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Abstract 

In this paper, a closed-form analytical solution procedure is proposed to solve the coupled fluid-structure interaction 

(FSI) equations that involve the first-order Doubly Asymptotic Approximation (DAA1) formulation. An efficient 

method comprised of the nonstandard finite difference (NSFD) scheme is applied. First of all, analytical equations 

are developed to analyze the response of a rigid mass-spring oscillator in an air-backed condition when it is subjected 

to a plane shock exponential wave coming from a far-field underwater explosion. After validating the results with 

LS-DYNA/USA (DAA1), these equations are extended to determine the response of two-dimensional, simply-supported 

rectangular plate, and then tested on the isotropic and orthotropic plates within a small deflection regime. Parametric 

studies are also performed by varying the load decay times, peak pressures, as well as the aspect ratios of the plate. 

Finally, the advantages and limitations of the proposed formulae are exposed along with suggestions for the future 

work. 
 

Keywords: Doubly-Asymptotic Approximation (DAA); Fluid-structure interaction (FSI); Underwater explosion (UNDEX); LS-

DYNA/USA; Nonstandard finite difference method. 

1. Introduction 

Non-contact underwater explosion (UNDEX) has long been a major threat to military vessels and civil 

marine structures since World War II. In order to prevent immersed structures against such intense 

loadings, it is very important for the designers to fully understand the underlying physics such as shock 

wave propagation, fluid-structure interaction (FSI), bulk cavitation, and so on. Over the past few decades, 

advanced numerical approaches involving Underwater Shock Analysis (USA) code have been widely 

utilized to analyze the underwater shock structure interaction problems. The fluid equations solved by 

USA code employ Doubly Asymptotic Approximation, a boundary element method proposed by (Geers 

1978) during 1970s. These are time domain differential equations that approach exactness at both low 

and high frequencies, allowing for a smooth transition in-between. The governing equations are 

expressed in terms of wet surface variables only and thus, it is not required to explicitly model the 

surrounding fluid. Traditionally, these equations have been solved numerically with the use of a 

staggered solution procedure and been incorporated into various commercial finite element tools such as 

LS-DYNA, NASTRAN (DeRuntz 1989). These numerical tools are indeed very powerful. However, as 

investigated by (Barras 2012), they can be very time consuming and demand much competence from the 

users. Consequently, they are not suitable for the preliminary design phases in which numerous loading 

scenarios as well as different structural configurations need to be tested. In this regard, simplified 

analytical solutions become more relevant since they provide reasonably accurate solutions in a relatively 

short amount of time as well as good insights to the problems. 
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Nomenclature 

𝐴𝑓  the (wetted) surface area of the plate 

𝑐𝑤   speed of sound in water (fluid) 

ℎ  thickness of the plate 

𝑚, 𝑛  mode numbers in 𝑥- and 𝑦-directions respectively 

𝑀𝑓   water-added mass per unit area 

𝑚𝑠   areal mass of the plate 

𝑃0  peak pressure 

𝑃𝑖   incident pressure 

𝑃𝑠   scattered pressure 

𝜓𝑥 , 𝜓𝑦 rotation of the transverse normal about 𝑦- and 𝑥-axes respectively 

𝑃𝑡𝑜𝑡  the total pressure acting on the plate 

𝜌𝑠  density of the plate 

𝜌𝑤  density of water (fluid) 

𝑡  time 

𝜏   decay time of the loading 

𝑢𝑖  particle velocity of the incident wave 

𝑢𝑠  particle velocity of the scattered wave 

𝑤   transverse displacement 

𝑥, 𝑦, 𝑧 Cartesian coordinate system 

 

2. Background 

Underwater explosions not only generate a primary shock wave that propagates through the 

surrounding fluid medium at the speed of sound but also cause the formation and oscillation of a gas 

bubble. Depending on the standoff distance and the charge mass, these can be characterized as near-field 

or far-field explosions. In this paper, it is assumed that the target plate is at a sufficiently far standoff 

distance from the explosive charge so that the pressure can be regarded as a plane shock wave and the 

secondary pressure wave caused by the bubble pulsation can be ignored. According to (Cole 1948), the 

plane shock pressure wave can be expressed as: 

                        𝑃(𝑡) = 𝑃0𝑒−𝑡/𝜏 , for 0 ≤ 𝑡 ≤ 𝜏 (1) 

where 𝑃0 is the peak pressure, 𝑡 is the time variable, and 𝜏 is the decay time required for the peak 

pressure to fall to 1/𝑒 of its peak value. The corresponding peak pressure 𝑃0 and the decay time 𝜏 

can be determined from the charge mass 𝐶, standoff distance 𝑅 and the type of the explosive charge 

by using the Principle of Similarity as follows (Cole 1948): 

                     𝑃0 = 𝐾1 (
𝐶1/3

𝑅
)

𝐴1

,    𝜏 = 𝐾2𝐶1/3 (
𝐶1/3

𝑅
)

𝐴2

 (2) 

where 𝐾1, 𝐴1, 𝐾2 and 𝐴2 are constants that depend on the types of the explosives.  

The arrival of the plane shock wave to the target structure would bring about an interaction 

phenomenon in which the total pressure at the interface can be obtained by a linear superposition of the 

incident and scattered pressures. The scattered pressure involves reflection of the incident pressure after 

the impact and damping radiation caused by the sudden movement of the plate. This is called high 

frequency or early-time interaction phenomenon and its solution was proposed by (Taylor 1941) in which 

the plate is either free-standing or supported by a linear spring. Taylor’s theory, however, did not take 

into account the late-time phenomenon or the cavitation effect. The former effect can be associated to an 

additional pressure created during the plate deceleration phase while the latter should be accounted for 

when the total pressure in the fluid drops below the vapor pressure. Nevertheless, due to the simplicity 

and effectiveness of Taylor’s solutions, there have been many research efforts in the past that used 

Taylor’s FSI formulations to idealize the underwater blast as an impulsive loading, for example, 

(Hutchinson and Xue 2005; Brochard et al. 2018, 2020). The authors have also applied a similar approach 



by dividing the FSI response stages into two: early-time and the long-time stages, see (Sone Oo et al. 

2019). However, this kind of approach may lead to overestimation or underestimation of the plate 

response according to (Deshpande et al. 2006; Schiffer et al. 2012). Thus, in the recent paper of (Sone 

Oo et al. 2020), the applicability of the Taylor’s 1D FSI theory in the study of underwater explosion 

response of orthotropic plates was investigated. Based on various case studies, it was shown that the two-

step approach based on Taylor’s theory is valid only for a certain range of FSI parameter. 

In this regard, Doubly Asymptotic Approximations developed by (Geers 1978) may be applied so as 

to alleviate some of the limitations imposed by the previous two-step approach. These are the first- and 

second-order differential equations in time to determine the fluid pressure due to scattered wave on the 

fluid-structure interface. They take into account both early- and long-time structural motions as well as 

a smooth transition between the two. The second-order approximation (DAA2) is a generalization of the 

first-order approximation (DAA1) with enhanced accuracy. However, due to the increased complexity of 

DAA2, only DAA1 is adapted in this paper. The objective is to propose a closed-form like solution so that 

the coupled FSI equations of DAA1 can be solved rapidly. This is done by adapting a nonstandard finite 

difference (NSFD) scheme developed by (Songolo and Bidégaray-Fesquet 2018). The use of NSFD 

scheme ensures the exactness of the solutions as will be seen in the next section. In what follows, 

analytical equations are derived to predict the response of an air-backed, spring-supported rigid plate. 

Then, they are extended for a 2D deformable, air-backed plate with simply-supported boundary condition. 

The obtained results are evaluated by comparing with those simulated in LS-DYNA/USA (DAA1) with 

or without cavitation and also with the previous results available in (Sone Oo et al. 2020). Finally, the 

advantages and limitations of the proposed formulations are exposed, leaving grounds for future research.   

 

3. Analytical models 

3.1. Response of a spring-supported rigid plate 

Suppose that a rigid plate having an areal mass 𝑚𝑠 is subjected to a uniformly distributed incident 

shock wave 𝑃𝑖(𝑡). The plate is exposed to water with density 𝜌𝑤 on one side and a linear spring and 

air on the other side, see Fig. 1. The equation of motion of a single degree-of-free (DOF) system can thus 

be swritten as: 

                        �̈�(𝑡) + 𝜔2𝑊(𝑡) =
𝑃𝑡𝑜𝑡(𝑡)

𝑚𝑠
 (3) 

where 𝑚𝑠 = 𝜌𝑠ℎ is the areal mass of the plate; 𝜔 = √𝐾/𝑚𝑠 is the angular frequency of the plate, 𝐾 

is the areal stiffness of the spring, 𝑃𝑡𝑜𝑡(𝑡) is the total pressure subjected to the plate, and 𝑊(𝑡) is the 

displacement of the plate taking positive in the 𝑧-direction as shown in Fig. 1.  

 

 

Fig. 1. A mass-spring system containing a rigid plate subjected to an incident pressure 

The total pressure 𝑃𝑡𝑜𝑡(𝑡)  from Eq. (3) is determined by a linear superposition of the incident 

pressure 𝑃𝑖(𝑡) and the scattered pressure 𝑃𝑠(𝑡). Mathematically, 

                        𝑃𝑡𝑜𝑡(𝑡) = 𝑃𝑖(𝑡) + 𝑃𝑠(𝑡) (4) 



In this paper, the incident pressure is considered as an exponential decay form, Eq. (1). According to 

DAA1 formulation of (Geers 1978), the scattered pressure 𝑃𝑠(𝑡) can be given as: 

                         �̇�𝑠(𝑡) + 𝐷𝑓𝑃𝑠(𝑡) = 𝜌𝑤𝑐𝑤�̇�𝑠(𝑡) (5) 

where 𝐷𝑓 = (𝜌𝑤𝑐𝑤) (𝑀𝑓)⁄  is a ratio of the acoustic impedance of water to the water-added mass per 

unit area of the submerged plate, and �̇�𝑠(𝑡) = �̇�𝑖(𝑡) − �̈�(𝑡)  in which �̇�𝑠(𝑡)  and �̇�𝑖(𝑡)  are the 

incident and scattered accelerations of the fluid particles respectively. The expression for �̇�𝑠(𝑡) comes 

from the velocity continuity condition at the fluid-structure interface. 𝑀𝑓 is the areal water-added mass 

for the rigid plate when it moves in water and can be calculated from (Blevin 1979). The system of equations 

becomes coupled when Eq. (5) is solved together with the structural equation, Eq. (3). The scattered 

pressure, particle acceleration, as well as the kinematics of the plate must be updated for each time step.  

For a far-field plane shock wave, the incident pressure is related to the incident particle velocity as: 

                           𝑃𝑖 = 𝜌𝑤𝑐𝑤𝑢𝑖 (6) 

To discretize Eq. (3) in time domain, let us rearrange it into a system of two first-order differential 

equations as:  

                        
�̇� = 𝑉

�̇� = −𝜔2𝑊 +
𝑃𝑡𝑜𝑡

𝑚𝑠

 (7) 

Equation (7) can be expressed in matrix form as:  

                        [�̇�] = [𝐴][𝑋] + [𝐵] (8) 

where [Ẋ] = [�̇�
�̇�

], [𝑋] = [
𝑊
𝑉

], [𝐴] = [
0 1

−𝜔2 0
] and [𝐵] = [

0
𝑃𝑡𝑜𝑡

𝑚𝑠

]. 

For the numerical approximation of Eq. (8), the interval [𝑡0, 𝑡] is discretized into: 

                        𝑡𝑖 = 𝑡0 + (𝑖 − 1)𝛥𝑡 (9) 

where the parameter Δ𝑡 > 0 is the step size, 𝑡0 is the initial time, 𝑡𝑖 is the current time step, and 

𝑖 = 1,2,3, … refers to the discrete points in time. An approximate solution for [𝑋(𝑡𝑖)] at time 𝑡𝑖 is 

denoted here as [𝑋]𝑖  for simplicity and can be obtained by applying an efficient numerical scheme 

called nonstandard finite difference (NSFD) methodology (Mickens 1993). 

 

Definition 1. The numerical solution for Eq. (8) is called a nonstandard finite difference method if at 

least one of the following conditions is satisfied: 

• The renormalization of the step size: [�̇�]
𝑖

= (𝜙(𝛥𝑡))
−1

(𝑋𝑖+1 − 𝑋𝑖), where 𝜙(𝛥𝑡) = 𝛥𝑡𝐼 + 𝒪(𝛥𝑡2) 

is a positive diagonal matrix; and 

• The nonlocal approximation of the right-hand side of Eq. (8): for example, [𝑋] → [𝑋]𝑖+1. 

 (Mickens 1993) 

 

If [𝐵] from Eq. (8) is taken as zero, the exact numerical solution is:  

                        [𝑋]𝑖+1 = {𝑒[𝐴]𝛥𝑡}[𝑋]𝑖 (10) 

With some algebraic manipulations, it is able to show that: 

                    [𝜙(𝛥𝑡)]−1([𝑋]𝑖+1 − [𝑋]𝑖) = [𝐴][𝑋]𝑖  (11) 



where [𝜙(Δ𝑡)] = ([𝑒[𝐴]𝛥𝑡] − 𝐼)[𝐴]−1 which verifies the first condition of Definition 1 on NSFD scheme. 

By adding the non-autonomous term to Eq. (11), the scheme becomes:  

                    [𝜙(𝛥𝑡)]−1([𝑋]𝑖+1 − [𝑋]𝑖) = [𝐴][𝑋]𝑖 + [𝐵]𝑖  (12) 

whose explicit form including the matrix {𝑒[𝐴]𝛥𝑡} is as follows: 

                    [𝑋]𝑖+1 = {𝑒[𝐴]𝛥𝑡}[𝑋]𝑖 + [𝜙(𝛥𝑡)][𝐵]𝑖 (13) 

The solution to Eq. (13) lies in finding the exponential matrix {𝑒[𝐴]𝛥𝑡} which can be done by using 

the following linear combination (Songolo and Bidégaray-Fesquet 2018):  

                  {𝑒[𝐴]𝛥𝑡} = (
𝜆1𝑒𝜆2𝛥𝑡−𝜆2𝑒𝜆1𝛥𝑡

𝜆1−𝜆2
) [𝐼] + (

𝑒𝜆1𝛥𝑡−𝑒𝜆2𝛥𝑡

𝜆1−𝜆2
) [𝐴] (14) 

where λ1, λ2 = ±𝜔  are two distinct eigen values of the [2 × 2]matrix [𝐴] . Solving Eq. (14) and 

substituting it into Eq. (13) leads to the closed-form like expressions below:  

               
𝑊𝑖+1 = 𝑊𝑖 𝑐𝑜𝑠(𝜔𝛥𝑡) + 𝑉𝑖 (

𝑠𝑖𝑛(𝜔𝛥𝑡)

𝜔
) − 𝑃𝑡𝑜𝑡

𝑖 (
𝑐𝑜𝑠(𝜔𝛥𝑡)−1

𝑚𝑠𝜔2 )

𝑉𝑖+1 = −𝑊𝑖𝜔 𝑠𝑖𝑛(𝜔𝛥𝑡) + 𝑉𝑖 𝑐𝑜𝑠(𝜔𝛥𝑡) + 𝑃𝑡𝑜𝑡
𝑖 (

𝑠𝑖𝑛(𝜔𝛥𝑡)

𝑚𝑠𝜔
)
 (15) 

where the step size required to solve these explicit equations is estimated as Δt ≤ 𝜋/(200𝜔), which is 

at most one-hundredth of the time to reach the first peak displacement. It is worth mentioning here that 

these closed-form like expressions ensure the exactness of the solution and can be readily solved for any 

initial conditions at time step 𝑡𝑖. Unlike the well-known Runge-Kutta scheme, the present scheme does 

not require additional function evaluations, thus saving more computation time, as will be shown later.  

Applying the same procedure on Eq. (5), the expression for 𝑃𝑠 for the next time step is obtained as: 

               𝑃𝑠
𝑖+1 = 𝑃𝑠

𝑖𝑒−𝐷𝑓𝛥𝑡 + (
1−𝑒

−𝐷𝑓𝛥𝑡

𝐷𝑓
) (−𝜌𝑤𝑐𝑤�̇�𝑖 + �̇�𝑖

𝑖) (16) 

Since the incident pressure 𝑃𝑖  is known for all time steps, total pressure 𝑃𝑡𝑜𝑡 can be updated for each 

time step if Eq. (16) is solved simultaneously using Eqs. (4) and (15). The initial conditions at time step 

zero are taken as 𝑊(0) = 𝑉(0) = 0, �̇�(0) = 2𝑃0/𝑚𝑠 and 𝑃𝑠(0) = 𝑃𝑖(0) = 𝑃0. Note that cavitation can be 

considered by introducing a flag that would trigger whenever 𝑃𝑡𝑜𝑡
𝑖 ≤ 0. Following the suggestion of 

USA user’s manual, only the scattered pressure 𝑃𝑠 is modified whenever the cavitation criterion is met.  

 

3.2. Response of a 2D deformable simply-supported plate 

The mass-spring equation from the previous subsection is extended to determine the response of an 

air-backed rectangular plate in a simply-supported boundary condition when subjected to a plane shock 

wave in a negative 𝑧-direction, see Fig. 2. The plate is assumed to have the size (𝑎, 𝑏) and a uniform 

thickness ℎ. Cartesian coordinate system is employed with the origin being located at the corner and mid-

surface of the plate. Each 𝑘th ply is rotated an arbitrary angle 𝜃𝑘 with respect to the 𝑥-axis as shown. 

The first-order shear deformation theory (FSDT) is applied together with the Lagrangian equations to 

derive the equations of motion for the plate. In this paper, only a brief account of these derivations is 

presented. For further details, the readers are referred to (Sone Oo et al. 2019, 2020).  

According to FSDT, the following assumptions are made to derive the mechanical model of the plate:  

• The transverse displacement is assumed to be independent of the thickness and the transverse 

normal strain is taken as zero. 

• The transverse normal is allowed to rotate with respect to the mid-surface after the deformation.  



 

Fig. 2. Coordinate system and geometry of the rectangular plate 

• Stress-strain relations obey generalized Hooke’s law for orthotropic materials. 

• Linear strain-displacement relations are considered.  

• In-plane displacements are assumed negligibly small compared to the transverse displacement, i.e. 

|𝑢|, |𝑣| ≪ |𝑤|, thus reducing the problem from 5 degrees of freedom (5 DOFs) to 3 DOFs.  

• In-plane and rotatory inertia are assumed negligibly small.  

• Hydrostatic pressure, structural damping and the effects of failure are not considered. 

To satisfy the simply-supported boundary conditions, Navier solution functions consisting of double 

Fourier summation can be adapted: 

                   𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑚𝑛 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑚𝜋𝑦

𝑏
)∞

𝑛=1
∞
𝑚=1  (17a) 

                   𝜓𝑥(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝛹𝑥𝑚𝑛
𝑐𝑜𝑠 (

𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑚𝜋𝑦

𝑏
)∞

𝑛=1
∞
𝑚=1  (17b) 

                    𝜓𝑦(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝛹𝑦𝑚𝑛
𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
) 𝑐𝑜𝑠 (

𝑚𝜋𝑦

𝑏
)∞

𝑛=1
∞
𝑚=1  (17c) 

where 𝑊𝑚𝑛 , 𝛹𝑥𝑚𝑛
 and 𝛹𝑦𝑚𝑛

are three generalized coordinates, 𝑚 and 𝑛 are mode numbers in 𝑥- 

and 𝑦-directions respectively. 

The time domain equation of motion for the plate is as follows: 

                        �̈�𝑚𝑛(𝑡) + 𝜔𝑚𝑛
2 𝑊𝑚𝑛(𝑡) =

4

𝐴𝑓𝑚𝑠
𝐹𝑚𝑛(𝑡) (18) 

where 𝐴𝑓 = 𝑎𝑏 is the wet surface area of the plate, and the modal participation of the forcing term on 

the right-hand side of Eq. (18) can be expressed in terms of incident and scattered pressures as: 

             𝐹𝑚𝑛(𝑡) = ∫ ∫ [(𝑃𝑖(𝑡) + 𝑃𝑠(𝑥, 𝑦, 𝑡)) 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑚𝜋𝑦

𝑏
)] 𝑑𝑥

𝑎

0
𝑑𝑦

𝑏

0
 (19) 

The natural frequency is 𝜔𝑚𝑛 = √𝐾𝑚𝑛/𝑚𝑠, see Eq. (A1) of Appendix A to find the formulations of 

𝐾𝑚𝑛. Notice that the incident pressure is assumed to be evenly distributed across the plate and thus, does 

not depend on spatial coordinates. However, the scattered pressure is both a function of spatial and 

temporal variables. Assuming that the scattered pressure has the same mode shape functions as the 

transverse displacement,  

                   𝑃𝑠(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑝𝑚𝑛 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)∞

𝑛=1
∞
𝑚=1  (20) 



In this case, a further assumption is imposed where DAA1 from Eq. (5) is modified into: 

                �̇�𝑠(𝑥, 𝑦, 𝑡) + 𝐷𝑓𝑃𝑠(𝑥, 𝑦, 𝑡) = 𝜌𝑤𝑐𝑤(�̇�𝑖(𝑡) − �̈�(𝑥, 𝑦, 𝑡)) (21) 

Substituting Eq. (20) into Eq. (21), multiplying both sides with the mode shape functions and then 

integrating both sides with respect to the surface area, the modal equation for the scattered pressure can 

be derived. On virtue of the orthogonality of the modes: 

                      ∫ ∫ ( 𝛼𝑚𝑛𝛼𝑟𝑠 ) 𝑑𝑥
𝑎

0
𝑑𝑦

𝑏

0
= { 

𝐴𝑓

4
, if 𝑚, 𝑛 = 𝑟, 𝑠

0, if 𝑚, 𝑛 ≠ 𝑟, 𝑠
 (22) 

where 𝛼𝑚𝑛 = sin(𝑚𝜋𝑥/𝑎) sin(𝑛𝜋𝑦/𝑏), 𝛼𝑟𝑠 = sin(𝑟𝜋𝑥/𝑎) sin(𝑠𝜋𝑦/𝑏), and 𝑚, 𝑛, 𝑟, 𝑠 = 1, 3, 5, … for 

the bi-symmetric problem (in both 𝑥- and 𝑦-axes). 

The fluid modal equation derived using Eq. (21) is: 

               �̇�𝑚𝑛(𝑡) = −𝐷𝑓𝑚𝑛
𝑝𝑚𝑛(𝑡) − 𝜌𝑤𝑐𝑤�̈�𝑚𝑛(𝑡) + (

16

𝑚𝑛𝜋2) �̇�𝑖(𝑡) (23) 

Then, the force function from the right-hand side of eq. (18) becomes: 

                   𝐹𝑚𝑛(𝑡) = (
4𝐴𝑓

𝑚𝑛𝜋2) 𝑃𝑖(𝑡) + (
𝐴𝑓

4
) 𝑝𝑚𝑛(𝑡) (24) 

Using the same steps shown in the previous subsection, the following explicit equations are derived: 

            𝑊𝑚𝑛
𝑖+1 = 𝑊𝑚𝑛

𝑖 𝑐𝑜𝑠(𝜔𝑚𝑛𝛥𝑡) + 𝑉𝑚𝑛
𝑖 (

𝑠𝑖𝑛(𝜔𝑚𝑛𝛥𝑡)

𝜔𝑚𝑛
) − 4𝐹𝑚𝑛

𝑖 (
𝑐𝑜𝑠(𝜔𝑚𝑛𝛥𝑡)−1

𝐴𝑓𝑚𝑠𝜔𝑚𝑛
2 ) (25a) 

            𝑉𝑚𝑛
𝑖+1 = −𝑊𝑚𝑛

𝑖 𝜔𝑚𝑛 𝑠𝑖𝑛(𝜔𝑚𝑛𝛥𝑡) + 𝑉𝑚𝑛
𝑖 𝑐𝑜𝑠(𝜔𝑚𝑛𝛥𝑡) + 4𝐹𝑚𝑛

𝑖 (
𝑠𝑖𝑛(𝜔𝑚𝑛𝛥𝑡)

𝐴𝑓𝑚𝑠𝜔𝑚𝑛
) (25b) 

            �̇�𝑚𝑛
𝑖+1 = −𝜔𝑚𝑛

2 𝑊𝑚𝑛
𝑖 +

4

𝐴𝑓𝑚𝑠
𝐹𝑚𝑛

𝑖   (25c) 

            𝑝𝑚𝑛
𝑖+1 = 𝑝𝑚𝑛

𝑖 𝑒
−𝐷𝑓𝑚𝑛

𝛥𝑡
+ (

1−𝑒
−𝐷𝑓𝑚𝑛

𝛥𝑡

𝐷𝑓𝑚𝑛

) (−𝜌𝑐�̇�𝑚𝑛
𝑖 + 𝜌𝑐�̇�𝑖

𝑖 (
16

𝑚𝑛𝜋2)) (25d) 

in which the initial conditions are taken the same as the previous rigid plate-spring system, i.e., 𝑊(0) =

𝑉(0) = 0 , �̇�(0) = 2𝑃0/𝑚𝑠  and 𝑃𝑠(0) = 𝑃𝑖(0) = 𝑃0 . Here, the constant term 𝐷𝑓𝑚𝑛
= 𝜌𝑤𝑐𝑤 𝑀𝑓𝑚𝑛

⁄  

should be calculated for each mode (𝑚, 𝑛).  

The water-added mass 𝑀𝑓𝑚𝑛
 is calculated using (Greenspon 1961)’s formulation as follows: 

                        𝑀𝑓𝑚𝑛
=

1

2
𝜌𝑤𝑏𝑓(𝑎/𝑏)𝐴𝑚𝑛

2  (26) 

where 𝑓(𝑎/𝑏) = 1.5(𝑎/𝑏)3 − 3.12(𝑎/𝑏)2 + 2.6(𝑎/𝑏) + 0.0098  is the correction term for aspect 

ratios of the plate (0 <  𝑓(𝑎/𝑏) ≤ 1) for 𝑎 ≤ 𝑏, and 𝐴𝑚𝑛 = 8/(𝑚𝑛𝜋2) is the modal term (consisting 

of only odd numbered modes) for simply-supported boundary conditions. This added-mass formulation 

contains some approximations on the mode shape term and hence, is accurate only for the first mode 

shape and 𝐴𝑚𝑛 = 0 for even numbered modes.  

The modal terms after solving Eqs. (25a) – (25d) are substituted into Eq. (17). Then, FSDT solution 

for the UNDEX response of a simply-supported rectangular orthotropic plate is obtained.  



4. Preliminary results and analyses 

The analytical equations from Section 3 are implemented in a MATLAB program. The obtained 

results are then confronted to those calculated by LS-DYNA/USA (DAA1). Three different types of 

problems are studied: (1) spring-supported rigid plate subjected to a plane shock exponential wave, (2) 

simply-supported steel plate subjected to a uniformly distributed suddenly applied pressure load, and (3) 

simply-supported composite plate subjected to an exponentially decaying plane shock wave. The details 

about the finite element models are specified in each corresponding subsection.  

 

4.1. Spring-supported rigid plate subjected to a plane shock exponential wave 

A square rigid plate having the dimensions (𝑎 =  𝑏 = 167 mm), uniform thickness (ℎ =  10 mm), and 

density (𝜌𝑠 = 1500 kg.m-3) is exposed to the water (𝜌𝑤 = 1000 kg.m-3, 𝑐𝑤 = 1498 m.s-1) on one side. 

Four discrete springs possessing equivalent stiffness of 𝐾 = 4.5 MN.m-1 are used to support the plate 

at corner nodes and on the other side of the plate. A single finite element rigid plate-spring model, 

resembling to the one depicted in Fig. 1, is constructed in LS-DYNA/USA (DAA1). No fluid elements 

are modeled since the plate is coupled to DAA boundary element. Fully-integrated shell element 

formulation together with rigid material is applied.  

A plane shock exponential wave comprised of a peak pressure 𝑃0 = 75 MPa and decay time 𝜏 =
0.21 ms is considered in the USA keyword input. Cavitation is treated approximately by limiting the 

total pressure at zero whenever it becomes negative. Here, both results with and without cavitation are 

shown just for the comparison purpose. However, it should be kept in mind that such treatment of 

cavitation on the fluid-structure interface is only an approximate approach, as shall be elaborated later. 

Results are calculated again using closed-form like analytical expressions given in Eqs. (15) and (16). 

Since the purpose is to test the validity of the developed equations, the same value of water-added mass, 

i.e., 𝑀𝑓/𝑚𝑠  = 6.25, obtained from LS-DYNA/USA (DAA1) is used for the analytical calculation. 

In Fig. 3, the results of displacement, velocity, acceleration, and normalized total pressure (𝑃𝑡𝑜𝑡/𝑃0) 

obtained from both LS-DYNA/USA (DAA1) and analytical (DAA1) are plotted as a function of time and 

up to 4 ms. As can be seen in all the plots, the analytical solutions are almost exactly the same as the 

numerical results using LS-DYNA/USA (DAA1) with or without cavitation. In addition, the change in 

the behavior of the plate caused by the consideration of cavitation can be observed when the pressure has 

been cut-off at about 1.4 ms. Here, it is also worth mentioning that the authors tested the analytical 

formulations using other loading type (e.g., sinusoidal profile), and also with different acoustic 

impedance (e.g., air). In all the tests performed, almost the same results were found between analytical 

and numerical methods involving DAA1. Therefore, it was concluded that the FSI coupling scheme 

works quite well for a single degree-of-freedom system.  

 

4.2. Simply-supported steel plate subjected to a uniformly distributed suddenly applied pressure load 

For the verification purpose, a simple case study is performed on a simply-supported isotropic (steel) 

plate subjected to a uniformly distributed suddenly applied pressure of 2.5 MPa. The characteristics of 

the steel plate are as shown in Table 1. A quarter plate model (50 mm × 50 mm) is constructed using a 

total of 169 fully-integrated shell elements along with elastic material model (MAT_001) from LS-

DYNA. Five through thickness integration points are considered. A typical shear correction factor of 5/6 

is applied. A symmetric boundary condition is applied to the inner edges of the plate while simply-

supported (immovable) boundary is prescribed on the outer edges. Structural damping, material strain 

rate and the plastic effects are not included, making sure that the deflection remains small. The plate is 

coupled to DAA1 boundary elements by specifying wet surface segments on the plate. A uniformly 

distributed suddenly applied incident pressure (𝑃0 = 2.5 MPa), also known as ‘step loading’, is applied via 

USA keyword input. Cavitation is also not considered in this analysis. The acoustic properties of water are 

taken as 𝜌𝑤 = 1025 kg.m-3 and 𝑐𝑤 = 1500 m.s-1. 

Table 1. Characteristics of the isotropic (steel) plate 

𝑎 = 𝑏 (mm) ℎ (mm) 𝜌𝑠 (kg.m-3) 𝐸 (GPa) 𝜈  𝜎𝑦 (MPa) 

100 5.76 7800 200 0.3 240 



 

(a) Displacement-time history 

 

(b) Velocity-time history 

 

(c) Acceleration-time history 

 

(d) Normalized total pressure-time history 

Fig. 3. Comparison between LS-DYNA/USA and analytical results both using DAA1 formulations (with/without cavitation)    

The results of the central deflection and normalized total pressure are plotted as a function of time in 

Fig. 4. The analytical results include 6 modal participation terms, i.e., 𝑚, 𝑛 = 1, 3, 5, … , 11 (or 𝑀 =
𝑁 = 6). The general trends of both time history plots agree well with LS-DYNA/USA (DAA1). The peak 

deflection at the center of the steel plate shows 4% discrepancy calculated with respect to the analytical 

peak value. A slight difference in the plate oscillation period can be observed. Moreover, small 

oscillations can be seen in the total pressure results calculated by the analytical approach. It was found 

out that such behavior in the analytical pressure results is mainly due to the insufficient water-added 

mass. As will be demonstrated in Section 5, the wetted natural frequencies of the analytical calculations 

are higher than those of LS-DYNA/USA (DAA1). This means that the water-added mass given by Eq. 

(26) is insufficient. The small oscillations in the total pressure results are caused by the small water-

added mass values (analytical) especially in the higher modes. According to Eq. (23), the scattered 

pressure depends on the constant 𝐷𝑓𝑚𝑛
, recall that 𝐷𝑓𝑚𝑛

= 𝜌𝑤𝑐𝑤 𝑀𝑓𝑚𝑛
⁄ . Thus, the smaller 𝑀𝑓𝑚𝑛

 

becomes, the larger is the value of 𝐷𝑓𝑚𝑛
, leading to higher rate of change in the modal terms of the 

scattered pressure, i.e., �̇�𝑚𝑛. The detailed studies as well as the improvement regarding the (areal) water-

added mass calculations are given in Section 5. Note that the authors also checked the sensitivity of the 

results due to numerical damping (Rayleigh damping) in LS-DYNA/USA (DAA1). It was found out that 

a recommended damping coefficient (by LS-DYNA user manual) between 0.1 – 0.25 yields nearly 

identical results, see Fig. B1 in Appendix B.   

  

4.3.  Simply-supported composite plate subjected to an exponentially decaying plane shock wave 

A carbon-fiber/epoxy (CFRP) laminated plate having the same dimensions and thickness as the previous 

steel plate (𝑎 = 𝑏 = 100 mm, ℎ = 5.76 mm), and material density of 1548 kg.m-3 is considered here.  



 

(a) Displacement-time history 

 

(b) Normalized total pressure-time history 

Fig. 4. Preliminary comparison of steel plate response between LS-DYNA/USA (DAA1) and analytical (DAA1) approaches 
(Step loading: 𝑃0 = 2.5 MPa; Both analytical and numerical approaches do not consider cavitation.) 

 

The laminate consists of 20 plies with the stacking sequence of [±45/0/0/0/±45/0/0/0/90/90]S, each ply 

making about 0.288 mm thickness. The material characteristics of the lamina used in CFRP plate are 

retrieved from the quasi-static tests performed by the authors, see Table 2. Only a quarter of the plate is 

modeled using symmetric boundary conditions. Simply-supported boundary conditions are applied to the 

plate’s (outer) edges. The model employs 169 modified fully-integrated shell elements (EQ: -16) along 

with the composite material model (MAT_054), (LSTC 2017). Again, structural damping as well as 

damage effects are ignored in this analysis. An exponential incident shock wave having a peak pressure 

𝑃0 = 1.5 MPa and decay time 𝜏 = 1.3 ms is applied through DAA boundary elements. Note that this is 

the case where cavitation is supposed to be minimum since the load duration is relatively long compared 

to the plate response time. The acoustic properties of water are taken as 𝜌𝑤 = 1025 kg.m-3 and 𝑐𝑤 = 

1500 m.s-1. The authors have checked the mesh size sensitivity and the current result shown in this paper 

is the already converged one. 

 

   Table 2. Characteristics of the carbon-fiber/epoxy lamina 

𝐸11 (GPa) 𝐸22 = 𝐸33 (GPa) 𝜈12 = 𝜈13 𝜈23 𝐺12 = 𝐺13 (GPa) 𝐺23 (GPa) 

138 8.98 0.281 0.385 3.66 3.24 

 

 

Figure 5 shows the time evolutions of deflection, and normalized total pressure at the center of the 

plate. Numerical results obtained from LS-DYNA/USA (DAA1) are with or without the cavitation. It can 

be seen that the effect of cavitation is not significant in this case since the two numerical results are nearly 

identical. Analytical results shown here consider up to12 modes (𝑀, 𝑁) = (12, 12). They are also more 

or less the same as results using (𝑀, 𝑁) = (6, 6). It should be noted that the number of modes participating 

could have some slight effect on the scattered pressure results as shall be seen later in Section 5. The 

authors also checked the sensitivity on the time step as well as shear correction factor on the analytical 

results. The results shown here used a time step of 1 𝜇s, which is less than one-hundredth of the swing 

time (𝑇0/100 ≈ 3.2 𝜇𝑠) and the (total) shear correction factor used is 5/6.  

In Fig. 4(a), the peak deflection is found around 0.32 ms and appears to be in good accordance with 

the numerical results. However, the period is slightly shorter for the analytical result than that of LS-

DYNA/USA (DAA1). As have already been observed in the case with steel plate, this is mainly due to 

the discrepancy in the water-added mass calculation between analytical and numerical results. LS-

DYNA/USA (DAA1) is found to have a larger water-added mass (with a relative error ≈ 12% ) 

compared to the water-added mass given by (Greenspon 1961). These will be elaborated in the next 

section when natural frequencies up to the first four bending modes are compared in Table 3.  

 



 

(a) Displacement-time history 

 

(b) Normalized total pressure-time history 

Fig. 5. Comparison with LS-DYNA/USA and analytical results using DAA1 formulations for CFRP plate 

 

5. Investigations and improvement on the water-added mass formulation 

5.1. Modification 

The original water-added mass formulation proposed by (Greenspon 1961) assumed that the plate is 

made up of many small rectangular elements with equal area. The average pressure on a point caused by 

the vibration of any other points on the plate is approximated by supposing that the entire plate acts as a 

rectangular piston with a deflection equal to the average of the spatial term 𝛼𝑚𝑛(𝑥, 𝑦). It was claimed 

that such approximation is valid only for the first mode of the plate. According to Eq. (26), the water- 

added mass (per unit area) depends on the size and aspect ratio of the plate, the density of water and the 

square of the mode shape term 𝐴𝑚𝑛
2 . Therefore, to improve the formulation for higher modes, 𝐴𝑚𝑛

2  

from Eq. (26) need to be modified. Recall that, 

                          𝐴𝑚𝑛
2 =

64

𝑚2𝑛2𝜋4 (27) 

which is independent of each mode. In this paper, by combining the modal index (𝑚, 𝑛) from each 

direction 𝑥 and 𝑦, Eq. (27) is modified as a summation form as 𝐴𝑚𝑛
2 = ∑ 64 (𝑚𝑛𝑗2𝜋4)⁄∞

𝑗=1 , where 

𝑗 = 1, 3, 5, … is the odd numbered modal index. Note that the idea of adapting the summation form in 

calculating 𝐴𝑚𝑛
2  is only an approximate attempt to slightly increase the value of the areal water-added 

mass at every mode. Hence, Eq. (26) becomes: 

                   𝑀′𝑓𝑚𝑛
=

1

2
𝜌𝑤𝑏𝑓(𝑎/𝑏) ∑

64

𝑚𝑛𝑗2𝜋4
∞
𝑗=1  (28) 

Here, only the first 6 terms (i.e., 𝑗 = 1, 3, … , 11) are considered in the calculation of water-added mass. 

Since 𝑗2 is in the denominator, using higher values of 𝑗 in the series would not change the final result 

by a lot, as shall be shown.   

In Fig. 6, the previous results on CFRP plate and the improved result using Eq. (28) are compared. 

LS-DYNA/USA (DAA1) results are also plotted as reference. It can be seen that the small oscillations in 

the normalized total pressure-time plot disappear and the period of oscillation becomes more comparable 

to LS-DYNA/USA (DAA1). As explained before, the increase in 𝑀𝑓𝑚𝑛
 would result in the decrease of 

𝐷𝑓𝑚𝑛
 which in turn leads to smaller rate of change in the scattered pressure result according to Eq. (23). 

According to Fig. 6, the improvement causes only slight changes to the central deflection results.  

 

5.2. Evaluations of the natural frequencies 

Another improvement can be found in the (wet) natural frequencies. Table 3 shows comparison of 

natural frequencies up to the first four bending modes. In-air natural frequencies are also provided just 



to compare. The inclusion of water-added effect decreases the in-air natural frequencies to half or even 

more than half in some cases. It can also be seen that even with the improvement, for some mode such 

as mode [3,3], there is still a large discrepancy up to about 22%. 

 

 

(a) Central deflection-time history 

 

(b)  Normalized total pressure-time history 

Fig. 6. Comparison between original and improved formulations of water-added mass (using CFRP plate, 𝑃0 = 1.5 MPa, 
𝜏 = 1.3 ms) 

 

     Table 3. Comparison of natural frequencies (up to the first four bending modes) 

   
Natural frequencies in-air  Natural frequencies in-water  Discrepancy 

Material a/h Mode 
Analytical Numerical Discrep.1 Numerical 

Ana. 

original2 

Ana. 

improved3 
Original Improved 

Hz Hz % Hz Hz Hz % % 

Steel 

69 

[1,1] 173 173 0.1% 80 87 81 8% 1.7% 

[1,3] 864 870 -0.7% 585 748 584 22% -0.3% 

[3,1] 864 870 -0.7% 585 748 584 22% -0.2% 

[3,3] 1552 1553 -0.1% 1174 1524 1313 23% 11% 

          

17 

[1,1] 2747 2736 1.1% 1953 2077 1997 6% 2.2% 

[1,3] 13258 13420 -0.9% 11653 12738 11638 9% -0.1% 

[3,1] 13258 13427 -1.0% 11653 12738 11638 9% -0.1% 

[3,3] 23087 22971 -0.1% 21185 22981 22020 8% 3.8% 

CFRP 

69 

[1,1] 191 190 0.5% 43 48 44 10% 2.7% 

[1,3] 673 669 0.6% 259 411 254 37% -1.9% 

[3,1] 1220 1216 0.3% 472 745 461 37% -2.4% 

[3,3] 1672 1652 1.2% 754 1535 965 51% 22% 

          
 [1,1] 2906 2807 3.4% 1172 1330 1239 12% 5.4% 

17 

[1,3] 9620 9431 2.0% 6037 8074 6083 25% 0.8% 

[3,1] 14661 14456 1.4% 9258 12305 9271 25% 0.1% 

[3,3] 19518 18965 2.8% 13546 19078 15935 29% 15% 

1 where all the discrepancies are calculated using the formula, 𝐷𝑖𝑠𝑐𝑟𝑒𝑝. =
𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙−𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙
× 100%. 

2 Ana. original - Analytical calculation using original water-added mass formulation proposed by (Greenspon 1961), Eq. (26). 

3 Ana. improved - Analytical calculation using improved water-added mass formulation, Eq. (28). 



5.3. Sensitivity to the number of mode shapes 

The use of summation form in the water-added mass calculation does not make a closed-form 

expression, and thus, the effect of the number of modal terms is investigated. The case with a steel plate 

model defined in Subsection 4.2 is utilized in this case. As plotted in Fig. 7, using different number of 

modal terms does not change the results a lot. In fact, the central deflections are almost identical. The 

normalized scattered pressures are only slightly affected at the beginning of the calculation. According 

to the initial condition, the scattered pressure at time 𝑡 = 0  should be 𝑃𝑠(0) = 𝑃0 . However, The 

Fourier series decomposition of 𝑃𝑠 shown in Eq. (20) could satisfy such a condition only after taking 

into account many modes, for instance, 𝑀 = 𝑁 = 30. Even so, the overall behavior in the longer time 

converges regardless of the number of modes (𝑀, 𝑁 ≥ 3) according to the results shown.  

 

 

(a) Central deflection-time history 

 

(b)  Normalized scattered pressure-time history 

Fig. 7. Effect of the number of modal terms in analytical (DAA1) approach (using steel plate, step loading of 2.5 MPa) 

 

6. Parametric studies  

In this section, the effect of changing the aspect ratios and the loading levels is studied using the material 

models presented before. The problem domain is divided into two: (1) steel plate responses under varying 

levels of step loadings, and (2) composite plate responses under different exponential loadings. Two 

different sizes of the plate are adapted and termed as ‘thin’ plate and ‘thick’ plate. Thin plate has the 

dimension of 𝑎 = 𝑏 = 400 mm while thick plate possesses 𝑎 = 𝑏 = 100 mm. Same thickness of 5.76 

mm is used in all cases. As before, cavitation or damage is not included in the study. Note also that an 

improved water-added mass formulation, Eq. (28), and up to 6 modal terms (𝑀 = 𝑁 = 6)  are 

considered in all the coming analyses. 

 

6.1. Steel plate responses under varying levels of step loadings 

In Fig. 8, maximum central deflection-thickness ratios (𝑤𝑚𝑎𝑥/ℎ) for thin and thick steel plates are 

plotted as a function of the step pressures 𝑃0. As expected, the analytical (DAA1) results are linearly 

proportional to the peak pressures and valid until the geometric nonlinearity involves. It can be seen in 

Fig. 8(a) that the geometric nonlinearity effect is more significant for thin plate (large 𝑎/ℎ ratio) due to 

lower stiffness. The thick plate (small 𝑎/ℎ ratio) appears to withstand linearly much higher pressures 

accompanied by lower 𝑤𝑚𝑎𝑥/ℎ results. A relative error of ±15% is shown in both plots and it can be 

said that the current analytical (DAA1) results correlate well with those of LS-DYNA/USA (DAA1) only 

up to 𝑤𝑚𝑎𝑥/ℎ ≤ 0.5. Exceeding this value would need to incorporate geometric nonlinear effect (by 

moderate rotation) into the formulations. The issue has actually been investigated and resolved but, 

for conciseness, the corresponding nonlinear developments and results will be published in the next 

paper. 

 

  



 

(a) Thin steel plate (𝑎/ℎ = 69.4) 

 

(b)  Thick steel plate (𝑎/ℎ = 17.4) 

Fig. 8. Comparison of the responses of (a) thin steel plate (a/h = 69.4), and (b) thick steel plate (a/h = 17.4) loaded by 
varying levels of suddenly applied step pressures using LS-DYNA/USA (DAA1) and analytical (DAA1) approaches 

 

6.2. Composite plate responses under different exponential loadings 

Thin and thick CFRP plates, whose material characteristics are given in Table 2, are subjected to different 

levels of exponential loading comprised of various combinations of peak pressures and decay times as 

shown in Table 4. It should be noted that some of these load cases are only hypothetical. The charge 

masses and the standoff distances are selected in order to give the same transferred impulse 𝐼𝑡 calculated 

by Taylor’s simplified FSI formulation (Taylor 1941). The load cases from C-1a to C-1d represent thin 

CFRP plate while those from C-2a to C-2f analyzes for thick CFRP plate. Four different results using: 

(1) LS-DYNA/USA (DAA1) with cavitation and (2) LS-DYNA/USA (DAA1) without cavitation, (3) 

analytical (DAA1) without cavitation, and (4) analytical (two-step) approach are compared. Detailed 

formulations and assumptions of analytical (two-step) approach can be found in (Sone Oo et al. 2020).  

 

Table 4. Load cases performed for carbon-fiber/epoxy thin and thick plates 

 Plate characteristics Characteristics of explosives (TNT)  Loadings FSI parameter and impulse 

Cases 
𝑎/ℎ  𝑓0  𝐶  𝑅  

𝑆. 𝐹  
𝑃0  𝜏  𝐼0  

𝜓  
𝐼𝑡  

(-) (Hz) (kg) (m) (MPa) (ms) (Ns.m-2) (Ns. m-2) 

C-1a 69.4 190 0.02 11.66 0.013 0.647 0.050 32.4 8.6 5.66 

C-1b 69.4 190 0.77 43.37 0.020 0.551 0.167 91.8 28.7 5.66 

C-1c 69.4 190 6.12 90.19 0.027 0.524 0.335 175.4 57.7 5.66 

C-1d 69.4 190 48.29 184.03 0.038 0.509 0.670 340.9 115.5 5.66 
           

C-2a 17.4 2808 0.00 2.36 0.029 2.3 0.024 55.9 4.2 17.02 

C-2b 17.4 2808 0.04 5.52 0.036 1.939 0.051 98.2 8.7 16.99 

C-2c 17.4 2808 1.97 23.61 0.059 1.632 0.192 313.5 33.1 16.97 

C-2d 17.4 2808 24.68 57.26 0.087 1.55 0.450 696.9 77.5 16.98 

C-2e 17.4 2808 196.11 116.57 0.120 1.514 0.901 1363.4 155.3 17.00 

C-2f 17.4 2808 586.94 169.32 0.143 1.5 1.300 1949.5 224.1 16.98 

where 𝑎/ℎ is the aspect ratio of the plate, 𝑓0 = 𝜔11/(2𝜋) is the fundamental natural frequency (mode 1,1) of the plate, 
𝑆. 𝐹 = √𝐶/𝑅 is the shock factor, 𝑃0 is the peak pressure, 𝜏 is the decay time, 𝐼0 = 𝑃0𝜏 is the applied impulse related to the 
incident wave, 𝜓 = 𝜌𝑤𝑐𝑤𝜏/𝑚𝑠 is the FSI coefficient associated to the decay time and areal mass of the plate, 𝐼𝑡 = 2𝐼0𝜓−𝜓/(𝜓−1) is 
the reduced transferred impulse due to the FSI effect given by (Taylor 1941).  

 

 

 



The two-step approach can be summarized as follows (Sone Oo et al. 2020): 

• In the first step (early-time phase), the impulsive velocity is calculated by 𝑣𝑖 = 𝐼𝑡/𝑚𝑠, where 𝐼𝑡 =
2𝐼0𝜓−𝜓/(𝜓−1) , 𝜓 = 𝜌𝑤𝑐𝑤𝜏/𝑚𝑠 and 𝑚𝑠 = 𝜌𝑠ℎ.  

• In the second step (long-time phase), the free response of the plate is determined by using the first-order 

shear deformation theory while taking into account the water-added inertia effect.  

According to the study shown in (Sone Oo et al. 2020), the applicable domain of the analytical (two-

step) approach is: 

• For 𝑎/ℎ =  69.4 : 0.09 ≤ 𝜏/𝑇0 ≤ 0.16 (19.8 ≤ 𝜓 ≤ 34.5), and 

• For 𝑎/ℎ =  17.4 : 0.28 ≤ 𝜏/𝑇0 ≤ 0.35 (4.0 ≤ 𝜓 ≤ 5.1). 

where 𝑇0 ≈ 1/𝑓0 is the natural period of the plate. It is worth mentioning here that these ranges of validity 

were deduced based on the results of LS-DYNA/USA (acoustic) simulation results. Unlike the surface 

approximation model such as DAA, LS-DYNA/USA (acoustic) approach incorporates the fluid elements 

so that cavitation appearing near the plate can be properly accounted for. An interesting fact about using 

such method which utilizes acoustic fluid is that it has been validated by experiments, see (Sone Oo et 

al. 2020) for details. However, they are much more expensive and time consuming compared to LS-

DYNA/USA (DAA1) or analytical approaches due to the need for fine fluid mesh. Therefore, in what 

follows, only the results of analytical (two-step) approach will be shown, keeping in mind about the range 

of validity mentioned above. 

 

6.2.1. Sensitivity to varying the FSI parameter 𝜓 

Analyses are performed on different load cases shown in Table 4. Comparison is done on the same 

areal mass of the plate. The results are plotted in Figs. 9 and 10 for thin and thick CFRP plates 

respectively. The following dimensionless parameter for peak central deflection is introduced so as to 

make a more generalized interpretation of the results: 

                      �̅�𝑚𝑎𝑥 =
𝑤𝑚𝑎𝑥

𝑤𝑡𝑎𝑦𝑙𝑜𝑟
=

𝜌𝑤𝑐𝑤

2𝑃0𝜏
𝑤𝑚𝑎𝑥 (29) 

where 𝑤𝑡𝑎𝑦𝑙𝑜𝑟 = 2𝑃0𝜏/(𝜌𝑤𝑐𝑤) is the maximum displacement if cavitation is not accounted at all, that 

is, by assuming that water can support tension (Taylor 1941).  

In Fig. 9, when cavitation flag is on, LS-DYNA/USA (DAA1) overestimates in all cases regardless of 

the parameter 𝜓. In fact, such behavior is doubtful for two reasons: (1) in terms of the shock energy 

carried by the incident shock wave, the internal energy results evaluated from LS-DYNA/USA (DAA1) 

are almost one order magnitude larger than the value obtained from similitude equation given by (Cole 

1948) 4, and (2) the valid region (shown by red-colored dotted box in Fig. 9) for the analytical (two-step) 

approach are only about half of the results of LS-DYNA/USA (DAA1) with cavitation. In addition, there 

have also been some evidence in which LS-DYNA/USA (DAA1) with cavitation option overestimates 

the response by about 30 - 40% in comparison with the experiments (Sone Oo et al. 2020). One possible 

explanation of such overestimation is that LS-DYNA/USA (DAA1) considers an approximate treatment 

of cavitation only on the fluid-structure interface, that is, when the total pressure at a spatial point falls 

below zero, the scattered pressure is modified as have already demonstrated in Subsection 4.1. Once the 

cavitated zone collapses, the water-added inertia effect might have possibly kicked in, leading to such 

overestimations. Indeed, this kind of approximate treatment used by LS-DYNA/USA (DAA1) does not 

take into account the propagation and arrest of the breaking and closing fronts which are the phenomena 

of cavitation observed in fluid (Kennard 1943). Some of the fluid energy (or water-added inertial effect) 

may have already lost during such activity. This issue needs to be further investigated in the future. 

Apart from the cavitation model, it is expected that analytical (DAA1) model should correlate well 

with LS-DYNA/USA (DAA1) model if cavitation is disregarded. However, the current formulation when 

applied for the thin plate seems to correlate well only around 𝜓 = 28.7 (𝜏 𝑇0⁄ = 0.13). By reducing the 

 
4 To put a sense of the magnitudes involved, consider the case of C-1a in which the shock wave energy given by empirical 

relation, 𝐸0 = 𝐾4𝐶1 3⁄ (𝐶1 3⁄ 𝑅⁄ )
𝐴4

, is only about 3.7 J (= 𝐸0 ∗ 𝐴𝑓) while the internal energy of the plate in numerical model (with 

cavitation) is about 27.73 J. In terms of the energy ratio, numerical model (DAA1) with cavitation model shows about 7.5 times 

more than the energy carried by the incident shock wave. In another test performed on the same case study by using LS-

DYNA/USA with acoustic fluid elements, the internal energy is only about 0.8 J (< 𝐸0 = 3.7 J) which makes more sense.  



 

Fig. 9 Sensitivity to change of FSI parameter 𝜓 on the response of thin CFRP plate (𝑎/ℎ = 69.4, cases C-1a to C-1d) 

 

 

Fig. 10. Sensitivity to change of FSI parameter 𝜓 on the response of thick CFRP plate (𝑎/ℎ = 17.4, cases C-2a to C-2f) 



value of 𝜏, the FSI parameter 𝜓 decreases. If 𝜓 < 28.7, cavitation becomes important and the current 

model is no longer valid because of the large negative pressures which create non-physical suction effect 

to the plate, resulting in the decrease of the amplitude. When 𝜓 > 28.7 which is outside the valid region 

of two-step analytical approach, the analytical (DAA1) formulae should predict the peak deflection well 

if and only if the central deflection does not exceed 0.5 times the thickness. The load cases (C-1c and 

C-1d) are unable to satisfy this requirement because of the involvement of higher shock factors as well 

as the flexibility of the relatively thin plate. This observation can be readily checked by fixing the decay 

time and changing only the peak pressures. This is confirmed and shown in Fig. 11(a) which will be 

explained in the subsequent subsection. 

In contrast to Fig. 9, the results of analytical (DAA1) results plotted in Fig. 10 correspond better to the 

LS-DYNA/USA (DAA1) results without cavitation option. This is because the maximum deflection is 

relatively small for thick plate (case studies: C-2a to C-2f) and remains well within the small deflection 

domain. Another observation is that LS-DYNA/USA (DAA1) with cavitation begins to converge to those 

without cavitation after about 𝜏 𝑇0 ≈ 2.1⁄  (𝜓 ≈ 33). This means that cavitation is not as important as 

in the case of the more flexible plate (with large 𝑎/ℎ). Indeed, this kind of observation has been 

identified in the previous paper of (Sone Oo et al. 2020) as well. Moreover, it can be seen that the 

analytical (two-steps) approach quickly leads to underestimations of the response because the transferred 

impulse given by Taylor’s formulation is no longer sufficient to capture the continuing action of the FSI. 

In this regard, applying analytical (DAA1) approach allows one to capture the response more correctly 

as compared to the impulse-based (two-step) analytical approach proposed in (Sone Oo et al. 2020). 

 

6.2.2. Sensitivity to varying the peak pressure 𝑃0 

In Fig. 11, the comparisons are again carried out by varying the peak pressures but keeping the same 

decay time. As have already been observed before, both analytical results are linearly proportional to the 

peak pressures. LS-DYNA/USA (DAA1) with cavitation results are not plotted anymore here since the 

selected decay times are relatively high and within the region where the effect of cavitation may be 

disregarded (i.e., the FSI parameter 𝜓 is relatively large for both cases). As can be seen, these are also 

the regions where the previously proposed analytical formulations using two-step calculation approach 

are not valid anymore and they will always underestimate the response compared to coupled DAA1 

approaches. In Fig. 11(a), the analytical (DAA1) results are comparable (within ±15% relative error) to 

numerical results only when 𝑤𝑚𝑎𝑥/ℎ < 0.5, i.e., small applied impulse (𝐼0 < 50 Ns.m-2), leading to 

small linear deflection. On the other hand, the results with the thick plate shown in Fig. 11(b) are in much 

better accordance with LS-DYNA/USA (DAA1) results since the peak deflection is well within small 

deflection range. 

 

 

(a) Thin CFRP plate (𝑎/ℎ = 69.4) at 𝜓 = 115.5 

 

(b) Thick CFRP plate (𝑎/ℎ = 17.4) at 𝜓 = 224.1 

Fig. 11. Sensitivity to varying the peak pressure 𝑃0 on (a) thin CFRP plate (𝑎/ℎ = 69.4), and (b) thick CFRP plate (𝑎/ℎ =

17.4) 

 



7. Conclusions and perspectives 

In this paper, the first order Doubly Asymptotic Approximation is coupled to the analytical structural 

equations to predict the underwater blast response of spring-supported rigid plate and simply-supported 

deformable plates. Air-backed condition is considered for both cases. Structural damping, hydrostatic 

pressure as well as material damage effects are disregarded. Uniformly distributed dynamic step loading 

and plane shock exponential loadings are applied. Nonstandard finite difference (NSFD) scheme is used 

to derive the closed form like analytical solutions. The obtained analytical results are preliminarily tested 

on rigid plate as well as isotropic and composite plates and are confronted against LS-DYNA/USA 

(DAA1) results without cavitation. As for the rigid plate-spring system, the results agree excellently with 

those from LS-DYNA/USA (DAA1) simulation. The deformable model, however, shows some 

oscillations especially in the total pressure results. After comparisons of the first four natural frequencies, 

the water-added mass formulation proposed by (Greenspon 1961) is slightly modified to improve its 

accuracy especially for the higher oscillation modes. Such improvement, however, is not rigorously 

justified and thus, needs more investigation in the future.  

Parametric studies are also performed by varying the aspect ratios of the plate as well as the loading 

levels. To make effective evaluations, previous analytical results based on two-step approach are also 

given in addition to the LS-DYNA/USA (DAA1) results with and without cavitation. According to the 

various case studies performed in this paper,  

• the current analytical result with DAA1 is linearly proportional to the applied peak pressures and valid 

only before the geometric nonlinearity becomes significant, that is, the peak central deflection is less 

than half the plate thickness,  

• changing the decay time would change the FSI parameter 𝜓 as well as the time ratio between the 

decay time of the loading and the plate fundamental period of oscillation (𝜏/𝑇0), which in turn could 

lead to a change in the action of cavitation,  

• flexible thin plates with large aspect ratio are prone to be more influenced by cavitation as well as 

geometric nonlinear effect (large deflection) as compared to thick plates with small aspect ratio, and 

• the current method is only able to capture the peak deflection when cavitation is not important and 

the deflection remains well within linear elastic domain.  

According to these observations and conclusions, it is obvious that the current analytical model needs three 

immediate improvements regarding: (1) the action of cavitation, (2) the involvement of geometric 

nonlinear effects caused by moderate or large rotation (In fact, this issue has already been investigated 

and resolved but, for conciseness, the corresponding nonlinear developments and results will be 

published in another paper), and (3) the possible influence of the first ply damage and post-damage 

behavior. In addition, it would be of academic interest to see if the current approach can be extended for 

the different boundary conditions and geometries such as stiffened plates and curved panels. These topics 

will be left for the future studies.  

Nevertheless, it is worth pointing out that the advantages of the proposed analytical formulations lie 

in the computational time and their reasonable accuracy (i.e., < ±15% relative error) if applied in the 

valid range. To highlight its potential, a brief comparison is made between the typical computation time 

using analytical (DAA1), LS-DYNA/USA (DAA1) and LS-DYNA/USA (acoustic) approaches and 

shown in Table 5. Note that these are solved on the same computer (Core i7-8550U @1.8GHz, RAM 16 

GB). The associated termination time and the degrees of freedom (DOFs) are listed as well. As can be 

seen, the analytical approach takes little or no time to finish the calculations while the numerical 

approaches can be much more expensive depending on the number of DOFs involved. Therefore, the 

analytical approach may well be used especially in the pre-design stages where different lamination 

schemes, different loadings as well as plate geometry optimizations need to be performed. 

 

Table 5. Comparison of the typical computation time between analytical (DAA1), LS-DYNA/USA (DAA1) and LS-
DYNA/USA (acoustic) approaches  

Case 
Termination Analytical (DAA1) LS-DYNA/USA (DAA1) LS-DYNA/USA (acoustic) 

time (ms) DOF Time (s) DOF Time (s) DOF Time (s), (HH:MM:SS) 

Thin CFRP plate 8 3 2.40 4681 208 5,131,227 12362 (03:26:02) 

Thick CFRP plate 5 3 1.96 1345 96 304,572 356 (00:05:56) 

The data for thin CFRP plate was taken from case study C-1d, and for thick CFRP plate, they were from case C-2f. 
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Appendix A. Calculation of stiffness 𝑲𝒎𝒏 

The stiffness 𝐾𝑚𝑛 is calculated as: 

                    𝐾𝑚𝑛 = 𝐾11 +
2𝐾12𝐾23𝐾13−𝐾12

2 𝐾33−𝐾13
2 𝐾22

𝐾22𝐾33−𝐾23
2  (A1) 

The stiffness terms 𝐾𝑖𝑗  (where 𝑖, 𝑗 = 1, 2, 3) are expressed as follows: 

                       𝐾11 = 𝐴44 (
𝑛𝜋

𝑏
)

2

+ 𝐴55 (
𝑚𝜋

𝑎
)

2

 (A2) 

                        𝐾12 = 𝐴55 (
𝑚𝜋

𝑎
)  (A3) 

                        𝐾13 = 𝐴44 (
𝑛𝜋

𝑏
)  (A4) 

                        𝐾22 = 𝐷11 (
𝑚𝜋

𝑎
)

2

+ 𝐷66 (
𝑛𝜋

𝑏
)

2

+ 𝐴55 (A5) 

                        𝐾23 =
𝑚𝑛𝜋2

𝑎𝑏
(𝐷11 + 𝐷66) (A6) 

                        𝐾33 = 𝐷22 (
𝑛𝜋

𝑏
)

2

+ 𝐷66 (
𝑚𝜋

𝑎
)

2

+ 𝐴44 (A7) 

where 𝐷11, 𝐷22, 𝐷66 are bending stiffnesses and 𝐴44, 𝐴55  are shear stiffnesses. Their corresponding 

formulations can be found in any classical composite textbooks, for example (Reddy 2004). 

 

Appendix B. Sensitivity to numerical damping in LS-DYNA/USA (DAA1) 

 

(a) Central deflection-time history 

 

(b)  Central velocity-time history 

Fig. B1. Sensitivity regarding numerical damping (Rayleigh stiffness damping coefficients) on LS-DYNA/USA (DAA1) results 
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