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1 INTRODUCTION 

1.1 Motivations & objective 

Consequences of underwater explosions (UNDEX) 
and the damage they could bring forth have been well 
understood through meticulous efforts of the past re-
searchers, for example, (Hall 1989; Keil 1961; Office 
of Naval Research 1950) and so on. Yet, the advance-
ment in the manufacturing techniques and the discov-
ery of novel materials further propelled the need for 
more research in the domain of the composite struc-
tural responses under intense loads such as impacts, 
in-air or underwater blasts (Mouritz et al. 2001; 
Mouritz 2017; Porfiri and Gupta 2009). In an attempt 
to comprehend such dynamic behavior, full-scale or 
model scale experiments have been conducted, for in-
stance, (Arora et al. 2017; Dear et al. 2017). However, 
performing experiments on such a large scale could 
be both costly and time consuming and so, advanced 
numerical techniques have become popular in recent 
years (Mair 1999; Sigrist 2015). These studies con-
tain applications of numerical simulations and at the 
same time, validations by the experiments. One such 
commonly used numerical code is LS-DYNA which 
can be coupled to either the acoustic volume element 
proposed by (Felippa and DeRuntz 1984; Newton 
1978), or the Underwater Shock Analysis (USA) code 
(DeRuntz 1989).  These numerical codes are quite 
powerful, and able to capture complicated phenomena 

such as shock wave propagation, fluid-structure inter-
action, cavitation, etc. Nevertheless, the time and ef-
fort necessary for both preparation and computation 
can still be immense. According to the study of (Barras 
2012), tools such as LS-DYNA/USA are not well-
suited for the preliminary design studies in which dif-
ferent materials, plate sizes, and load cases need to be 
considered. In this context, a semi-analytical design 
tool has been developed within the framework of 
French research project SUCCESS. One of the objec-
tives of this project is to be able to rapidly analyze the 
air and underwater blast responses of rectangular 
composite plates, including the post-damage stage. 
Practical applications include designing the compo-
site sonar domes, acoustic window of a submarine, 
and the sailing boat hull.   

Keeping this objective in mind, this paper is in-
tended to present analytical and numerical perspec-
tives in regard to the response of simply-supported 
composite plates subjected to a far-field underwater 
explosion. The development of semi-analytical for-
mulae comprises coupling of the nonlinear structural 
equation with the first-order Doubly Asymptotic Ap-
proximation (DAA1) proposed by (Geers 1978). The 
composite plate is considered in both air-backed and 
water-backed conditions. Geometric nonlinearity due 
to large deflection, in von-Karman sense, is taken into 
account by incorporating a quadratic strain-displace-
ment relationship. The First-order Shear Deformation 
Theory (FSDT) and the one-to-one approximation 
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approach found in (Nishawala 2011) are adapted to 
reduce the mathematical complexities arisen. The 
governing equations that include the Fluid-Structure 
Interaction (FSI) effect are then discretized and 
solved by using a Nonstandard Finite Difference 
(NSFD) numerical scheme developed in (Songolo 
and Bidégaray-Fesquet 2018). The obtained results 
are confronted to the numerical solutions using LS-
DYNA/USA (DAA1). Details of the mathematical de-
velopment are explained in Section 3. 

1.2 Underwater explosion 

Underwater explosions not only generate a primary 
shock wave, which propagates through the surround-
ing fluid medium, but also cause the formation and 
oscillation of a gas bubble (Cole 1948). Depending on 
the standoff distance and the charge mass, these can 
be characterized as near-field or far-field explosions. 
A far-field underwater explosion is defined as an UN-
DEX where the charge is located at a sufficient dis-
tance away from the structure such that the pressure 
can be regarded as a plane shock wave and the sec-
ondary pressure wave caused by the bubble pulsation 
can be ignored (Klenow and Brown 2010).  

According to (Cole 1948), the plane shock pres-
sure wave can be approximated as:  

𝑃(𝑡) = 𝑃0𝑒
−𝑡/𝜏 , for 0 ≤ 𝑡 ≤ 𝜏 (1) 

where 𝑃0 is the peak pressure, 𝑡 is the time variable, 
and 𝜏 is the decay time required for the peak pressure 
to fall to 1/𝑒 of its peak value. The corresponding 
peak pressure 𝑃0 and the decay time 𝜏 can be deter-
mined from the charge mass 𝐶, standoff distance 𝑅 
and the type of the explosive charge by using the Prin-
ciple of Similarity as follows (Cole 1948): 

𝑃0 = 𝐾1 (
𝐶1/3

𝑅
)

𝐴1

, 𝜏 = 𝐾2𝐶
1/3 (

𝐶1/3

𝑅
)

𝐴2

 (2) 

where 𝐾1, 𝐴1, 𝐾2 and 𝐴2 are constants that depend on 
the types of the explosives (e.g., TNT, HBX-1).  

When a plane shock wave arrives at the target 
structure, the total pressure at the interface can be ob-
tained by a linear superposition of the incident and 
scattered pressures. The scattered pressure involves 
reflection of the incident pressure after the impact and 
damping radiation caused by the sudden movement of 
the plate. This high frequency or early-time interac-
tion phenomenon had been proposed by (Taylor 
1941) in which the plate is either free-standing or sup-
ported by a linear spring. The late-time phenomenon 
or the cavitation effect, however, was not considered. 
The former effect can be associated to an additional 
pressure created during the plate deceleration while 
the latter should be accounted for when the total pres-
sure in the fluid drops below the vapor pressure.  

Due to its effectiveness, Taylor’s formulation has 
been adapted and advanced by many researchers. For 
example, the air-backed condition of Taylor’s theory  

has been extended by (Liu and Young 2008) to the 
water-backed condition. (Schiffer and Tagarielli 
2012) also studied the 1D underwater blast response 
of the rigid plate, taking into account the cavitation. 
(Hoo Fatt and Sirivolu 2017) extended the approach 
of Taylor to a 2D deformable plate in both air and wa-
ter-backed conditions.  (Brochard et al. 2018, 2020; 
Sone Oo et al. 2019) considered a two-step approach: 
in step I, the underwater blast is idealized as an im-
pulsive loading to account for the early-time response 
while in step II, the water-added mass is considered 
as an additional pressure load. However, (Sone Oo et 
al. 2020), based on various case studies, later pointed 
out that the impulse-based approach using Taylor’s 
1D theory is valid only for a certain range of FSI pa-
rameter. (Sone Oo et al. 2020b), in this regard, im-
proved the impulse-based formulations by coupling 
the first-order Doubly Asymptotic Approximation 
(DAA1) to the linear structural equation of the plate, 
ensuring a smooth transition from the early to the long 
time phase. However, only a linear solution with an 
air-backed condition has been considered in that pa-
per. Therefore, this paper serves as an improvement 
to the previous version by including geometric non-
linearity (in von-Karman sense), and then by extend-
ing it to the water-backed condition. The results are 
analyzed for the spring-supported rigid plate, simply-
supported steel and carbon fiber/epoxy plates in air- 
and water-backed conditions, and then compared with 
numerical solutions using LS-DYNA/USA (DAA1). 

1.3 LS-DYNA/USA 

LS-DYNA/USA is the coupled FSI solver com-
prising of nonlinear FE code and the Underwater 
Shock Analysis (USA) code. It determines the transi-
ent response of a wholly or partially submerged struc-
ture subjected to a shock wave of arbitrary pressure 
profile (DeRuntz 1989). Application of LS-
DYNA/USA for naval structures can be found in (Shin 
2004; Le Sourne et al. 2003). The fluid equations 
treated by USA are based on boundary element codes 
called DAA1 or DAA2, the first- and second-order dif-
ferential equations in time domain to calculate the fluid 
pressure due to scattered waves respectively. They 
take into account both early- and long-time structural 
motions as well as a smooth transition between the two 
asymptotes. DAA-based solvers do not require explicit 
fluid modelling and thus, save computation time. The 
second-order approximation (DAA2) is a generaliza-
tion of DAA1 with an enhanced accuracy. However, 
due to the increased complexity of DAA2, only DAA1 

is adapted in this paper.  

2 PROBLEM DESCRIPTION 
 
Two types of problem are studied here: (1) spring-
supported rigid plate (Figure 1), and (2) a simply-



supported rectangular plate (Figure 2). The plate has 
the sides 𝑎, 𝑏 and uniform thickness ℎ. A standard 
Cartesian coordinate system is defined at the origin 
and mid-surface of the plate. Displacements in 𝑥, 𝑦, 𝑧 
directions are denoted as 𝑢, 𝑣, 𝑤 respectively. A uni-
formly distributed pressure is considered on one side 
of the plate. The plates are either in air-backed or wa-
ter-backed conditions. Cavitation, hydrostatic pres-
sure and structural damping are not considered.  

 

 

Figure 1. A mass-spring system containing a rigid plate sub-

jected to an incident pressure in: (a) air-backed, and (b) wa-

ter-backed conditions. 
 

 

Figure 2. Cartesian coordinate system and geometry of the 

2D deformable rectangular plate 
 

3 ANALYTICAL MODEL 

3.1 Spring-supported rigid plate 

For a rigid plate with an areal mass 𝑚𝑠 subjected to a 
plane shock wave 𝑃𝑖, the equation of motion can be 
given as: 

𝑊̈(𝑡) + 𝜔2𝑊(𝑡) =
𝑃𝑡𝑜𝑡(𝑡)

𝑚𝑠
 (3) 

where 𝑚𝑠 = 𝜌𝑠ℎ is the areal mass of the plate; 𝜔 =
√𝐾/𝑚𝑠 is the angular frequency of the plate, 𝐾 is the 
areal stiffness of the spring, 𝑃𝑡𝑜𝑡(𝑡) is the total pres-
sure acting on the plate, and 𝑊(𝑡) is the displacement 
of the plate (positive in 𝑧-direction). The total pres-
sure 𝑃𝑡𝑜𝑡(𝑡) can be obtained by linear superposition 
of all the pressures as: 

𝑃𝑡𝑜𝑡(𝑡) = 𝑃𝑖(𝑡) + 𝑃𝑠𝐿
(𝑡) − 𝑃𝑠𝑅

(𝑡) (4) 

where 𝑃𝑖 is the incident pressure, 𝑃𝑠𝐿
 and 𝑃𝑠𝑅

 are the 
scattered pressures on the left and right sides of the 
plate respectively, see Figure 1. Physically, the total 
pressure is the net pressure acting on the plate.  

The scattered pressures can be determined using 
DAA1 formulations (Geers 1978) as: 

𝑃̇𝑠(𝑡) + 𝐷𝑓𝑃𝑠(𝑡) = 𝜌𝑤𝑐𝑤𝑢̇𝑠(𝑡) (5) 

where 𝐷𝑓 = (𝜌𝑤𝑐𝑤) (𝑀𝑓)⁄ , 𝑀𝑓 is the areal water-
added mass for the rigid plate when it moves in water 
and 𝑢̇𝑠(𝑡) is the acceleration of the fluid particle due 
to scattered wave. Note that Eq. (5) only asymptoti-
cally satisfies the conditions in high and low frequen-
cies.  

Using the velocity continuity condition at the 
fluid-structure interface, the scattered wave accelera-
tion can be given as: 

 𝑢̇𝐿
𝑠(𝑡) = 𝑢̇𝑖(𝑡) − 𝑊̈(𝑡) (6) 

and  

𝑢̇𝑅
𝑠(𝑡) = 𝑊̈(𝑡) (7) 

for the left and right sides of the plate respectively.  
Equations (3) and (5) together form a system of 

coupled differential equations for the FSI and can be 
solved using NSFD method, see the complete deriva-
tions in (Sone Oo et al. 2020b, 2021). The time inter-
val [𝑡0, 𝑡] is discretized as: 

𝑡𝑖 = 𝑡0 + (𝑖 − 1)Δ𝑡 (8) 

where Δ𝑡 is the step size (Δ𝑡 > 0), 𝑡0 is the initial 
time, 𝑡𝑖 is the current time step, and 𝑖 = 1,2,3, … re-
fers to the discrete points in time.  

The discretized NSFD solutions are as follows: 

𝑊𝑖+1 = 𝑊𝑖 𝑐𝑜𝑠(𝜔𝛥𝑡) + 𝑉𝑖 (
𝑠𝑖𝑛(𝜔𝛥𝑡)

𝜔
) − 𝑃𝑡𝑜𝑡

𝑖 (
𝑐𝑜𝑠(𝜔𝛥𝑡)−1

𝑚𝑠𝜔
2 )

𝑉𝑖+1 = −𝑊𝑖𝜔 𝑠𝑖𝑛(𝜔𝛥𝑡) + 𝑉𝑖 𝑐𝑜𝑠(𝜔𝛥𝑡) + 𝑃𝑡𝑜𝑡
𝑖 (

𝑠𝑖𝑛(𝜔𝛥𝑡)

𝑚𝑠𝜔
)
 (9) 

where 𝑊 and 𝑉 are displacement and velocity of the 
plate respectively. 

Let 𝜚 be the tracing constant to switch on/off the 
water-backed condition. Then, the scattered pressure 
for the left side of the plate: 

𝑃𝑠𝐿
𝑖+1 = 𝑃𝑠𝐿

𝑖 𝑒−𝐷𝑓𝛥𝑡 + (
1−𝑒

−𝐷𝑓𝛥𝑡

𝐷𝑓
) (−𝜌𝑤𝑐𝑤𝑉̇𝑖 + 𝑃̇𝑖

𝑖) (10) 

and for the right side: 

𝑃𝑠𝑅
𝑖+1 = 𝜚 [𝑃𝑠𝑅

𝑖 𝑒−𝐷𝑓𝛥𝑡 + (
1−𝑒

−𝐷𝑓𝛥𝑡

𝐷𝑓
) (𝜌𝑤𝑐𝑤𝑉̇𝑖)] (11) 

When 𝜚 = 0, 𝑃𝑠𝑅
 will be zero on the right side, repre-

senting the air-backed condition. When 𝜚 = 1, water-
backed condition is invoked.  

The initial conditions are taken as 𝑊(0) =
𝑉(0) = 0, 𝑉̇(0) = 2𝑃0/𝑚𝑠 and 𝑃𝑠𝐿

(0) = 𝑃𝑖(0) = 𝑃0, 
and 𝑃𝑠𝑅

= 0.  



3.2 Simply-supported rectangular plate  

3.2.1 In-air response 
In this subsection, the First-order Shear Deformation 
Theory (FSDT) for the orthotropic plate (Figure 2) is 
extended to account for the geometric nonlinearity 
due to large deflection. The derivation procedures fol-
low those of (Mei and Prasad 1989) where the equi-
librium equations containing the Airy’s stress func-
tion 𝜙 are considered.  

According to FSDT, the transverse displacement is 
assumed to be independent of the thickness and the 
transverse normal strain is taken as zero. Only three 
DOFs are considered, assuming that |𝑢|, |𝑣| ≪ |𝑤|. 
The following quadratic strain-displacement relations 
are applied (Kármán 1907):  

𝜖𝑥𝑥 =
1

2
(

𝜕𝑤

𝜕𝑥
)

2

+ 𝑧
𝜕𝜓𝑥

𝜕𝑥
,   𝜖𝑦𝑦 =

1

2
(

𝜕𝑤

𝜕𝑦
)

2

+ 𝑧
𝜕𝜓𝑦

𝜕𝑦
  

𝜖𝑧𝑧 = 0,   𝛾𝑥𝑦 = (
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
) + 𝑧 (

𝜕𝜓𝑥

𝜕𝑦
+

𝜕𝜓𝑦

𝜕𝑥
) (12) 

𝛾𝑥𝑧 =
𝜕𝑤

𝜕𝑥
+ 𝜓𝑥 ,   𝛾𝑦𝑧 =

𝜕𝑤

𝜕𝑦
+ 𝜓𝑦  

Equilibrium conditions state the following govern-
ing equations: 

𝜕𝑁𝑥

𝜕𝑥
+

𝜕𝑁𝑥𝑦

𝜕𝑦
= 𝐼2𝜓̈𝑥  

𝜕𝑁𝑥𝑦

𝜕𝑥
+

𝜕𝑁𝑦

𝜕𝑦
= 𝐼2𝜓̈𝑦  

𝜕𝑄𝑥

𝜕𝑥
+

𝜕𝑄𝑦

𝜕𝑦
+ 𝑞 + 𝑞∗ = 𝐼1𝑤̈ (13) 

𝜕𝑀𝑥

𝜕𝑥
+

𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥 = 𝐼3𝜓̈𝑥  

𝜕𝑀𝑥𝑦

𝜕𝑥
+

𝜕𝑀𝑦

𝜕𝑦
− 𝑄𝑦 = 𝐼3𝜓̈𝑦  

where (𝐼1, 𝐼2, 𝐼3) = ∫ 𝜌(1, 𝑧, 𝑧2)𝑑𝑧
ℎ/2

−ℎ/2
 are mass, coupling 

and rotatory inertia where 𝐼2, 𝐼3 ≈ 0, (𝑁𝑥, 𝑁𝑦 , 𝑁𝑥𝑦) =

∫ (𝜎𝑥𝑥 , 𝜎𝑦𝑦 , 𝜎𝑥𝑦)
ℎ/2

−ℎ/2
𝑑𝑧 are in-plane force resultants, 

(𝑀𝑥 , 𝑀𝑦 , 𝑀𝑥𝑦) = ∫ 𝑧(𝜎𝑥𝑥 , 𝜎𝑦𝑦, 𝜎𝑥𝑦)
ℎ/2

−ℎ/2
𝑑𝑧 are bending mo-

ment resultants, (𝑄𝑥 , 𝑄𝑦) = ∫ (𝜎𝑥𝑧 , 𝜎𝑦𝑧)
ℎ/2

−ℎ/2
𝑑𝑧 are shear 

force resultants, 𝑞 is the external force in normal di-

rection, and 𝑞∗ is the resultant transverse force due to 

membrane effects defined as: 

𝑞∗ =
𝜕2𝜙

𝜕𝑦2
𝜕2𝑤

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2 − 2
𝜕2𝜙

𝜕𝑥𝜕𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
 (14) 

By taking the work of (Mei and Prasad 1989), it is 
possible to derive the following equation of motion:  

𝜌ℎ𝒩(𝑤̈) − 𝒰(𝑤) = 𝒩(𝑞) + 𝒩(𝑞∗) (15) 

where: 

𝒩 = 𝑙1
𝜕4

𝜕𝑥4 + 𝑙2  
𝜕4

𝜕𝑥3𝜕𝑦
+ 𝑙3

𝜕4

𝜕𝑥2𝜕𝑦2 + 𝑙4
𝜕4

𝜕𝑥𝜕𝑦3 + 𝑙5
𝜕4

𝜕𝑦4 +

𝑙6
𝜕2

𝜕𝑥2 + 𝑙7
𝜕2

𝜕𝑥𝜕𝑦
+ 𝑙8

𝜕2

𝜕𝑦2 − 1 (16) 

is a differential operator in which 𝑙1, 𝑙2, … , 𝑙8 are co-
efficients given in Appendix, Eq. (A1). Then: 

𝒰(𝑤) = 𝐷̅(𝑤) + 𝑉̅(𝑤) (17) 

is an operator containing variable 𝑤. 𝐷̅ and 𝑉̅ refer to 
bending and transverse shear differential operators 
which can be defined respectively as: 

𝐷̅ = 𝐷11
𝜕4

𝜕𝑥4 + 4𝐷16  
𝜕4

𝜕𝑥3𝜕𝑦
+ 2(𝐷12 + 2𝐷66)

𝜕4

𝜕𝑥2𝜕𝑦2 +

4𝐷26
𝜕4

𝜕𝑥𝜕𝑦3 + 𝐷22
𝜕4

𝜕𝑦4 (18) 

and:  

𝑉̅ = ∑ 𝑣𝑗
𝜕6

𝜕𝑥(7−𝑗)𝜕𝑦(𝑗−1)
7
𝑗=1  (19) 

where coefficients 𝑣𝑗 = [𝑠̅][𝐷126] are defined in Eq. 
(A4 - A5) of the Appendix section. 

To have a closed mathematical problem, a second 
equation would be required and is obtained from St. 
Venant’s compatibility relation given below:  

𝐴11
∗ 𝜕4𝜙

𝜕𝑦4 + (2𝐴12
∗ + 𝐴66

∗ )
𝜕4𝜙

𝜕𝑥2𝜕𝑦2 + 𝐴22
∗ 𝜕4𝜙

𝜕𝑥4 − 2(𝐴16
∗ 𝜕4𝜙

𝜕𝑥𝜕𝑦3 +

𝐴26
∗ 𝜕4𝜙

𝜕𝑥3𝜕𝑦
) = (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

− (
𝜕2𝑤

𝜕𝑥2
𝜕2𝑤

𝜕𝑦2) (20) 

where 𝐴𝑖𝑗
∗ = [𝐴𝑖𝑗]

−1
 in which (𝑖, 𝑗) = (1,2,6) for ex-

tension, and (𝑖, 𝑗) = (4,5) for shear. It should be 
noted that the right-hand side of Eq. (20) represents 
the Gaussian curvature, which is zero for developa-
ble surfaces, e.g., a cylinder or a cone. 

For a simply-supported boundary rectangular 
plate, solution functions can be expanded into double 
Fourier series as follows:  

𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑚𝑛 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)∞

𝑛=1
∞
𝑚=1   

𝜓𝑥(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝛹𝑥𝑚𝑛
𝑐𝑜𝑠 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)∞

𝑛=1
∞
𝑚=1  (21) 

𝜓𝑦(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝛹𝑦𝑚𝑛
𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
) 𝑐𝑜𝑠 (

𝑛𝜋𝑦

𝑏
)∞

𝑛=1
∞
𝑚=1   

where 𝑊𝑚𝑛, 𝛹𝑥𝑚𝑛
 and 𝛹𝑦𝑚𝑛

are three generalized co-
ordinates, 𝑚 and 𝑛 are mode numbers in 𝑥- and 𝑦-
directions respectively.  

The transverse normal load 𝑞 is also expanded as: 

𝑞(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑞𝑚𝑛(𝑡) 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)∞

𝑛=1
∞
𝑚=1  (22) 

where 𝑞𝑚𝑛(𝑡) is the modal participation term.  
Choice of the correct form of the Airy’s function 

𝜙(𝑥, 𝑦, 𝑡) depends on the problem formulation – 
• For linear problem involving small strain and 

small deflection, 𝜙(𝑥, 𝑦, 𝑡) = 0. Hence, 𝑞∗ =
0 and it can be proved that Eq. (15) reduces to 
a linear FSDT solution. 

• In a nonlinear theory (small strain but large 
deflection), the function 𝜙(𝑥, 𝑦, 𝑡) needs to 
satisfy the edge conditions, namely, immova-
ble or movable edge. 

Following the approach of (Nishawala 2011), the 
Airy’s function is defined as: 

𝜙(𝑥, 𝑦, 𝑡) = 𝑃𝑥𝑥
2 + 𝑃𝑦𝑦2 +

∑ ∑ 𝜙𝑚𝑛(𝑡) 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)∞

𝑛=1
∞
𝑚=1  (23) 



where 𝑃𝑥 and 𝑃𝑦 are functions of tensile loads that re-
strain the edges from moving, and 𝜙𝑚𝑛(𝑡) is the tem-
poral modal terms for Airy’s function.  

Using the general expressions of strain-displace-
ment relationship, it is able to give the axial displace-
ments 𝛿𝑥 and 𝛿𝑦 along the plate edges 𝑦 = [0, 𝑏], and 
𝑥 = [0, 𝑎] as: 

𝛿𝑥 = ∫ [𝐴11
∗ 𝜕2𝜙

𝜕𝑦2 + 𝐴12
∗ 𝜕2𝜙

𝜕𝑥2 − 𝐴16
∗ 𝜕2𝜙

𝜕𝑥𝜕𝑦
−

1

2
(

𝜕𝑤

𝜕𝑥
)

2

]
𝑎

0
𝑑𝑥 = 0 (24) 

𝛿𝑦 = ∫ [𝐴12
∗ 𝜕2𝜙

𝜕𝑦2 + 𝐴22
∗ 𝜕2𝜙

𝜕𝑥2 − 𝐴26
∗ 𝜕2𝜙

𝜕𝑥𝜕𝑦
−

1

2
(

𝜕𝑤

𝜕𝑦
)

2

]
𝑏

0
𝑑𝑦 = 0 (25) 

Equations (24) and (25) when solved together with 
Eqs. (15) and (20) by substituting the solution func-
tions defined in Eqs. (21 – 23) and the application of 
the Galerkin’s procedure produce nonlinear ordinary 
differential equations of structure in time domain. To 
have tractable mathematical expressions, the authors 
adapted the one-to-one approximation, which has 
been investigated by (Nishawala 2011). In this ap-
proach, only the same modal terms are accounted for 
when two summation functions are multiplied. This 
significantly reduces the complexities, giving out the 
well-known Duffing equation below: 

𝑊̈𝑚𝑛 + 𝐾𝑚𝑛𝑊𝑚𝑛 + 𝜍𝑚̃𝑛𝑊𝑚𝑛
3 = 𝐹𝑚𝑛 (26) 

where 

𝐾𝑚𝑛 =
𝐷̃𝑚𝑛−𝑉𝑚𝑛

𝜌ℎ𝐿̃𝑚𝑛
, 𝜍̃𝑚𝑛 =

𝜍𝑚𝑛

𝜌ℎ
, 𝐹𝑚𝑛 =

16𝑞

𝜌ℎ𝑚𝑛𝜋2 (27) 

Together with the initial conditions, Eq. (26) can 
be solved using the same procedure (NSFD) pre-
sented in subsection 3.1. For brevity, these proce-
dures will not be repeated here.  

3.2.2 In-water 
Coupling with DAA1 for the air-backed condition has 
been presented in detail by (Sone Oo et al. 2020b, 
2021). To entail the purpose of this paper, only a brief 
summary of the derivation is presented here.  

We use the same structural equation shown in Eq. 
(26). However, the force function is redefined as:  

𝐹𝑚𝑛(𝑡) = ∬ [𝑃𝑖(𝑡) + 𝑃𝑠𝐿
(𝑥, 𝑦, 𝑡) − 𝑃𝑠𝑅

(𝑥, 𝑦, 𝑡)]𝛼𝑚𝑛𝑑𝑆
𝑆

 (28) 

where 𝛼𝑚𝑛 = sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
), and 𝑑𝑆 = 𝑑𝑥𝑑𝑦. 

Note that the incident pressure is supposed to be evenly 

distributed across the plate and thus, does not depend 

on spatial coordinates. The scattered pressures for both 

left and right sides of the plate are functions of spatial 

and temporal variables, taking the following forms: 

𝑃𝑠𝐿
(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑝𝑚𝑛

𝐿 (𝑡)𝛼𝑚𝑛(𝑥, 𝑦)∞
𝑛=1

∞
𝑚=1  (29a) 

𝑃𝑠𝑅
(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑝𝑚𝑛

𝑅 (𝑡)𝛼𝑚𝑛
∞
𝑛=1

∞
𝑚=1 (𝑥, 𝑦) (29b) 

where 𝑝𝑚𝑛
𝐿 (𝑡) and 𝑝𝑚𝑛

𝑅 (𝑡) are modal terms. 
By substituting Eqs. (29a – 29b) to Eq. (28), and 

using the orthogonality condition, we get: 

𝐹𝑚𝑛(𝑡) = (
𝐴𝑓

4
) [(

16

𝑚𝑛𝜋2) 𝑃𝑖(𝑡) + 𝑝𝑚𝑛(𝑡)] (30) 

DAA1 equation for the 2D deformable plate after 
applying the Galerkin’s procedure can be given as: 

𝑝𝑚𝑛
𝐿 = −𝐷𝑓𝑚𝑛

𝑝𝑚𝑛
𝐿 − 𝜌𝑤𝑐𝑤𝑉̇𝑚𝑛 + (

16

𝑚𝑛𝜋2) 𝑃̇𝑖 (31a) 

𝑝𝑚𝑛
𝑅 = −𝐷𝑓𝑚𝑛

𝑝𝑚𝑛
𝐿 + 𝜌𝑤𝑐𝑤𝑉̇𝑚𝑛 (31b) 

in which the difference is the presence of the incident 
particle acceleration on the left side of the plate. Note 
that 𝐷𝑓𝑚𝑛

= 𝜌𝑤𝑐𝑤/𝑀𝑎𝑚𝑛
 needs to be calculated for 

each mode 𝑚, 𝑛. The modified formulation of 
(Greenspon 1961)’s water-added mass per unit area is 
(also see, Sone Oo et al. 2021): 

𝑀𝑎𝑚𝑛
=

1

2
𝜌𝑤𝑏𝑓 (

𝑎

𝑏
)∑

64

𝑚𝑛𝑗2𝜋4
∞
𝑗=1  (32) 

where 𝑗 = 1,3,5,….  
Equation (32) can be solved using NSFD method: 

𝑝𝑚𝑛
𝐿 𝑖+1

= 𝑝𝑚𝑛
𝐿 𝑖

𝑒−𝐷𝑓𝑚𝑛𝛥𝑡 + (
1−𝑒

−𝐷𝑓𝑚𝑛
𝛥𝑡

𝐷𝑓𝑚𝑛

) (−𝜌𝑤𝑐𝑤𝑉̇𝑚𝑛
𝑖 +

𝑃̇𝑖
𝑖 (

16

𝑚𝑛𝜋2)) (33a) 

𝑝𝑚𝑛
𝑅 𝑖+1

= 𝜚 [𝑝𝑚𝑛
𝑅 𝑖

𝑒−𝐷𝑓𝑚𝑛𝛥𝑡 + (
1−𝑒

−𝐷𝑓𝑚𝑛
𝛥𝑡

𝐷𝑓𝑚𝑛

) (𝜌𝑤𝑐𝑤𝑉̇𝑚𝑛
𝑖 )]

 (33b) 

Recall that 𝜚 is a flag to change from water-backed to 
air-backed condition. 

The expressions for the displacement and velocity 
are the same as the ones shown in Eqs. (9) and the 
acceleration as: 

𝑉̇𝑚𝑛
𝑖+1 = −𝜔𝑚𝑛

2 𝑖
 𝑊𝑚𝑛

𝑖 +
4

𝑀𝑠
𝐹𝑚𝑛

𝑖  (34) 

where 𝑀𝑠 = 𝜌ℎ𝐴𝑓 is the mass of the plate. Note also 
that for linear theory, the angular frequency 𝜔𝑚𝑛 =
√𝐾𝑀𝑛/𝑚𝑠 is the same for all time steps whereas in 
the nonlinear theory, the frequency changes due to lo-
cal linearization since: 

𝜔𝑚𝑛
𝑖 = √𝐾𝑚𝑛 + 𝜍𝑚̃𝑛(𝑊𝑚𝑛

𝑖 )2 (35) 

where the initial conditions are taken as: 

𝑊𝑚𝑛(0) = 𝑉𝑚𝑛(0) = 0, 𝑉̇𝑚𝑛(0) = 2𝑃0/𝑚𝑠,  𝑝𝑚𝑛
𝐿 (0) =

16𝑃0 (𝑚𝑛𝜋2)⁄ , 𝑝𝑚𝑛
𝑅 (0) = 0   (36) 

4 RESULTS & DISCUSSIONS 

In this section, three types of problems are studied: 
(1) spring-supported rigid plate subjected to a plane 
shock exponential wave, (2) simply-supported steel 
plate subjected to a uniformly distributed suddenly 
applied pressure load, and (3) simply-supported com-
posite plate subjected to an exponentially decaying 
plane shock wave. The results are compared with nu-
merical solutions from LS-DYNA/USA (DAA1) 
without cavitation or damage. The Finite Element 
(FE) models are detailed in each corresponding sub-
section. The effect of geometric nonlinearity is also in-
vestigated by using an air-backed composite plate sub-
jected to various step loadings. 



4.1 Case study 1: spring-supported rigid plate 
under plane shock loading 

A rigid square plate with dimensions (269.8 mm x 
269.8 mm), thickness 6.35 mm, density 7800 kg.m-3, 
and natural frequency 100 Hz is subjected to a plane 
shock pressure generated at 15.24 m from an explosion 
of 136 kg of T.N.T (Taylor 1941). The associated peak 
pressure and decay time are 15.4 MPa and 0.435 ms 
respectively. The plate is submerged in water with den-
sity 1000 kg.m-3 and acoustic speed 1400 m.s-1.  

In LS-DYNA/USA, a single finite element plate-
spring model, shown in Figure 1, is constructed. In-
stead of modelling the fluid explicitly, however, 
DAA1 boundary elements are prescribed over the sur-
face of the plate. Rigid material definition is used. 
Cavitation or hydrostatic pressure is not accounted 
for. Water-backed condition can be invoked in LS-
DYNA/USA (DAA1) by specifying the water-backed 
node numbers. Same value of water-added mass 
(𝑀𝑎/𝑀𝑠 = 3.056) is used in both numerical and 
semi-analytical approaches. 

Comparisons of the results for air- and water-
backed conditions are shown in Figure 3. The maxi-
mum response of the water-backed plate is found to be 
about 24% less than that of the air-backed plate. The 
total pressure profiles look similar between the two 
conditions. The displacement is normalized by 𝑊𝑚 =
2𝑃0𝜏/(𝜌𝑤𝑐𝑤), maximum displacement given by Tay-
lor’s theory in the air-backed condition. The normali-
zation of time is done by dividing by 𝑇𝑑 = 𝑎/(2𝑐𝑤), 
which is the diffraction time of the plate. It is observed 
that the NSFD method gives almost identical results 
compared to LS-DYNA/USA (DAA1). 

4.2 Case study 2: simply-supported steel plate 
under step loading 

A simply-supported (immovable edge) steel plate 
(size: 100 mm x 100 mm, thickness: 5.76 mm, den-
sity: 7800 kg.m-3, Young’s modulus: 200 GPa, Pois-
son’s ratio: 0.3) is subjected to uniformly distributed 
step loading of pressure 𝑃0 = 2.5 MPa. Cavitation is 
not considered in the analysis. The acoustic properties 
of water are taken as 𝜌𝑤 = 1025 kg.m-3 and 𝑐𝑤 =
1500 m.s-1. Failure is not considered as well. A quar-
ter plate model (50 mm x 50 mm) is constructed in 
LS-DYNA using a total of 169 fully-integrated shell 
elements along with an elastic material. Five through-
thickness integration points are given. A shear correc-
tion factor of 5/6 is applied. Air- and water-backed 
conditions are defined through USA input cards.  

Figure 4 compares the time histories of the deflec-
tion and stress in 𝑥-direction at the center of the steel 
plate. It can be seen that not only the central deflection 
but also the stress agrees well (< 5% discrepancy rel-
ative to analytical results) between the two approaches 
considered in this paper. Compared to the air-backed 
plate, the water-backed plate response shows a slight  

 

(a) Normalized displacement Vs normalized time 

 

(b) Normalized total pressure Vs normalized time 

Figure 3. UNDEX responses of spring-supported rigid plate 

in air- and water-backed conditions 
 
decrease (≈ 24%) in amplitude and an increase in the 
plate response time due to an additional involvement 
of water-added mass at the back of the plate. It should 
be noted that the plasticity effect has not been consid-
ered in this study and so, the case study is useful strictly 
to verify the mathematical relevance of the model com-
pared to LS-DYNA/USA (DAA1) approach. 

4.3 Case study 3: simply-supported CFRP plate 
under plane shock loading 

Case 3 considers a simply-supported (immovable 
edge) carbon-fiber/epoxy (CFRP) plate with the same 
dimension and thickness as case study 2. A material 
density of 1548 kg.m-3 and a stacking sequence of 
[±45/0/0/0/±45/0/0/0/90/90]S are used with mechan-
ical characteristics defined in Table 1. Only a quarter 
of the plate is modeled in LS-DYNA by using sym-
metric boundary conditions. Modified fully-inte-
grated shell elements (EQ: -16) along with the com-
posite material (MAT 54) are employed. The peak  



 

(a) Central deflection – time history 

 

(b) Central stress – time history 

Figure 4. Time histories of simply-supported rectangular 

steel plate responses in air- and water-backed conditions 
 

pressure of 1.5 MPa and load decay time of 1.3 ms 
corresponding to a 586 kg of T.N.T explosive deto-
nated at 169 m stand-off distance (shock factor = 
0.14) are considered. 

Figure 5 shows time evolutions of the CFRP plate 
deflection and stress (in fiber direction) at bottom ply 
and center of the plate when subjected to UNDEX. The 
central deflection shows 8% discrepancy with respect 
to the analytical results whereas the stress shows less 
than 15% discrepancy relative to the analytical values 
(with x-y displacements) for both air- and water-
backed cases. This is mainly due to the possible in-
volvement of the in-plane stretching. By restraining 
the translational displacements in LS-DYNA/USA 
(DAA1), it can be seen in Figure 5(b) that the analytical 
and numerical stress results become much closer. As-
sessment to the mid-plane stretching also reveals that 
stretching amounts to about 13% of maximum bending 
stress in this case. Such in-plane stretching effects 
may, therefore, need to be considered in the future.  

 
 

Table 1.  Characteristics of the carbon fiber/epoxy lamina  ________________________________________________  
E11 (GPa)    138   E22 = E33 (GPa)  8.98   
v12 = v13     0.281   v23       0.385 
G12 = G13 (GPa)  3.66   G23 (GPa)    3.24  ________________________________________________ 
*Taken from quasi-static tests performed by the authors 

 

(a) Central deflection – time history 

 

(b) Central stress (bottom ply) – time history 

Figure 5. Time histories of simply-supported rectangular 

CFRP plate responses in air- and water-backed conditions 

4.4 Geometric nonlinear effect 

A geometric nonlinear effect due to large deflection 
is investigated by using a flexible CFRP plate with 
larger length-thickness ratio, 𝑎 ℎ⁄ = 69.4. Only air-
backed results are shown here since the conclusion 
is the same for the water-backed cases. Step loading 
with varying levels of peak pressures is considered. 
Linear analytical solutions are also plotted here to 
compare. In Figure 6, the improvement after incor-
porating the geometric nonlinear effects (after 
𝑊𝑚𝑎𝑥 ℎ⁄ ≥ 0.4) can be clearly observed. Figure 7 
shows comparison of the central deflection - time 
histories evaluated by analytical (linear), analytical 
(nonlinear) and numerical approaches when the step 
loading of 0.1 MPa is applied. It can be seen that the 



 

Figure 6. Nonlinear UNDEX responses of simply-supported 

rectangular CFRP plate in an air-backed condition 
 

 

Figure 7. Comparison between linear and nonlinear re-

sponses of CFRP plate (𝑷𝟎 = 𝟎. 𝟏 MPa) 
 
linear FSDT-DAA1 model is only comparable until 
about 4 ms. Geometric nonlinearity is found to de-
crease period of oscillation as well as the amplitude 
of the dynamic response. 

5 CONCLUSION & PERSPECTIVES 

A semi-analytical design tool is introduced to deter-
mine the response of air-backed and water-backed 
composite plates under a far-field underwater explo-
sion. The analytical development is presented for 
both the rigid plate-spring system and simply-sup-
ported deformable plates. It has been shown that the 
present semi-analytical formulations for deformable 
plates obtain close agreement (< 10% for deflection 
and < 15% for stress) compared to numerical solu-
tions using LS-DYNA/USA (DAA1). The nonlinear 
behavior is also captured by the consideration of the 
one-to-one approximation and the quadratic strain-
displacement relationships.  

On characterizing the incident load, nevertheless, 
only a simple plane shock wave associated with a far-
field underwater explosion is adapted. This is indeed 
an idealized assumption to simplify the case study. In 
the future, a spherical wave as well as the possible 
contribution of the oscillating gas bubble should be 
examined. Moreover, the analysis is performed only 
within elastic regime with the intention of developing 
a semi-analytical design tool for the rapid analysis of 
composite plate response. From an industrial point of 
view, the present semi-analytical model could be used 
to determine the maximum deflection and the maxi-
mum stress especially in the preliminary design stage.  

As part of the future work, it should be investi-
gated in more details about the influence of stretching 
due to in-plane displacements as well as the rotatory 
inertia effect. The applicability of the one-to-one ap-
proximation is seen to be working well to predict the 
deflections but should further be explored in deter-
mining the stresses since those functions contain sec-
ond-order differentiations. Correct predictions of the 
stresses would help the designers predict the damage 
initiation correctly. Cavitation, hydrostatic pressure, 
structural damping and post-damage effects are disre-
garded at the moment and so, should be studied in the 
future. Finally, the approach presented in this paper 
should be compared with a fully-coupled numerical 
simulation such as LS-DYNA/USA involving acous-
tic volume elements or with the experiments for vari-
ous scenarios and plate aspect ratios. These perspec-
tives would be taken into account in the subsequent 
publications.  

6 APPENDIX 

𝑙1 = 𝑠4𝑠7 − 𝑠1𝑠10, 𝑙2 = 𝑠4𝑠8 + 𝑠5𝑠7 − 𝑠1𝑠11 − 𝑠2𝑠10, 𝑙3 =
𝑠4𝑠9 + 𝑠5𝑠8 + 𝑠6𝑠7 − 𝑠1𝑠12 − 𝑠2𝑠11 − 𝑠3𝑠10, 𝑙4 = 𝑠5𝑠9 +
𝑠6𝑠8 − 𝑠2𝑠12 − 𝑠3𝑠11, 𝑙5 = 𝑠6𝑠9 − 𝑠3𝑠12, 𝑙6 = 𝑠1 + 𝑠10, 𝑙7 =

𝑠2 + 𝑠10, 𝑙7 = 𝑠2 + 𝑠11, 𝑙8 = 𝑠3 + 𝑠12 (A1) 

[𝑠] =
𝑇𝑠

𝐾𝑠
[𝐴𝑠

∗][𝐷126] (A2) 

where 𝑇𝑠 is a tracing constant for transverse shear ef-
fect (𝑇𝑠 = 0 if transverse shear effect is neglected), 
and 𝐾𝑠 is the shear correction factor. And:  

[𝑠] = [𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10 𝑠11 𝑠12]𝑇   (A3) 

[𝐷126] =  

[
 
 
 
 
 
𝐷11

𝐷12

𝐷16

𝐷22

𝐷26

𝐷66]
 
 
 
 
 

, [𝐴𝑠
∗] =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝐴55

∗ 0 𝐴45
∗ 0 0 0

0 𝐴45
∗ 2𝐴55

∗ 0 0 𝐴45
∗

0 0 0 0 𝐴45
∗ 𝐴55

∗

0 0 𝐴55
∗ 0 0 𝐴45

∗

0 𝐴55
∗ 0 0 2𝐴45

∗ 𝐴55
∗

0 0 0 𝐴45
∗ 𝐴55

∗ 0

𝐴45
∗ 0 𝐴44

∗ 0 0 0

0 𝐴44
∗ 2𝐴45

∗ 0 0 𝐴44
∗

0 0 0 0 𝐴44
∗ 𝐴45

∗

0 0 𝐴45
∗ 0 0 𝐴44

∗

0 𝐴45
∗ 0 0 2𝐴44

∗ 𝐴45
∗

0 0 0 𝐴44
∗ 𝐴45

∗ 0 ]
 
 
 
 
 
 
 
 
 
 
 
 

 (A4) 



 

[𝑠̅] =

[
 
 
 
 
 
 

−𝑠10 0 𝑠7

𝑠4 − 𝑠11 𝑠7 𝑠8 − 𝑠1 − 3𝑠10

𝑠5 − 𝑠12 𝑠8 − 𝑠1 − 𝑠10 𝑠9 − 𝑠2 + 3(𝑠4 − 𝑠11)

𝑠6 𝑠4 + 𝑠9 − 𝑠11 − 𝑠12 3(𝑠5 − 𝑠12) − 𝑠3

0 𝑠5 − 𝑠3 − 𝑠12 3𝑠6

0 𝑠6 0
0 0 0

  

 

0 0 0
0 0 2𝑠7

0 3𝑠7 2(𝑠8 − 𝑠1 − 𝑠10)

𝑠7 3(𝑠8 − 𝑠1) − 𝑠10 2(𝑠4 + 𝑠9 − 𝑠11 − 𝑠12)
𝑠8 − 𝑠1  𝑠4 − 𝑠11 + 3(𝑠9 − 𝑠2) 2(𝑠5 − 𝑠12 − 𝑠3)
𝑠9 − 𝑠2 𝑠5 − 𝑠12 − 3𝑠3 2𝑠6

−𝑠3 𝑠6 0 ]
 
 
 
 
 
 

 (A5) 
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