytoskeletal cortex on the
apical side of the cells (the side away from the ECM layer) in setting mechanical properties of
epithelia [4]. However, recent investigations have established that the mechanical properties
of the ECM may be as important in setting the shape of a tissue [5]. Both the cell layer and
the ECM must be taken into account in the mechanical description of epithelia.

From the biomechanical viewpoint, an epithelium may be viewed as a bilayer made of two
different soft materials with different stiffnesses and different ways to grow: the cell layer
grows by mass increase and proliferation, while the ECM grows by the addition of polymer
chains and swelling. A bilayer can also serve as a suitable approximation for more complex
geometries, such as the multilayered skin, subdivided into the dermis and the epidermis. In
between layers of cells or in between cells and connective tissues, the ECM may develop into
a stiff membrane enriched in collagen filaments called the basal membrane [6]. Epithelial
cells may also have a reinforced cortex at their basal side, increasing the interfacial stiffness
[7,8]. A more realistic mechanical view of epithelia would thus be that of a bilayer with the
addition of stiff interfaces originating from the ECM or the cytoskeleton.

When one layer is a very soft substrate, several studies have attempted to deal with
such bilayered systems [9–14] by treating the soft layer as an elastic foundation or as an
ad hoc resistance potential [10,11]. These models become essentially single-layered and
cannot account for the diversity of behavior of two-layered systems where the two layers
play similar roles and have similar properties. We aim here to present a simple mechanical
model of thin bilayers using the Föppl–von Kármán equations (FvK) with growth. In the
context of a thin plate hypothesis, the FvK equations allow a 3D to 2D reduction, which
considerably simplifies the analytical treatment of plate mechanics. The FvK equations are
thus well adapted to incorporate many different biological features of layered tissues, which
are difficult to handle analytically in a fully three-dimensional formalism. It has recently been
shown that FvK equations with growth allow to explain the buckling of thin objects such as
flowers and algae in a rather simple way [15,16], when compared to the full treatment of finite
elasticity with growth [17]. In addition, a slight modification of these equations allows to treat
initially weakly curved membranes. This prompted us to use the same approach for a bilayer
with growth. When modeling a single-layered epithelium, the two layers of the model are
the ECM and the cells, while the interfacial stiffness represents the basal cytoskeletal cortex
of cells (left inset in Fig. 1). When modeling a more complex system, such as the skin, one
layer of the model represents the cell layers of the epidermis, the second layer is the dermis
(a connective tissue) and the interfacial stiffness represents the extra-cellular basal lamina
(right inset in Fig. 1), see reference [6]. Our model can account for local variations in the
stiffness or in the thickness of the layers as well as interfacial stiffnesses. Such variations are
often present in biological tissues and are thought to be shape generators in morphogenetic
processes. These local variations in mechanical properties can also be induced in the context
of perturbative experiments.

As much as elasto-mechanical processes may drive the shape of epithelia, this shape builds
upon a long and intricate history of growth, stress distribution, and changes in mechanical
properties. On the other hand, our formalism, which uses linear elasticity with moderate
nonlinear elastic strains, can only account for slight shape variations, spanning time intervals
typically smaller than the doubling time of cells within the tissue. To mitigate this problem,
we encapsulate all the previous history of development and morphogenesis in an initial shape
and a pre-stress. This allows confrontation with experiments where the tissue, at the onset
of observation, is rarely in a flat and stressless configuration and where the full history of
development is also inaccessible. We show that the model can treat many aspects of biological
tissues, which are not so common in material sciences. Although the formalism was initially
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Fig. 1 Geometry of the bilayer model. w0(x, y) is the deviation of the initial configuration from a flat surface;
ζ(x, y) is the displacement from this initial configuration as a result of elastic energy minimization under the
action of growth and pre-stress (N0). The schema at bottom represents biological context that can be modeled
by the theory: the two layers can either be cell or ECM layers of different height, Young’s modulus and growth
rate; the stiff interface can be a cytoskeletal cortex or a thin ECM

developed to treat biological growth, it could also serve for the opposite case of resorption,
which could be of interest both in a biological and material science context.

In this paper, we first demonstrate experimentally how alteration of the ECM can substan-
tially impact the shape of an epithelium. For this, we genetically degrade the ECM in a band of
cells in the Drosophila wing imaginal disc—the precursor of the adult wing. Subsequent sec-
tions are devoted to developing an analytical and numerical treatment of a bilayer model. We
aim to account for the experimentally observed distortion of the tissue and provide a general
framework to address the mechanics of growing bilayered tissues at large. Section 3 is devoted
to the geometry of the sample under study and a reminder of the necessary approximations to
incorporate the formalism of finite elasticity with growth into the FvK approach. In Sect. 4,
we give the main equations for a bilayer and an approach of the treatment of the interface. In
Sect. 5, we derive the Euler–Lagrange equations for the elastic bilayer equivalent to the FvK
equations, and we demonstrate the peculiar role of the neutral surface for the bending of the
plate. Its position is derived for arbitrary stiffness and thickness, not necessarily constant, of
the two layers. Section 6 focuses on uniaxial deformations, which simplify the FvK-modified
equations for a bilayer with additive terms at the origin of buckling. In this section, numerical
results illustrate the various cases for pre-stressed plates but also for slightly curved mem-
branes, and the theory is confronted with experimental data. In Sect. 7, results obtained with
finite element simulations achieved in the same context of growth, thickness, stiffness and
defects are presented. Finally, we conclude in Sect. 8 by giving some perspectives.

The model can be adapted to many other biological systems, as epithelia are ubiquitous
in most living species. It could also be used for other thin objects such as leaves or algae.

2 Experimental motivation: biomechanics of Drosophila wing imaginal discs

The Drosophila wing imaginal discs (the precursors of the adult wing) are epithelial tissues
that became, over the years, one of the most studied and best characterized systems to study
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growth [18]. The growing wing imaginal disc displays a highly patterned field of mechanical
stresses [19–21]. Cells at the periphery of the epithelium sustain a strong mechanical stretch.
This pre-stress builds up as the tissue grows. In addition, the tissue becomes curved as
development proceeds, gradually changing from a simple flat surface to a more complex
curved surface.

Until recently, most attention was brought upon the role of the apical surface of the
epithelium in setting its mechanical properties. It was, however, recently demonstrated that
the extracellular matrix upon which the epithelium sits plays a major role in shaping the tissue.
Alterations in the basement membrane composition, which includes collagen IV, laminin,
nidogen, and heparan-sulfate proteoglycans, have profound effects on the shape of the wing
imaginal disc [22]. Alterations of the basement membrane have also been shown to play an
active part in setting the 3D shape of the wing disc by promoting the formation of the folds
that gradually arise in the tissue [23,24]. From these experiments, it now stands that wing
imaginal discs, and most epithelia in general, are two-layered composite structures. Both the
cell layer and the ECM layer take an active part in shaping the tissue [25].

To assess the role of basement membranes in setting mechanical properties of the imaginal
discs, we used Drosophila genetics to express the matrix-cleaving metalloprotease Mmp2 in
a band of cells, located at the center of the wing imaginal disc along the Dpp-Gal4 genetic pat-
tern (Fig. 2a). The genotype of the observed tissues is ubi-cad: GFP UAS-GFP tub-Gal80ts /+;
Dpp-Gal4/UAS-Mmp2. It combines the necessary transgenes to express the metalloprotease
locally and to visualize cells with a cadherin: GFP fusion. The biochemical action of Mmp2
is to degrade structural components of the ECM [26], which, in mechanical terms, implies a
possible change of ECM stiffness as well as the thickness. We cannot rule out also an indirect
effect on the basal cytoskeletal cortex of cells, as an altered ECM in the vicinity of the cell
layer implies a reduced activation of integrin receptors. Our elastic model will need to take
into account these different contributions. The metalloprotease expression is controlled in
time via the thermo-sensitive mutant of Gal80, by switching Drosophila from 18°C to 29°C
24h before observations (Fig. 2b). Such a timing corresponds to approximately 18 hours
of Mmp2 expression since 6 hours are required to reach full Gal4 expression after the tem-
perature switch [27]. To image the imaginal discs, we performed ex vivo cultures of wing
imaginal discs as in [19]. The living tissues were then imaged with a spinning disc confocal
microscope.

Figure 2c shows the cross section of an imaginal disc 18 hours after metalloprotease
expression. The region of perturbation, identified by RFP expression, is shaded in red on the
figure. Figure 2d shows the profile of the apical surface of the epithelium, which has a region
of inflection near the protease expression. This profile (Fig. 2c,d) corresponds to a wing
imaginal disc that was initially flat. Alternatively, Fig. 2d, e shows the same perturbation
outcome on a wing imaginal disc that was initially curved—curvature normally builds up
at late stages of wing disc development (around 80 hours after egg laying). The resulting
tissue is very different from the previous case. This time, the profile shows a more complex
configuration: the naturally occurring curvature is prevalent on the borders of the wing disc;
at the same time, the metalloprotease action in the region of perturbation induces an inversion
of the curvature there.

To conclude, we observed upon ECM degradation (which may impact the stiffness, the
thickness, and the interfacial mechanics) that the epithelium curves in the perturbation region
(Fig. 2h). We observed two archetypal outcomes depending on whether the tissue was initially
flat or curved, which can lead to the inversion of the naturally occurring curvature in the
perturbation region. These experimental observations will be subsequently confronted to our
FvK bilayer model and our finite element simulations (see Figs. 8 and 10).
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Fig. 2 Folding an epithelium by local ECM degradation. a Transmission light imaging of a Drosophila wing
imaginal disc (left) and corresponding sketch with the region of localized expression of the protease Mmp2
shaded in red (right). b To control expression of the metalloprotease, the sample is switched from 18°C to
29 °C several hours before observation. c–f Experimental demonstration. c An xz cross section demonstrates
the shape of an initially flat wing imaginal disc under the effect of a localized metalloprotease expression (in
the red colored region). The schema in d demonstrates the change in shape of the tissue. e, f Same as c, d but
with an initially curved wing imaginal disc. g A schematic representation of the shape changes observed in
the wing imaginal disc

3 Modeling

The geometry of the model is represented in Fig. 1: two layers of different thickness (h f and
hs), stiffness and growth rate, are organized in a bilayer, with an interface which may also
bear a stiffness. The shape of the initial configuration (see explanations in Fig. 1) is given
by w0(x, y), the deviation from the horizontal line; the vertical deflection arising from the
elastic minimization is denoted ζ(x, y). There are no explicit rules about the difference in
stiffness or thickness of the two layers, but they tend to be of the same order of magnitude
for biological systems. While there are also no rules regarding the thin interface layer, it will
only play a role if it is much stiffer. Contrary to inert materials, changes in the shape of the
structure arise from inner processes such as volumetric growth rather than through external
loading, although this latter is not eliminated a priori from the model. The bilayer can model,
with different degrees of accuracy, a single- or a multilayered epithelium.
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A decade ago, Dervaux et al. established the formalism of a growing plate using the
theory of finite elasticity with growth [15,16]. Here, we extend their analysis of a single layer
to a thin bilayer, both layers having different growth rates and different elastic properties but
remaining thin. Indeed, the FvK equations rest on some limitations: the order of magnitude
of the vertical deflection ζ due to the buckling and the initial deviation from the horizontal
line w0 must remain small compared to the horizontal length L . (They may be larger than
the thickness h of the plate.)

In the following, we first present the model for the general 2D case with arbitrary buckling
deformations and subsequently treat the simpler uniaxial folding.

3.1 The geometric and elastic strain

We consider two different layers with thickness h f (top) and hs (bottom). When volumetric
growth or resorption occurs in an elastic sample, each point is displaced and the gradient
of this displacement is a geometric tensor called the deformation tensor: F. According to
the famous Kroner-Lee decomposition [28], F results from both the elastic tensor A and the
growth tensor G in a simple way:

F = AG (1)

Here, plasticity is neglected. The amount of growth per unit volume is given by Det G −1,
which is negative for mass resorption and positive for growth. When it is small, the growth
tensor G can be decomposed into: Gi j = δi j + ḡi j with |ḡi j | " 1. In addition, in the case
where the external load maintains a low level of strain, the geometric deformation tensor
is then also small leading to the following displacement of the points originally located at
r = (x, y, Z):

u(r) = u0(x, y) + (Z − Zn)u1(x, y) + w0(x, y)

=
(
U 0

1 (x, y) + (Z − Zn)U 1
1 (x, y)

)
e1 +

(
U 0

2 (x, y) + (Z − Zn)U 1
2 (x, y)

)
e2

+ (ζ(x, y) + w0(x, y)) e3 (2)

where w0(x, y) represents the initial position of the interface bilayer, and ζ(x, y) the deflec-
tion due to the buckling event. Each ei represents a Cartesian unit vector, and the superscripts
“0” or “1” stand for the order of perturbation. Indeed, the ratio between the thickness of the
bilayer and the horizontal size L is one small parameter ε1 = h/L , but the magnitude of
the displacement in the Z direction compared to L is a second independent small parame-
ter ε2 = ζ/L . We assume that both layers have comparable thickness and h means either
h f or hs . In the classical FvK approach, ε2 # √

ε1 a scaling which is justified below and
which will constrain ḡi j and w0. Since we examine a composite material here, the choice of
the origin of the Z axis is free at this stage. We define this origin at the physical interface
between both layers. We also introduce Zn , a possible shift in the expansion of order h. This
surface defines the surface of separation between parallel surfaces in extension compared to
the ones in compression due only to the buckling process. In the single plate geometry, Zn
corresponds to the position of the neutral surface and is located at h/2. In the following, an
analytical expression for Zn will be derived. We can then define the geometric deformation
gradient:

Fi j = δi j + ∂ui

∂x j
(3)
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where, as in Landau and Lifshitz’s book of elasticity [29], the index i indicates an index
varying between 1 and 3, while Greek letters restrict to 1 or 2. The elastic strain that we
deduce from Eq. (1) when A and G are close to unity reads:

Ai j = δik G−1
k j + ∂ui

∂xk
G−1

k j = δi j − ρi j + ∂ui

∂x j
− ∂ui

∂xk
ρk j (4)

where we have defined the tensor ρ such that G−1 = I −ρ, each component of ρ remaining
a small quantity to validate the FvK approach. ρ is not rigorously equal to (G − I). They
are equivalent only at linear order. In addition, we assume no change of the thickness of the
sample, which means ρ33 = 0; this hypothesis simplifies the equations and can be easily
revisited. A spatially constant value of ρ33 over the sample simply enters in the definition of
h. We also assume that ραβ scales as ε2

2 , while ρα3 and ρ3α scale as ε2. We then introduce a
new tensor g whose components are:

gαβ = ραβ + ρβα − ρ3αρ3β and gα3 = ρ3α + ρα3 (5)

This tensor is symmetric and has the same scaling behavior as ρ. It will simplify equations
later on. In the general case, the growth tensor g is a function of the coordinates, including
Z . This is of interest in the context of epithelia, as the cells may not grow in the same way
as the ECM substrate. A discontinuity may therefore develop at the interface. Similarly, the
structural material coefficients such as the Young’s modulus will be different in both layers.
For simplicity, we do not expand these coefficients, and we keep their full variations. We
expand only the strain and stress tensors in power of Z − Zn . This assumption is indeed
perfectly exact if the bilayer is made of two perfect homogeneous layers. To order 2 in ε2,
the elastic strain ε reads:






εαβ ≈ 1
2

(
∂uα
∂xβ

+ ∂uβ

∂xα
− gαβ −

(
ρ3α

∂u3
∂xβ

+ ρ3β
∂u3
∂xα

)
+ ∂u3

∂xα

∂u3
∂xβ

− ∂w0
∂xα

∂w0
∂xβ

)

εα3 = 1
2

(
∂uα
∂x3

+ ∂u3
∂xα

− gα3

) (6)

where we only keep the quadratic term in u3 = ζ + w0(x, y) for the deformation tensor,
all the other contributions being neglected. Such simplification is justified by the choice of
the traditional scalings of the FvK equations which favors the bending contribution, of order
ε2, compared to the in-plane terms of order ε2

2 . It is clear that any change in the scaling
approximation for the strains as done for the enhanced FvK or Koiter–Sanders model [30]
will complicate a lot the equations in the presence of growth. We will not treat this in the
present work. For a full analysis of the scalings in initially curved plates, see Chap. 6 of [31].
Our formulation is slightly different from the FvK–Donnell formulation [10,32], but gives
similar results after the variational process of the elastic energy so after integration by part.
It recovers perfectly the results of Ciarlet and Miara [33]. The last terms in Eq. (6) represent
the geometric stretch of the deformation in the x3 direction.

For a consistent expansion, all terms in this relation must have the same order of magnitude.
This implies several scaling relations. We get for the horizontal deformation: u # ζ 2/L ,
for the growth element ραβ # ζ 2/L2 and for the representation of the initial stress-free
configuration, w0 ∼ ζ .

3.2 The monolayer case

We aim here to establish the equilibrium equations of a growing bilayer under initial lateral
loading represented by N0 in Fig. 1, when it is initially planar or weakly curved. To this
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end, as in Landau and Lifshitz book [29] and in Refs [11,15,16], our strategy consists in
calculating the elastic energy and deriving the Euler–Lagrange equations through variations.
Most importantly, we write the stress and strain tensors as a function of x and y only. First,
we consider each layer independently since each of them has its own elastic coefficients and
its own growth characteristics. Due to the weakness of the deformation for slender objects,
we can apply the Hooke’s law, which is the constitutive equation of linear elasticity, but we
maintain the nonlinearities of the strains according to the strategy of the FvK equations. We
also consider the usual membrane hypothesis: σi3 = 0, which is equivalent to the plane stress
approach. Then, it reads for the Cauchy stress components σαβ where α and β are restricted
to x, y:

σαβ = E
1 − ν2

(
(1 − ν)εαβ + νεγ γ δαβ

)
(7)

with ν # 1/2 for the incompressible case, an assumption commonly used for living tissues.
In order to determine the elastic energy ϒ , we then write the elastic strain tensor (also a
function of x and y), which we decompose in orders of (Z − Zn) with the help of expansion
2), so that

εαβ = ε0
αβ + (Z − Zn)ε1

αβ (8)

The zeroth order reads:

ε0
αβ = 1

2

(
∂αU 0

β + ∂βU 0
α + ∂αζ∂βζ + ∂αζ∂βw0 + ∂αw0∂βζ0 − gαβ

−ρ3α
∂(ζ + w0)

∂xβ
− ρ3β

∂(ζ + w0)

∂xα

)
(9)

The first order results from the cancellation of the stresses of the third dimension: σ33 =
σ13 = σ23 = 0, so ε13 = ε23 = 0 (see [29]), and using the definition Eq. (6), we derive:

U 1
1 (x, y) ≈ − ∂

∂x
(ζ + w0) + g13; U 1

2 (x, y) ≈ − ∂

∂y
(ζ + w0) + g23 (10)

Thus, the strains at first order become:

ε1
αβ = −∂2

αβ(ζ + w0) + 1
2

(
∂αgβ3 + ∂β gα3

)
(11)

Following the equilibrium equation Eq. (7) and the decomposition of the elastic strain
(Eqs. (9), (11)), we can also decompose σαβ as σαβ = σ 0

αβ + (Z − Zn)σ 1
αβ .

4 FvK equations for the bilayer case

As in the presentation achieved in Landau and Lifshitz’s book of linear elasticity [29], we
average the elastic energy in the thickness of the bilayer.

4.1 Averaging the FvK equation

An important problem in the construction of the model is to establish the position of the neutral
surface when the layer is not perfectly homogeneous or for multiple layers. According to
Ref. [29], the neutral surface defines the separation between layers in compression from
layers in tension when the structure is weakly bent. For an homogeneous sample, the neutral
surface is naturally the middle surface of the sample. But for a bilayer, the position of the
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neutral surface is unknown. The interface between both layers seems to be the natural choice
for the definition of the origin of the Z coordinate, but it is not the neutral surface. So we
focus first on its position, then we proceed to the process of variation of elastic energy.

4.1.1 Position of the neutral surface

Despite the fact that attention was given to this question for functionally graded beams
[30,34–36], we did not find the determination of Zn in the literature. Here, we propose a
simple argument and we suggest decomposing the full energy into:

ϒ(uα, ζ, Zn) = 1
2

∫∫

S0

d S
∫ h f

−hs

d Z
(
σ 0

αβε0
αβ + (Z − Zn)

(
σ 1

αβε0
αβ + σ 0

αβε1
αβ

)

+(Z − Zn)2σ 1
αβε1

αβ

)
(12)

Since ϒ(uα, ζ, Zn) must remain positive independently of the growth coefficients and the
strains, this happens automatically if the intermediate term cancels then imposing:

∫ h f

−hs

E(Z , x, y)(Z − Zn(x, y))d Z =0 equivalent to Zn(x, y)=
∫ h f
−hs

E(Z , x, y)Zd Z
∫ h f
−hs

E(Z , x, y)d Z

(13)

average position of the bilayer weighted by the Young’s modulus. In the general case, there
is no guarantee that the neutral surface Zn is positioned inside the bilayer. However, if in
each layer the Young’s modulus is a constant (but different from top to bottom), the neutral
surface is located inside the bilayer.

Finally, we derive:

ϒ(uα, ζ, Zn) = 1
2

∫∫

S0

d S
∫ h f

−hs

d Z
E(Z)

1 − ν2

{
(1 − ν)(ε0

αβ)2 + ν(ε0
γ γ )2

+(Z − Zn)2
(
(1 − ν)(ε1

αβ)2 + ν(ε1
γ γ )2

)}
(14)

This method has been employed by Kozlov and Winterhalter [37] for the determination
of the neutral surface of strongly curved lipidic membranes.

4.1.2 Variational determination of the Euler–Lagrange equation

The Euler–Lagrange equations result from variations of ϒ with respect to ζ and uα , the
linearity between σ and ε leading to δϒ =

∫
drσαβδεαβ . These variations, taken one after

the other, must vanish at linear order. Special attention must be given if the growth tensor
or the Young’s modulus E is dependent on Z as it is obviously the case for the bilayer, and
sometimes of the other coordinates x and y. Coming back to the definition of ϒ as:

ϒ =
∫∫

S0

d S
∫ h f

−hs

d Z
(

1
2
σαβεαβ

)
−

∫∫

S0

d Sζ P(x, y) (15)

where P is a vertical external loading. The variation of ϒ with respect to the horizontal
deformation uα is easily derived and yields:

δϒ(uα, ζ, Zn; uα) = −
∫∫

S0

d S
∫ h f

−hs

(
∂βσαβ

)
δuα d Z = 0 (16)
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which gives that ∂βσαβ = 0 everywhere in the sample. This corresponds to the second
equation in the FvK formalism [29], sometimes re-written with the Airy potential, which is
very useful for analytical or numerical solutions of a 2D problem. Variation of ϒ with respect
to ζ gives:

δϒ(uα, ζ, Zn; ζ )

=
∫∫

S0

d Sδζ

[∫ h f

−hs

d Z
{
−∂2

αβ(Z − Zn)σαβ − ∂α

(
σαβ · (∂β(ζ + w0) − ρ3β)

)}
− P

]

= 0 (17)

In Eq. (17), the bracketed term must vanish. We do not mention explicitly the contributions
coming from integration by part which fixes the boundary conditions for free boundaries. In
the following, we consider only clamped boundary conditions.

4.1.3 The averaged Euler-Lagrange equation for the growing bilayer

It is now possible to transform Eq. (17) once we define the new bending coefficient and the
new spontaneous curvature due to growth:

D = 1
1 − ν2

∫ h f

−hs

E(Z , x, y)(Z − Zn)2d Z;

Cαβ = 1
2

∫ h f

−hs

E(Z , x, y)

1 − ν2 (Z − Zn)2
(

∂gα3

∂xβ
+ ∂gβ3

∂xα

)
d Z (18)

Doing again the separation of σ into σ 0 and σ 1, an intermediate step consists in integrating
σαβ over the Z variable, which gives first:

,αβ = −
∫ h f

−hs

(Z − Zn)σαβd Z = (1 − ν)(D∂2
αβζ − Cαβ) + ν(D-ζ − Cγ γ )δαβ + Mαβ

(19)

where we have dropped the dependence of D and Cαβ in x, y to simplify notations, introduced
the 2D Laplacian - = ∂αα , and a new tensor Mαβ :

Mαβ =
∫ h f

−hs

E(Z , x, y)

1−ν2 (Z −Zn)

{
(1 − ν)

(
gαβ − 1

2
∂β(ζ +w0)ρ3α− 1

2
∂α(ζ +w0)ρ3β

)

+ν
(
gγ γ − ∂γ (ζ + w0)ρ3γ

)
δαβ

}
d Z (20)

The simplification of M is due to the definition of the neutral surface and the fact that only
the growth component gαβ may depend on Z . If it is not the case, Mαβ vanishes. At last, Eq.
(17) gives the equivalent of the first FvK equation:

∂2
αβ,αβ −

(∫ h f

−hs

σαβd Z
)

· ∂α∂β(ζ + w0) +
∫ h f

−hs

σαβ∂αρ3βd Z = P (21)

This last equation, Eq. (21), governs mostly the bending deformation. In the nonlinear
regime of the FvK formalism, it is coupled to the horizontal stresses σαβ whose equilibrium
is given by Eq. (16). When not stated otherwise, σαβ is the total stress. D appears to be an
effective bending coefficient of the composite structure and Cαα as a spontaneous curvature
associated with growth. For a homogeneous layer with no growth Zn = h/2, Mαβ vanishes
and one recovers the traditional FvK equations without growth, see [29]. Notice that in Eq.
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(21), we also recover the spontaneous curvature κ = ∂αgα3 found in [16] and the curvatures,
inverse of the radii of curvature, of the initial shape given by the tensor ∂αβw0 . Let us focus
now on the uniaxial folding where all the equations simplify.

4.2 FvK equations governing uniaxial folding

For uniaxial folding, the only dependence is along the x-axis and all the tensors are reduced to
one element, which simplifies a lot the analysis but reduces the diversity of observed buckling
patterns, as explored in previous works [12,14]. The elastic plane stress equilibrium equation,
Eq. (16), gives ∂xσ11 = 0 so it is only a function of Z and N defined by:

N =
∫ h f

−hs

σ11d Z = −N0 (22)

N0 indicates a lateral integrated compression, a situation easily realized in material sciences,
but in embryos it results from accumulated pre-stress originated from the imaginal disc and
the connected tissues at the boundaries [19,20] (see Fig. 1). The bending equilibrium equation
now reads:

d2

dx2

(
D

d2ζ

dx2

)

︸ ︷︷ ︸
Elastic term

+ N0
d2(ζ + w0)

dx2 − N0
dρ31

dx︸ ︷︷ ︸
Pre-stress

= d2

dx2 (C11 − M11)
︸ ︷︷ ︸

Growth contribution

+ P(x)︸ ︷︷ ︸
External stress

(23)

where we have neglected the Z dependence of ρ31 involved in Eq. (21). We detail M11 in the
simplified case of homogeneous growth occurring only in each layer.






M11 =
∫ h f
−hs

E(Z−Zn)
1−ν2 g11d Z =

∫ h f
0

E(Z−Zn)
1−ν2 g f

11d Z +
∫ 0
−hS

E(Z−Zn)
1−ν2 gs

11d Z

C11 =
∫ h f
−hs

E(Z−Zn)2

1−ν2
dg13
dx d Z =

∫ h f
0

E(Z−Zn)2

1−ν2
dg f

13
dx d Z +

∫ 0
−hS

E(Z−Zn)2

1−ν2
dgs

13
dx d Z

(24)

We have derived an effective equation for the bilayer, which takes into account that the growth
may differ from the top to the bottom layer via C11 and M11. Contrary to C11, M11 appears
only if the growth tensor component g11 is different in both layers. If, in addition, the second
derivative of these two quantities does not vanish, they appear equivalent to a vertical loading
acting on the bilayer giving it a curvature in the absence of an initial one (w0 = 0). This
will destroy the perfect symmetry up and down, once averaged over the thickness of the
bilayer and explain the bending in the case of growth. We now examine in more detail how
the structure of the bilayer and eventually how defects affect the bending one-dimensional
equation.

4.3 Boundary conditions for the bilayer

Boundary conditions concern the top and the bottom interfaces between the surrounding
fluid and the two layers, as well as the interface between the two layers (Z = 0). In solid
mechanics, the interface between layers is often considered as a line of discontinuity. More
realistically, it is a thin zone of sharp variations for physical constants—in our case for growth
coefficients or stiffness. Moreover, it may happen that the elasticity of the interface is not
simply the mean value of both elastic coefficients. As discussed above, this happens when
the interface of a cell layer and the ECM is enriched in intracellular cytoskeletal filaments,
or when a thin basal lamina separates two cell layers, both circumstances leading to a stiffer
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interface. If the interface is really smaller than each layer, we can consider it as a transition
zone around Z = 0, then avoiding the application of boundary conditions to a system of 3
layers. A way to avoid writing boundary conditions is to represent the sample as a unique
layer where the elastic parameters such as the Young’s modulus vary continuously. If the
interface is very thin, one needs only to know its thickness relative to the thickness of the
bilayer, the details of the description are not really important. The fact that we use the so-
called membrane hypothesis with cancellation of the stresses σ13 = σ23 = σ33 = 0 ensures
automatically the continuity of the normal and shear stress at the upper and lower boundaries
and at the interface of the two layers (Z = 0). So only the continuity of the displacements
is required at the interface. Choosing a “continuous approach” and aiming to transform the
bilayer into a unique layer whose entire thickness will be h f +hs , we assume that the Young’s
modulus E and any growth number gαβ can be written as:

E(Z) = E f + Es

2
+ (E f − Es)

2
tanh(Z/ l0) with l0 <<< h f and l0 <<< hs

(25)

and

gi j (Z) =
g f

i j + gs
i j

2
+

(g f
i j − gs

i j )

2
tanh(Z/ l0) with l0 <<< h f and l0 <<< hs

(26)

When a thin stiff membrane superposes to the two main layers of the sample at a position
Zm , which can be on top Zm = h f , or at the bottom Zm = −hs , or at the surface of
separation: Zm = 0, as justified above, then we can slightly modify Eq. (25) into

E(Z) = E f + Es

2
+ (E f − Es)

2
tanh(Z/ l0) + Eme−α2

m (Z−Zm)2/ l2
0

with l0 <<< h f and l0 <<< hs (27)

where the Young’s modulus of the membrane, Em , can be much larger than both E f and
Es . αm is a numerical coefficient characterizing the thickness of the membrane. Another
boundary layer may exist on top or bottom of the bilayer, in addition to the interfacial one.
The formulation of the Young’s modulus, E(Z), must then also include this new contribution.
Such a definition of E(Z) can be implemented into Eq. (18) very easily to deliver the new FvK
equations. We focus now on the neutral surface position and on the bending coefficients when
either the elastic coefficients or the thicknesses present a sharp but small in size variation
along the sample.

5 Position of the neutral surface Zn for uniaxial loading

We can guess from the definition of the coefficients (Eq. 24) of the bending FvK equation
(Eq. 23) that the position of the neutral surface is crucial for the shape of the sample when
growing and buckling. We consider first the position of the neutral surface for layers of
constant thickness and constant Young’s modulus, and we introduce a linear perturbation
dependent on the x variable. If the linear approximation is not valid, a numerical solution is
always possible as in Sect. 7.
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5.1 Position of the neutral surface for a bilayer without structural defects

In the case of an ideal bilayer with no structural defects, Z (0)
N is determined implicitly via Eq.

(13) with a Young’s modulus E(Z) defined by: E(Z) = E f if 0 ≤ Z ≤ h f and E(Z) = Es
if −hs ≤ Z ≤ 0. D is deduced from Eq. (18) and it reads:

Z (0)
n =

E f h2
f − Esh2

s

2(E f h f + Eshs)

D(0) =
E2

f h4
f + 4E f Esh3

f hs + 6E f Esh2
f h2

s + 4E f Esh f h3
s + E2

s h4
s

12(1 − ν2)(E f h f + Eshs)

(28)

where the superscript “(0)” for Zn and D reminds us that these formulas are restricted to ideal
cases. One can notice that if the two layers have the same elastic coefficient, one recovers
the standard bending stiffness: D = E(hs + h f )

3/(12(1 − ν2)) and the neutral surface is
located at the middle of the layer of thickness (h f + hs)/2. We can convince ourselves that
the neutral layer is located inside the bilayer since −hs < Z (0)

n < h f , which is a necessary
condition. These two quantities Z (0)

n and D(0) play a deep role in the bending equation, first
equation of the FvK set of equation Eq. (21) and for the definition given by Eq. (18). It is
why we consider now the departure from the ideal situation:

Zn = Z (0)
n + δZn; and D = D(0) + δD (29)

Hereafter, several causes are investigated at linear order in the perturbation amplitude.

5.2 Position of the neutral surface for diffuse or stiff interfaces

We allow a diffuse interface according to the representation given by Eq. (25). The thickness
of the interface l0 is small compared to h f or hs . Although an exact calculation of Zn is
doable, it involves unusual analytical functions so we give here only an asymptotic formula
for the result up to a correction of order e−h/ l0 :

Zn = Z (0)
n + bl; bl # − π2l2

0(E f − Es)

24(E f h f + Eshs)
(30)

This is a tiny effect being of order l2
0/h2. In the presence of a stiff interface with EI larger

than E f or Es , the correction to Zn is more important:

Zn #

(
E f h2

f − Esh2
s

)
− π2l2

0(E f − Es)/12

2
(
E f h f + Eshs

)
+ √

π EI l0/αI
(31)

where the symbol # indicates also a correction of order e−h/ l0 , h being either h f or hs . In
the presence of an additional stiff layer, on top or on the bottom, with a different stiffness
Eb, we derive, in the limit of vanishing e−h/ l0 , the following value for the neutral surface
position:

Zn #

(
E f h2

f − Esh2
s

)
+ τb Ebj l0(hs/αb − l0/α2

b) − π2l2
0(E f − Es)/12

2
(
E f h f + Eshs

)
+ √

πl0(Eb/(2αb) + EI /αI )
(32)

with τb = 1 when the stiff layer is on top, and τb = −1 when the stiff layer is at the bottom.
Knowing that the interface stiffness EI or Eb may be an order of magnitude larger than E f
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or Es , this correction may modify significantly the values of the D coefficient in the FvK
equations. The addition of thin layers, as described here, to the initial bilayered system will
change the position of the neutral surface and the resulting D coefficient, but it will not
change the structure of the FvK equations.

5.3 Localized defects of the thickness

Let us now consider a weak and localized variation of the thickness of one of the two layers.
The neutral surface will then be distorted. We derive its new position by a simple linear
expansion of Zn . This induces an equivalent expansion on the parameter D, which multiplies
the bending term in equation Eq. (23). Assuming that the thickness varies as

h =hi (1 + βi (x)) then Zn # Z (0)
n + ∂ Z (0)

n

∂hi
hiβi (x) and D # D(0)+ ∂ D(0)

∂hi
hiβi (x).

(33)

where D(0) and Z (0)
n are given by Eq. (28). and # means an expansion restricted to first order.

It reads

– On the top layer, we get:

Zn # Z (0)
n +

E f

(
h f − Z (0)

n

)

(E f h f + Eshs)
h f β f (x);

and D # D(0) + E f

(1 − ν2)

(
h f − Z (0)

n

)2
h f β f (x) (34)

– On the lower layer:

Zn # Z (0)
n −

Es

(
hs + Z (0)

n

)

(E f h f + Eshs)
hsβs(x);

and D # D(0) + Es

(1 − ν2)

(
hs + Z (0)

n

)2
hsβs(x) (35)

It is to be noted that a dip in either the upper or the lower layer means a negative value for
the coefficients βi (x) so, as expected, a local decrease of the stiffness of the sample.

5.4 Localized inhomogeneity of the Young’s modulus

We now consider a localized variation of the Young’s modulus, which we treat through the
expansion:

E # Ei (1 + δi (x)) and Zn # Z (0)
n + ∂ Zn

∂ Ei
Eiδi (x) and D # D(0) + ∂ D

∂ Ei
Eiδi (x)

(36)

Leading to:

– Inhomogeneity in the top layer:

Zn # Z (0)
n + E f Esh f hs(h f + hs)

(E f h f + Eshs)2 δ f (x);

and D # D(0) + E f

3(1 − ν2)

(
h3

f − 3h2
f Z (0)

n + 3h f (Z (0)
n )2

)
δ f (x) (37)
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– Inhomogeneity in the bottom layer:

Zn # Z (0)
n − E f Esh f hs(h f + hs)

(E f h f + Eshs)2 δs(x);

and D # D(0) + E f

3(1 − ν2)

(
h3

s + 3h2
s Z (0)

n + 3hs(Z (0)
n )2

)
δs(x) (38)

6 Results for uniaxial folding

As mentioned above, the uniaxial case simplifies a lot the analytical analysis but reduces the
diversity of buckling patterns that can be accounted for compared to the 2D case. Neverthe-
less, the 1D approximation is still of great experimental relevance for some experimental
systems. In the case of the experiments of Fig. 2, for example, the tissue and the genetic pertur-
bation can be assumed to be spatially invariant along the y-coordinate, making it essentially
a 1D problem. In this context, the present section provides an in-depth analysis of bend-
ing contributions of the bilayer in the uniaxial case, with and without structural defects.
We first analyze the bending equation of the uniaxial folding analytically. We then address
the problem numerically by selecting possible 1D examples using the software of resolution
Mathematica. Finally, simulations from the FEM (finite element method) software COMSOL
Multiphysics are presented.

6.1 Source of bending in bilayers

We will demonstrate in the following that the source of bending for growing bilayers is
numerous and diverse and may have different biological origins. We analyze some cases here
as examples. First, we define dimensionless parameters which will govern our FvK equations
for a bilayer made of two layers with constant elastic coefficients.

6.1.1 Dimensionless bending equation

Using as length unit the length L of the sample, Eq. (23) reads:

d2

d X2

{
(1 + δD)

d2ζ

d X2

}

︸ ︷︷ ︸
Elastic term

+ N0

(
d2(ζ + W0)

d X2 − dg31

d X

)

︸ ︷︷ ︸
Pre-stress

= d2

d X2 (C − M)
︸ ︷︷ ︸
Growth contribution

(39)

where we keep the same notation for ζ(X), which becomes ζ(x)/L , X = x/L , N0 =
N0 L2/D(0), δD = (D − D(0))/D(0), M = M11L/D(0), C = C11L/D(0) are dimension-
less quantities and W0(X) = w0(x)/L represents the initial position of the curved sample.
External vertical loading is discarded. It is worth noting, however, that the equivalent of a
loading can arise from the growth contribution (right-hand term of Eq. (39)) owing to the fact
that it involves spatial second derivatives, like the pre-stress term. For such a growth-induced
loading to arise, the growth of the two layers must differ to get a non-vanishing M value, and
at least one of the terms (C or M) must vary spatially. This growth-induced loading accords
with previous investigations that demonstrated the need for differential growth of apposed
layers to induce buckling of brain cortical folds for example [39–42]. Even with homoge-
neous growth, the right-hand term can lead to a non-vanishing contribution, for example, in
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the case of a structural defect that will change Zn , and induce high spatial frequency compo-
nents in C or M . Nevertheless, it is difficult to discuss a priori the ζ profile, which is added
to W0 as a result of the growth term, since it depends also on the boundary conditions. We
can intuitively predict that inhomogeneous growth is responsible for a “fictitious pressure”
or on the contrary for a tension added to the sample. The simplest case may be the one of a
homogeneous bilayer that we consider first.

6.1.2 Bilayer without structural defects

This case corresponds to Sect. 5.1. For simplification, we consider the case of a sharp interface
and the bilayer is made of two perfect layers of constant thickness and Young’s modulus.
The growth process occurs mostly in one layer. Assuming first g f

11(X) in the upper layer and
gs

11(X) = 0 in the lower layer, we have for M f
0 and C f

0 according to Eq. (24):

M f
0 = g f

11(X)

(
E f h f (h f − 2Z (0)

n )

2D(0)(1 − ν2)

)

; C f
0 = dg f

13

d X

(
E f h f (h2

f − 3Z (0)
n (h f − Z (0)

n )

3D(0)(1 − ν2)

)

(40)

where Z (0) and D(0) are given by Eq. (28). It is easy to check that both parameters M0 and
C0 have the same sign as the growth elements g f

11 and ∂X g f
13. If growth occurs in the lower

layer and not in the upper layer, it reads

Ms
0 = −gs

11(X)

(
Eshs(hs + 2Z (0

n )

2D(0)(1 − ν2)

)

Cs
0 = dgs

13(X)

d X

(

Eshs

{
h2

s + 3Z (0)
n (hs + 3Z (0)

n )

3D(0)(1 − ν2)

})

(41)

Here again, hs + 2Z (0)
n is a positive quantity and the sign of Ms

0 is opposite to the sign of
gs

11, while the sign of Cs
0 is automatically given by the growth coefficient derivative. Without

pre-stress, it is possible to observe a buckling of an initially flat plate because of a differential
and inhomogeneous growth process. There exists a competition of the origin of this buckling
between g11 or g13, or between M0 and C0. Differences in growth of the two layers induce a
symmetry breaking between up and down. It is nontrivial to compute the sign of the growth
term—whether it contributes to a vertical pressure or tension—owing to the fact that it stems
from the competition of two terms (M0 and C0) through their second derivatives.

Notice, however, if the growth is not x dependent, these terms will disappear from the
buckling equation; on the contrary they will become more efficient if they strongly depend
on x . Localized defects will increase the efficiency of the buckling as shown hereafter.

6.1.3 Analysis of structural defect in growing bilayers

a) Localized stiffness variation in one layer
We first consider that the stiffness can be locally modified as discussed in Fig. 2, inducing

a small change in the position of the neutral surface. We focus on the linear variation of
M f or Ms , and C f or Cs , simply deduced from Eqs. (40, 41). The modification of these
quantities is deduced taking into account the variation of δZn reported by Eqs. (37, 38) in
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Sect. 5.4, which reads:

δM f = ∂ M f
0

∂ Z (0)
n

∂ Z (0)
n

∂ Ei
δEi ; δC f = ∂C f

0

∂ Z (0)
n

∂ Z (0)
n

∂ Ei
δEi (42)

where Ei is the Young’s modulus of the layer affected by the defect: E f or Es and δEi is
represented by Eiδi (X), in a similar way to Eqs. (37,38). Similar results apply for δMs which
corresponds to the growth in the lower layer and for δCs . We give here only the results but
we define first the following positive quantities:

m f =
E2

f Esh2
f hs(hs + h f )

2D(0)(1 − ν2)(E f h f + Eshs)2 c f =
(
E f Esh f hs(h f + hs)

)2

2D(0)(1 − ν2)(E f h f + Eshs)3 (43)

– When the growth occurs in the upper layer, which also exhibits a stiffness defect, then





δM f = −g f
11(X)m f δ f (X); δC f = − dg f

13
dx c f δ f (X) defect on top

δM f = g f
11(X)m f δs(X); δC f = dg f

13
dx c f δs(X) defect on the bottom

(44)

– When the growth occurs in the substrate, perturbation occurs now on Ms
0 and Cs

0 and one
needs to consider again a defect of the stiffness either on top or on the lower layer.






δMs = −gs
11(X)m f Es hs

Eh h f
δ f (X); δCs = dgs

13
dx c f δ f (X) defect on top

δMs = gs
11(X)m f Es hs

Eh h f
δs(X); δCs = − dgs

13
dx c f δs(X) defect on the bottom

(45)

b) Localized variation of the thickness of one layer.
A defect in the thickness affects the position of the neutral surface, but also, when the

thickness defect occurs in the same layer as the growth, the averaged value of the coefficients
of Eq. (24) related to the first bending FvK equation, Eq. (23). We give here only the schema
when a dip appears in the lower layer, the growth occurring either on the top or the lower
layer. A similar analysis gives

δM f = d M f
0

d Z (0)
n

δZn = g11(X)M f βs(X); δC f = dC f
0

d Z (0)
n

δZn = dg f
13

d X
C f βs(X) (46)

whereas in Sect. 5.3, βs(X) describes the shape of a notch and M f and C f are dimensionless
positive quantities.

M f = E f Esh f hs
Esh2

s + E f h f (2hs + h f )

2D(0)(1 − ν2)(E f h f + Eshs)2 ; C f = Eshs(h f + hs)

Ehh f + EshS
M f (47)

We examine now the case where growth occurs in the bottom layer where also the defect
is localized: .

δMs = −gs
11(X)M f βs(X); δCs = ds g13

dx
Csβs(X) (48)

with

Cs =
E2

s h3
s + E f Esh f hs(−h f + hs) + E2

f h2
f (h f + 2hs)

2E f h f (E f h f + EshS)
M f (49)

c) Shape of defects
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Fig. 3 Cylindrical mylar shell under a localized forcing. Originally the plate has a length of λ = 35 cm
and a width L = 17.5 cm. The Young’s modulus of the mylar plate is 3.8109 Pa.s, and the Poisson ratio is
ν = 0.4. The initial bending is realized by imposing the boundary conditions. On the left, one notices that for
a low value of the imposed deviation Z = 4 mm, the pattern of sinking is quite elliptical, while it becomes
cylindrical for Z = 15 mm representing a folding in the opposite direction of the initial one. Image extracted
from [38]

Localized defects can be positioned in any place of the sample. From Eq. (39), we have
noticed that they may induce an equivalent forcing on the sample if they contribute to strong
variation of the second derivatives of the coefficients δM and/or δC . Choosing a sharp defect
in the center of the sample, a good representation may be δ = eY e−X2/22

where eY is
the relative amplitude of the stiffness defect, which can be positive or negative, 22 depicts
qualitatively its width. The second derivative is ∂X X δ, which is of order −2eY /22 which
for a defect of width 0.05 corresponds to an amplitude of 200eY at the center. It is to be
noted that the sign is opposite to eY . So the sign of the second derivative of δM or δC can be
easily found from paragraph (a). The convention for thickness defect is the following:hiβi (X)

where βi (X) is negative for a notch and positive for a protrusion. Here again, ∂xxβ will be
opposite to β. In any case, it remains that the prediction of the global sign of the second
member of Eq. (39) is hard to predict due to the competition between g11 and g13. Let us
remember that a positive sign of a localized contribution will be equivalent to a localized
forcing, which will mimic the experiment [38] shown in Fig. 3.

6.2 Numerical investigations of the FvK bilayer for a plate or a shell.

In this section, we aim to demonstrate the role of defects on plates and slightly curved shell
portions under pre-stress. To simplify, we focus first on a homogeneous growth process: It
means a process independent of X and identical in both layers or equivalently a non-growing
sample. Then, we will give numerical examples to illustrate the analytical results of the
previous section when differential growth occurs contingently to defects.

6.2.1 Local decrease of thickness on a non-growing pre-stressed plate or shell

In this section, we will evaluate the role of a sharp variation on the D coefficient of a pre-
stressed sample initially flat or curved. For the numerical purpose, the defect has the shape

123



Eur. Phys. J. Plus           (2022) 137:8 Page 19 of 29     8 

Fig. 4 Buckling deviation due to a variable stiffness coefficient D(X), in a pre-stressed non-growing plate
or shell. In (a), the profile ζ of an initial elastic plate under pre-stress N0 = 4 is plotted as a function of the X
coordinate. The X -domain is reduced to the interval {−0.3, 0.3} for clarity. At both ends,X ± 0.5, ζ = 0 and

X = ±0.5, ∂X ζ ±0.03. δD = −D0e−(X−Xd )2/ l2
d with D0 = 0 for the black line and D0 = 0.3 for the blue,

red, magenta colored lines. Except for the magenta line, the dip is centered on X = 0; otherwise, it is located at
Xd = 0.3. The blue and magenta curves correspond to a narrow dip with ld = 0.1, the red curve to a larger one
with ld = 0.3. Notice that a dip located far from the center has no effect and the deflection remains weak in any
case (scale of the vertical line). In (b), ζ for a pre-stressed shell of equation W0(X) = (1/4−x2)/5 of negative
curvature and clamped boundary conditions: X ± 1/2,ζ = ∂X ζ = 0. In (c), the full profile 3 = ζ + W0 with
a dotted black line for W0. The same code of colors is applied in the three panels (a, b, c)

of a penetrating peak and is represented by a Gaussian so δD = −D0e−(X−Xd )2/ l2
d . D0 is a

positive coefficient which can be evaluated with either Eq. (34) or Eq. (35), ld is an estimation
of the scale of the defect compared to the scale of the sample L and Xd is its relative position
in the sample. For a plate, a curvature is initially induced by the pre-stress and applying a
slope at both ends. In Fig. 4a, the imposed slope is ∂X ζ ± 0.03 at X ± 0.5 giving a deflection
below the horizontal (black line). This deviation increases with the defect since it weakens
the stiffness more and more with the amplitude D0 = 0.2 (blue curve), D0 = 0.3 amplitude
(red curve). Even for a sharp-pointed defect, with ld = 1/10, the deviation ζ remains small
and not very selective. In addition, a displacement on the position of the defect does not affect
ζ too much (magenta curve). For a shell which is initially curved in the positive Z direction
with clamped conditions at both ends, as shown in Fig. 4b, c, the deviation ζ is amplified by
the initial curvature and the pre-stress. Here again, any deviation on the right of the defect
weakens its role on ζ since we cannot distinguish the deviation with lateral defect (magenta
line) from the black line. When the whole profile 3 = ζ + w0(X) is considered, we clearly
observe an increase of the total curvature when the defect is centered at the maximum of
deflection.

6.2.2 Thickness defects on growing plates and shells

The thickness variation on δD gives a very intuitive result. A much less intuitive result
concerns the sign of ∂X2δM and ∂X2δC of Eq. (39) since the results are dependent of the
second derivative of these growth coefficients. These quantities have been studied in detail in
Sect. 6.1.3. We must notice that they have an opposite sign a priori, and in practical situations,
we will have little information except by comparison with genetically modified tissues. So we
will join these two contributions into a unique term δSG = −(δM − δC) = sge−(X−Xd )2/ l2

d

in the right-hand side of Eq. (39). Intuitively, as soon as this term is differentiated 2 times,
it behaves as either a pressure if it is positive or a tension in the opposite case, while the
initial curvature of the concave shell behaves like a pressure and a convex one like a tension.
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Fig. 5 Buckling deviation ζ in a pre-stressed growing plate. The prescribed boundary conditions are: ζ = 0
and ∂X ζ = ±0.03 at X ± 0.5, N0 = 4 and the black line is the initial shape of the plate under pre-stress.

The defect is as follows: for D , δD(0) = −0.3e−(X−Xd )2/ l2
d , δSG = sge−(X−Xd )2/ l2

d with sg = 0.5
(resp. −0.5) represented by a continuous blue line (resp. a dot-dashed blue line) and sg = 1 (resp. sg = −1)
represented by a continuous red line (resp. dotted-dashed red line) for the 3 panels. In (a), Xd = 0 and
ld = 0.1. In (b),Xd = 0 and ld = 0.3. In (c), the same as in (a) for an eccentric defect positioned at Xd = 0.2.
Notice the strong asymmetry of all curves in panel (c)

Fig. 6 Buckling deviation ζ for a pre-stressed (N0 = 4) shell. The same definition and color codes apply
as in Fig. 5: black no defect, blue continuous sg = 0.5,blue discontinuous sg = −0.5, red continuous curve
sg = 1 and ld = 0.1, red discontinuous sg = 1 for the 3 panels. Clamped boundary conditions are applied.
In (a), the shell is initially concave and ld = 0.1. In (b), the shell is initially convex. In (c), the defect is
localized on the right xd = 0.2 and the shell is concave. W0(X) = (1/4 − X2)/5., for concave shape and
W0(X) = (X2 − 1/4)/5 for convex shape

Knowing that a groove in the substrate is represented by a negative profile, the second
derivative is then positive for X = Xd being given by ∂X2δSR ∼ −2/ l2

dsge−(X−Xd )2/ l2
d .

Illustration is given in Fig. 5 for a pre-stress plate with defect localized at X = 0 with two
different length scales: ld = 0.1 and ld = 0.3 and different amplitudes for sg = ±0.5 and
±1. A defect put on the right is also shown with a noticeable distortion in panel (c) of Fig.
5. In Fig. 6, the same set of perturbations act on a shell either concave (panel(a)) or convex
(panel(b)), and the deviation ζ is plotted with boundary conditions ζ = ∂X ζ = 0 for X ±0.5.
For the concave case (a), the deviation due to the defect is decreased for sg > 0 and increased
otherwise. The opposite result is obtained for in the convex case panel (b). The distortion
is shown in panel (c) only for the concave case. Once the deviation is superposed on the
initial shell, depending on the respective sign of the deviation versus the shell geometry, it is
possible to observe an inversion of the curvature. This is demonstrated in the three panels of
Fig. 7.
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Fig. 7 In (a, b, c) The shell profile 3(X) = W0(X) + ζ(X). The colored lines correspond to the buckling
conditions of Fig. 6). Notice the possibility to observe an inversion of curvature in panel (a) and (b) for a
suitable size of sg with respect to the curvature of the shell

6.3 Confrontation of the uniaxial FvK bilayer model with experiments

In Sect. 2, we presented experimental evidence that a local change in the mechanical properties
of the ECM can induce major morphological changes in the wing imaginal disc epithelium.
Here, we confront our bilayer FvK formalism in the uniaxial geometry to experimental
profiles extracted from the images of Fig. 2c, e.

We first focus on the tissue presented in Fig. 2c, that we rescale in the unit of the lateral size
of the imaginal disc (Fig. 8a). The perturbation of the ECM was induced before the naturally
occurring curvature could develop in the tissue. We therefore assume no initial curvature:
a horizontal plate only under pre-stress. We fix the slope conditions at the border, making
the hypothesis that the tissue periphery is not affected by the perturbation. This hypothesis
is justified by the fact that the defect is well localized at the center of the tissue. The fit
of parameters is achieved by a limited number of trials. Fitted parameters converge to the
following values: a pre-stress of order 9 in unit of D and a parameter D0 = 0.3; a defect
characterized by an amplitude sg = 4, position xd = 0.1, and width ld = 0.25, when the
defect is modeled by the relation sge−(X−Xd )2/ l2

d , see Sect. 6.2.2. Finally in Fig. 8b, the shape
of the disc at the boundaries and the developmental timing of the perturbation suggest that the
tissue was already curved at the onset of the perturbation. We then used the shell treatment
with a best guess for the unperturbed shape w0(X) = 0.7(1/4 − X2 + 4(1/16 − X4)), N0
has little effect and is put to zero, which suggests that in old epithelia, the outer stresses have
relaxed, which is not the case for young epithelia. The amplitude of the defect has increased:
it is now sG = 10; localization is Xd = −0.05, and width ld = 0.1. Thus, the bilayered
FvK theory can account for the mechanics at play in the growing wing imaginal disc in the
presence of a localized defect in the ECM, both when the tissue is initially flat and curved.

7 Numerical simulations with finite element method

We now consider the problem of the bilayer bending in the linear Hookean elasticity approach
using COMSOL Multiphysics, which computes the deformations in the real geometry of the
bilayer, two different connected layers, without averaging the elastic properties. The bilayer
we study in the following is made of a thin (h f = 10µm) and relatively soft (E f = 50 kPa)
upper layer and a thicker (hs = 12µm) and stiffer (Es = 75 kPa) bottom layer. The length
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(a) (b)

Fig. 8 Fitting experimental wing disc profiles with the uniaxial FvK bilayer theory. (a): Theoretical fit of
an early wing imaginal disc, for which the initial profile before perturbation was flat (same as Fig. 2c). (b):
Theoretical fit of an older wing imaginal disc, for which the initial profile before perturbation was curved
(same as Fig. 2e)

of the bilayer is L = 500 µm. The layers are submitted to growth and pre-stress, and the
boundaries are either free or constrained. We investigate a defect, as a local removal of the
basal layer in the middle of the bilayer with an extension of 10 µm and a thickness hd ≤ hs ,
and as a local change of stiffness and growth in the bilayer. The growth is anisotropic and
is introduced in a tensorial form: Gi j = 1 + g δ1iδ1 j , with g ∼ 0 − 0.1. The growth may
be introduced in the top layer only as in Sect. 7.2, the bottom layer only in Sect. 7.4, or in
both layers as in Sect. 7.3. The pre-stress consists in an anisotropic compression or tension,
so that σ P S

i j = −σ P S δ1iδ1 j where σ P S ∼ 0 − 500 Pa.
We also study the case of the shell on the further deviation of the sample. We set an initial

curvature to the shell: W0 = H × (L/2)−2((L/2)2 − X2) where H is the displacement at
X = 0. In order to compare the different results, we plot the profile of the interface between
the upper and lower layers (the red line in Fig. 9e).

Finally, we fit FEM simulations to the experiment described in Sect. 2. The result is
compared to the one obtained from the FvK calculation in Sect. 6.3.

7.1 Pre-stress on an initially curved bilayer

In Fig. 9a, we investigate different initial shell shapes with different curvatures characterized
by H = −20 µm,0 µm, 20 µm with the same pre-stress σ P S = 200 Pa in the bilayer.
For a plate, with no initial curvature, a bending toward the stiffer and thicker basal side is
obtained, while for a convex or a concave shell, the initial curvature of the shell is reinforced
in absolute value. This is consistent with the previous FvK model for shells. In fact, the
bending deviation follows the initial shape of the shell.

7.2 Thickness and growth defect on growing plates and shells

In biological systems, the two layers in epithelia are not independent. For instance, the basal
membrane regulates the proliferation and the differentiation in the epithelium. In general,
the basal layer structures the upper layer of the epithelium, and a defect in the lower layer
can have consequences on the proliferation and metabolism of the upper layer. Therefore,
we now investigate the shape change at the level of a defect, which alters the thickness of
the basal layer and consequently the growth of the upper growing layer. Figure 9b displays
the results when the basal layer is removed in proportion of 85% (dotted lines) in thickness
and the upper layer is not growing at the defect level, as well as the case with no defect
(continuous lines). We observe a buckling toward the basal membrane, in the neighborhood
of the defect.
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7.3 Place of a defect

Defects can appear anywhere along a bilayer. In Fig. 9c, we impose defects on a planar
bilayer, located at X = 0, 0.08, 0.16 for the blue, green, and red lines, respectively. Both
layers grow to the same extent g = 0.1. The defect consists in removing a part of the bottom
layer. Interestingly, with the same size of the defect, the amplitude of the deformation is
different, and the shift of the defect is not only a shift in the deformation.

7.4 Dependence on boundary conditions

The comparison between confined and free geometries is a recurrent topic in cellular growth
studies [43,44] from multiple perspectives, such as the folding of epithelial sheets [45].
The boundary conditions of bilayer plates or shells are also necessary for the analytical and
numerical study of the system. But unfortunately, they are not always perfectly known. When
the setup is symmetric, one can use those symmetries to constrain the problem, and the system
has free-boundary conditions. Sometimes, the experiment is such that the system is clamped,
or loses its symmetry. Confined systems are strongly dependent on boundary conditions.

In Fig. 9d, we compare the buckling in a constrained and free geometry. The buckling
is very different, and its direction (up or down) even changes when starting with a concave
geometry. It may lead to strong inaccuracies in FEM simulations of rectangular geometry and
semi-analytical treatments become necessary, see reference [46]. Notice that in the previous
sections, Sects. 6.2.1, 6.2.2, boundary conditions are always fixed symmetrically for plates
and clamped boundary conditions for shell deviations. This point is important for comparing
our numerical results to the experiments as shown in the next section. There can be a few
types of constrained geometry. In Fig. 9d, it is obtained by imposing a zero displacement at
two points on the lateral boundaries. In Fig. 9f, the whole lateral boundaries are imposed a
zero displacement. In the second case, the Z-displacement is close to having a zero derivative
as boundary conditions.

7.5 Confrontation of the finite element simulations with experiments

We use the finite element method to reproduce qualitatively the side to which the imaginal
wing curves. We assume that the stress inside the cell layer is induced by growth and is relaxed
when a defect is introduced. Since in classical mechanics only the stress-free configuration
and the configuration obtained after the process are to be taken into account, we make a
multilayer growth with and without defects. In our simulations, we observed that a 2-layer
model could not reproduce the experimentally observed change of curvature upon ECM
degradation. Only when an apical membrane is introduced in the model, can we reproduce
the behavior—making it essentially a 3-layer model. Indeed, contrary to the resolution of
the FvK equation where boundary conditions are imposed, we use free boundary conditions
with the finite element method. Therefore, a third layer has to be added in order to constrain
the system to bend toward the correct side.

More precisely, we simulated a thick (15 µm) cell layer of length L = 500 µm, growing
between two non-growing thin layers. This process creates a compressive stress in the two
non-growing layers. The top layer has a thickness of 5 µm, and the lower layer has a thickness
of 2 µm. The apical membrane may represent the apical cortex, and the apical adherens layer
dominates apical mechanics in epithelia [4], whereas the basal membrane represents the
ECM. The growth deformation gradient is written as: Gi j = 1 + δ1iδ1 j g11. The boundary
conditions are free.
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Fig. 9 (a): Profile of the interface between the two layers for different curvatures and a pre-stress σ P S = 200
Pa, with no defect in the lower layer. The continuous, dashed, and dotted lines correspond, respectively, to
W0 + ζ , W0 and ζ . The red, green, and blue lines correspond, respectively, to H = {−20, 0, 20}µm. (b):
Profile of the interface between the two layers for a case with a defect of relative thickness hd/hs = 0.85
with hd the defect thickness and hs the bottom layer thickness. The growth parameter is g = 0.05. The green,
blue, and red curves correspond, respectively, to cases with an initial zero, concave, and convex curvatures
H = 0, 20,−20. (c): Different shifts for the defect, which is at X = 0, 0.08, 0.16, respectively, for the blue,
green, and red lines. The amplitude of the deformation depends on the localization of the defect. The growth
parameter takes the value g = 0.1. (d): Comparison between constrained (dashed lines) and free (continuous
lines) boundary conditions for zero, convex, and concave initial curvatures (H = 0, −20, 20 for the green,
red, and blue lines) and a growing bottom layer (g = 0.03). (e): Interface between the lower and upper layer
in red. (f): Buckling for a constrained bilayer with a growing bottom layer and an initial concave curvature

We fit the experiment (Fig. 11a, b), and we find a basal ECM stiffer (Eb = 100 kPa or
Eb = 30 kPa) than the upper membrane and that the cell layer (E = 10 kPa). In the case
of the early imaginal wing, g11 = 0.2 and Eb = 30 kPa, and for the old imaginal wing
g11 = 0.25 and Eb = 100 kPa. We also introduce an asymmetry for the place of the defect
at X = −0.025 for the old epithelium and X = 0.15 for the early epithelium. The apparent
growth is thus higher and the ECM stiffer for the old imaginal wing when compared to the
early imaginal wing. This setup results in a bending toward the upper layer in the case with
no defect for the old imaginal wing and a slight bending toward the basal side for the early
imaginal wing Fig. 10a, c. However, when a defect of length ld = 100 µm is introduced in
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Fig. 10 Cuts of the imaginal wing for the different FEM simulations with and without defects. The colors
reflect the stiffness: red for the basal ECM, blue for the upper membrane and the cell layer, and cyan for the
zone of the cell layer around the defect that softens in the refined model

the form of a removal of the basal ECM, the curvature undergoes an inversion toward the
basal side in both cases in Fig.10b, d.

It seems that for the early imaginal disc this model is sufficient to properly reproduce the
experimental profile Fig. 11a. However, the agreement was not as good for the older initially
curved imaginal disc in Fig. 11b. We then modified the FEM model with the same strategy
as for the FvK model, by changing the stiffness at the level of the defect, making the cell
layer softer. This refined model provided a better fit to the experiments in Fig. 10c, e. The
new values of the fit for the old imaginal wing are: g11 = 0.43 and E = 1.7 kPa in the cell
layer at the defect level. The other parameters remain unchanged. Contrarily, changing the
growth rate at the level of the defect does not improve the fit. We deduce that the contribution
sg of the defect in Sect. 6.3 is mostly due to a change of the stiffness in the growing cell
layer at the level of the defect, rather than a change of growth. This is consistent with the
duration of Mmp2 expression during the experiment (18–24 h), see Sect. 2. No pre-stress was
introduced in the FEM simulations, since this pre-stress is assumed to be caused by growth,
and the growth can be introduced explicitly with an order of magnitude larger than with FvK.
For the same reason, growth generates the curvature, which is not introduced explicitly. To
conclude, FEM simulations validate the FvK calculations.

8 Discussion and conclusion

Motivated by experimental evidence that the ECM plays an important role in shaping epithelia
in 3D, as shown in Fig. 2, this work provides a mechanical description of growing epithelia
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(a) (b) (c)

Fig. 11 Fitting experimental wing disc profiles with the FEM model. (a): Theoretical fit of an early wing
imaginal disc, for which the initial profile before perturbation was flat (same as Fig. 2c). (b): Theoretical fit
of an older wing imaginal disc, for which the initial profile before perturbation was curved (same as Fig. 2e).
The stiffness of the cell layer is not altered by the defect. (c): Comparison between the refined fit when the
stiffness of the cell layer is altered by the defect (in green) and the case when it is not (red)

in the Föppl–von Kármán framework. In the context of embryo-genesis and organo-genesis,
previous theoretical studies have modeled epithelia using the vertex model [47–49] inspired
from the physics of foams [50]. Indeed, epithelia are cellular pavings where the main unit has
a polygonal shape in 2D or a shape of polyhedrons in 3D. Vertex models approximate cells
as polygons, make hypotheses about the mechanics of individual cells (e.g., their growth,
surface or line tension and stiffness) and simulate the behavior of cell assemblies from these
elementary rules. These simulations are based on energy minimization, as in the present work.
One limitation of cell-based models is the fact that simulating cell assemblies may become
difficult at very large cell numbers, notably when the parameter space must be explored. In
addition, it is rather hard to extract macroscopic physical quantities such as Young’s modulus
or surface tension from microscopic parameters describing the cells.

Most of the aforementioned theoretical works focused on the 2D mechanics of the apical
surface of epithelia, with only few studies addressing the 3D aspects of tissues [51,52].
Epithelia are usually thin layers, and the elasticity of slender elastic objects such as plates,
tubes or membranes can be good candidates to describe their mechanical properties, especially
in the presence of bending. However, a single plate may be too simple a model when it comes
to explaining the behavior of epithelia, which are intrinsically multilayered systems. In the
present paper, we have considered the multicomponent structure of epithelia from the view
point of elasticity. Local changes in elastic coefficients and differential growth are at the
origin of stresses able to buckle the sample. Not only could our bilayered elastic model
predict a broad range of morphogenetic behavior, it also yielded surface profiles that were in
very good agreement with experimentally observed ones. Notably, it could account for the
localized degradation of the ECM on two experimental observations that were limit cases:
one initially flat and one initially curved wing imaginal discs (Figs. 2, 8). The morphogenetic
processes that we observed and modeled—fold formation upon ECM degradation—were
artificially induced via an ectopic genetic expression of the metalloprotease Mmp2. These
experiments, as such, fall in the realm of “synthetic morphogenesis”. Nevertheless, similar
processes are naturally occurring in tissues. For example, deep folds that develop at late stage
of the wing imaginal disc are thought to arise through such a local degradation of the ECM
[23,24].

In this paper, we performed experimental observations of tissues exclusively after the
action of the genetic perturbation. Ideally, one would need to image the tissues before and
after the onset of the perturbation to completely disentangle the origin of the buckling. This
is experimentally possible in Drosophila with chronic imaging [53] and potentially through
prolonged imaging (i.e not just a few snapshots) with an appropriate method to reduce the
phototoxicity associated with the light dose [54].
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In the uniaxial geometry (with only one dimension for the sample), defects generate
buckling distortions of the shape due to variation of thickness, stiffness but also of growth
process. For a 1D bending process, the in-plane elastic equation is trivially solved and only
the bending equation exhibits interesting degrees of distortions. It is not the case for 2D
modes of deformations where spatial patterns happen on the outer periphery of the samples
([15,16]). One can then expect interesting patterns in these geometries.
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