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Abstract 
 

In this paper, an original probabilistic micromechanics damage framework involving multi-

deformation mechanisms, based on the modified Mori-Tanaka and Transformation Field Analysis 

(MT-TFA) techniques, is developed to predict monotonic and oligocyclic stress-strain responses 

in short fiber-reinforced polyamide composites. The proposed model allows simulating actual 

injection-induced fiber arrangement, which is characterized by arbitrary fractions of randomly 

oriented fibers distributed in the laminate plane. Furthermore, the modified MT-TFA approach 

employs a phenomenological model consisting of four Kelvin-Voigt branches and a viscoplastic 

branch, formulated under the thermodynamics framework, to describe the rate-dependent 

viscoelastic-viscoplastic deformation and the ductile damage of the polymer matrix phase. In 

addition, the Weibull probabilistic density function is utilized to simulate initiation and 

coalescence of the void-type discrete damage in the vicinity of the fiber/matrix interphase, induced 

by the fiber/matrix debonding as observed experimentally. The parameters of the developed model 

are calibrated against the experimental response of glass/polyamide (PA66/GF35) composites via 
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uniaxial loading/unloading tests, by taking into account the actual fiber orientation density function 

(ODF). The reliability and efficiency of the modified Mori-Tanaka and TFA scheme are assessed 

vis-à-vis the separate and hold-out experimental data subjected to uniaxial and oligocyclic loading 

at various loading rates. Progressive matrix and interphase damage are compared in support of the 

modified MT-TFA technique’s capabilities to capture the experimentally observed damage 

mechanisms. To accurately capture the experimental response, the progressive degradation of the 

load transfer between the fiber and matrix phases is introduced through a reduction of the active 

fiber length. The latter is introduced by considering the effect of the interphase void-damage 

content. The new mean-field formulation provides accurate predictions of the overall response 

under complex loading paths. It can be combined with other techniques in our future work, such 

as cycle-jump, towards simulating high-cycle fatigue damage in short-fiber composite structures. 

Keywords: Progressive Damage; Probabilistic Density Function; Mori-Tanaka Homogenization; 

Transformation Field Analysis; Viscoelastic-Viscoplastic Behavior; Interphase; Orientation 

Density Function. 

1. Introduction 
 

Thermoplastic composites have found wide-ranging applications in various engineering 

technologies, such as aerospace, wind energy, marine, automotive, as well as sports equipment. 

They are relatively high strength and lightweight materials, besides their low processing and 

manufacturing costs (Wei et al., 2019). Additionally, thermoplastic composites can withstand 

rigorous and harsh physical as well as the chemical environment, such as moderate-high or low 

temperatures and corrosion, but without loss of their structural integrity. To make the best use of 

these materials, it is critically important to have a good understanding of their macroscopic 
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mechanical behaviors and the underlying damage and deformation mechanisms. Such knowledge 

is key to efficiently design durable and sustainable structural components to meet the specific 

needs of applications. 

In general, characterizing the response of thermoplastic composites can be conducted either 

through experiments or numerical simulations. The experimental work on composites, however, 

can be very tedious and costly in light of a myriad of possible combinations of constituent materials, 

and therefore is performed only for limited material systems with a specific fiber volume fraction 

and microstructural configuration (Kaddour et al., 2013; Wei et al., 2020). To get a comprehensive 

understanding of the deformation mechanisms of thermoplastic composites, it is imperative to 

develop reliable numerical tools to efficiently gauge their overall stress-strain response integrating 

the process-induced microstructure. 

The response of thermoplastic composites is influenced by a number of factors that need 

to be understood in the course of conducting an experimental/analytical correlation with 

micromechanics simulations. First of all, the fiber orientation distributions and their corresponding 

volume fractions are known to affect substantially the local stress fields and the overall composite 

response. This is particularly true in the case of the short glass fiber reinforced polyamide-66 

composites (PA66/GF) investigated in this work. As reported by Arif et al. (2014a), the PA66/GF 

has a specific microstructure characterized by a well-defined skin-shell-core layer formation, as 

depicted in Figure 1, which has been frequently observed in a thin-plate structure of thermoplastic 

composites during the injection molding manufacturing process. Specifically, the fibers are 

randomly oriented in the skin layers which typically represent 5% of the plate thickness. The shell 

layers, whose preferential orientation direction is parallel to the mold flow direction, are the most 
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dominant layers, occupying about 90% of the plate thickness. The core layer fills up to 5% of the 

plate thickness and most fibers in this layer are oriented perpendicular to the mold flow direction. 

 

Figure 1 Skin-shell-core microstructure observed in the through-thickness of PA66/GF composites 

In addition to the local process-induced microstructure, it is well recognized that the 

thermoplastic composites exhibit substantial time-dependent inelastic deformation, due to the 

creep or stress relaxation of the viscoelastic polyamide matrix. Beyond the elastic and viscoelastic 

limits, the polyamide matrix undergoes unrecoverable plastic deformation and a creep flow that 

are also time-dependent. Such deformation mechanism has been modelled using the viscoelastic-

viscoplastic constitutive models in the literature (Krairi et al., 2019; Praud et al., 2017a). Therefore, 

to correctly simulate the macroscopic response integrating the material microstructure, the chosen 

micromechanics model must accommodate such a complex constitutive model at the phase level. 

Another important consideration in simulating the stress-strain response of polyamide 

composites is the ability to admit the local damage initiation and accumulation. Indeed, under 

certain loading conditions, significant microcracks may grow within the composite 

microstructures, which eventually lead to catastrophic failure of the composite materials and 
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structural components. Unlike metals where the damage commonly initiates from the most stressed 

points and evolves over a large volume of materials, the damage mechanisms in composites are 

remarkably different due to the myriad of failure mechanisms and modes, and their complex nature 

in terms of initiation and coalescence at different scales (Huang and Talreja, 2006). A case in point 

is the damage evolution mechanisms in glass/polyamide (PA66/GF) composites shown in Figure 

2, as reported by Arif et al. (2014a), where a number of factors are found responsible for the 

ultimate failure in this class of materials. Figure 2(a) shows the matrix microcracking, interface 

debonding and effective (or active) fiber length reduction, in the PA66/GF composites observed 

by the scanning electron microscope (SEM). Figures 2(b) and 2(c) show the in-situ scanning 

electron microscope micrographs of the 3-point bending test in the tension zone corresponding to 

the skin-shell region that exhibits the matrix microcracking and interface debonding at 73% and 

88% ultimate stress levels respectively. These figures indicate that the presence of defects in the 

fiber/matrix interphase leads to extensive fiber/matrix debonding, even at very low macroscopic 

stresses. From an experimental point of view, the interface damage is characterized by the onset 

and the coalescence of voids in the vicinity of the fibers. In contrast, away from this fiber/matrix 

interphase region, the matrix damage is ductile, which occurs in an interaction with the 

viscoplasticity. Moreover, the interphase discrete damage, particularly at the fiber ends, directly 

reduces the active fiber length that remains attached to the matrix, hence severely altering the load-

transfer capability from the matrix to the fibers as observed in Figure 2(a). The effects of 

interphase/interface discrete and matrix ductile damages on the stress-strain response of polyamide 

composites have attracted significant attention of the simulation community, Mao  et al. (2021); 

Tu and Chen (2020); Despringre et al.(2016). 
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       (a) 

  
   (b)      (c) 

Figure 2 Damage mechanisms in short glass-fiber reinforced polyamide composites (PA66/GF) as reported by Arif et 

al. (2014a): (a) effective fiber length reduction, matrix microcracks and interface debonding observed experimentally; 

matrix microcracks and interface debonding at (b) 73% and (c) 88% ultimate stress levels observed via the in-situ 

SEM 3-point bending test. The observations are carried out in the tension zone (skin-shell region). 

Each of the microstructure factors and damage/deformation modes outlined above has the 

potential to significantly affect the macroscopic stress-strain response of the composite materials. 

Consequently, it is essential to identify and quantify all of these mechanisms and to assess their 

interactions. Presently, a number of micromechanics models are available in the literature to 

predict the stress-strain behavior of composites. These models, in general, can be categorized into 

two broad categories. The first class of approaches is based on the full-field analysis, such as the 

finite-element (Chatzigeorgiou et al., 2016; Praud et al., 2021; Tikarrouchine et al., 2021), finite-
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volume (Chen et al., 2017; Tu and Chen, 2020), asymptotic (Cruz-González et al., 2020; Otero et 

al., 2020; Rodríguez-Ramos et al., 2012), locally-exact (Drago and Pindera, 2008; He and Pindera, 

2021), mesh-free (Chen and Aliabadi, 2019), and fast Fourier transformation (Lahellec and Suquet, 

2007; Moulinec and Suquet, 1998) homogenization of composite materials containing elastic, 

viscoelastic, viscoplastic, and damage phases. The full-field analysis approaches are suitable for 

modelling detailed microstructures but require substantial effort for the input data construction. 

Simulating three-dimensional microstructures is a challenging issue as it needs a great deal of 

computing power and can be incredibly slow. This aspect may prevent them from being efficiently 

used in the parametric studies aiming at understanding the structural integrity-property relationship. 

The second class of methods is the classical or extended mean-field homogenization methods, such 

as the self-consistent method (Mercier and Molinari, 2009), the generalized self-consistent method 

(Hine and Gusev, 2019), the Mori-Tanaka method (Barral et al., 2020; Barthélémy et al., 2019; 

Peng et al., 2016; Song et al., 2020), and the bridging micromechanics (Huang and Huang, 2020; 

Huang, 2020; Huang et al., 2021b), which are based on Eshelby’s well-established equivalence 

principle (Eshelby, 1957). Other developments of the mean-field approaches include the 

variational-incremental (Boudet et al., 2016; Brassart et al., 2012; Lahellec and Suquet, 2007) or 

incremental-secant (Wu et al., 2013) models. These advanced models are based on the introduction 

of a linear comparison composite and the computation of the first and second statistical moments. 

Relative to the full-field analysis, the classical or extended mean-field approaches provide closed-

form constitutive equations for combined thermo-mechanical multi-axial loading without the need 

for computationally-demanding three-dimensional unit cell analysis. As a result, the computation 

time of the mean-field approaches is reduced by at least an order relative to the full-field analysis. 
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The readers are referred to the review articles by Charalambakis et al. (2018) and Chen et al. (2018)  

for additional references in this area.  

The potential benefits that may be obtained from the use of polyamide composites have led 

to an increasing interest in understanding deformation and failure mechanisms in this class of 

materials. Launay et al. (2011) established a phenomenological model for simulating the cyclic 

behavior of short glass fiber reinforced polyamide, which described the short and long-term 

viscoelasticity, nonlinear viscous flow, and cyclic softening. Tu and Chen (2020) developed finite-

volume-based micromechanics with interface damage modelled using the cohesive zone model. 

The nonlinear stress-strain response of graphite/polyamide composites is simulated based on the 

hypothesis of shear-dominated fiber/matrix interfacial degradation as the primary cause of the 

observed nonlinearity. Ammar et al. (2021) developed a discrete element approach to simulate 

interfacial debonding process modelling using the cohesive zone model in short glass-fiber-

reinforced composites, in particular the PA6/GF30 composites. Huang et al. (2021a) proposed a 

bridging micromechanics model for predicting the failure strength of aligned and randomly 

oriented short fiber composites. They derived the closed-form expressions for the concentration 

factors to covert the homogenized stresses of the matrix into the true values such that predicting 

failure strength can be made using only the original constituent strength data with good accuracy.  

The novelty of the present work is to capture the rate-dependent stress-strain behavior of 

short glass fiber reinforced polyamide composites under monotonic and oligocyclic loading by 

taking into account physically justified deformation and damage mechanisms, including 

viscoelasticity, viscoplasticity, interphase decohesion, and matrix ductile damage, as well as 

integrating the actual injection-induced fiber orientation distributions. To the best of the authors’ 

knowledge, thus far, there has been no reported work of micromechanical methods on the 
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nonlinear short glass fiber reinforced polyamide composites with such complex behavior under 

oligocyclic loading in the literature. 

Herein, a modified Mori-Tanaka Transformation Field Analysis approach developed by 

Chen et al. (2021a), for unidirectional composites undergoing progressive damage coupled with 

viscoelastic-viscoplastic deformation, is further extended and extensively validated to address the 

short-fiber reinforced composites with random fiber orientation. The new approach is capable of 

considering the fiber orientation density function. The latter can be obtained experimentally 

through X-Ray micro-computed tomography investigation (Hessman et al., 2019) or estimated 

through the orientation tensors, which are extracted from the injection process simulation (Advani 

and Tucker, 1987; Müller and Böhlke, 2016).  The developed model integrates the injection-

process fiber orientation distribution, hence enabling a more realistic simulation of the composite 

response. Furthermore, the matrix constitutive behavior is simulated using a phenomenological 

viscoelastic-viscoplastic ductile damage model, developed under the thermodynamics framework 

by Praud et al. (2017a), while the interphase discrete microcracks/voids are described by the 

Weibull probabilistic function for debonding initiation and evolution. The new contributions of 

the present work include: 

 The modified Mori-Tanaka and TFA framework developed by Chen et al. (2021a) 

has been further extended for accommodating the rate-dependent stress-strain 

response of randomly oriented short fiber composites.  

 The new approach takes into account the actual injection-induced fiber arrangement 

and experimentally observed damage and deformation modes/mechanisms of the 

PA66/GF composites. 
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 Demonstration of the reasonable accuracy of the developed micromechanics 

framework, given the complexity of the overall response, against the experimental 

results for short fiber reinforced polyamide composites under uniaxial monotonic 

and oligocyclic loading conditions. 

It should be pointed out the basic framework of the present MT-TFA approach follows the 

idea of the three-phase Mori-Tanaka approach, originally developed by Chatzigeorgiou and 

Meraghni (2019) and Barral et al. (2020) considering inelastic fields in the absence of damage. 

According to that work, the interphase is introduced into the classical Mori-Tanaka approach to 

take into account the excessive stress concentration in the elastic-plastic region of the interphase. 

In the present work, the interphase plays an additional role of simulating the discrete damage 

arising from the fiber-matrix debonding. The progressive reduction of the active fiber length 

evidenced in experiments can be directly related to the interface damage as well.  

The remainder of the present work is organized as follows: Section 2 presents the 

theoretical framework of the probabilistic MT- TFA approach with random fiber orientations. 

Section 3 introduces the phase constitutive models and their numerical implementations. Section 

4 identifies the parameters of the model against the experimental response of glass/polyamide 

composites under the uniaxial loading/unloading path. Section 5 demonstrates the predictive 

capabilities of the developed model for simulating the inelastic response of short-fiber reinforced 

polyamide composites under complex oligocyclic loading conditions as well as the overall 

apparent stiffness reduction. Discussion and further development of the proposed technique is 

presented in section 6. Section 7 draws the pertinent conclusions. 
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2. Theoretical Development 

2.1 Modified Mori-Tanaka TFA Approach for Unidirectional Composites  

A brief overview of the extended Mori-Tanaka-based TFA framework is recalled for unidirectional 

fiber-reinforced composites accounting for interphase discrete damage and matrix ductile damage. 

Full development of the technique is referred to the work by Chen et al. (2021a).  

   

Figure 3 A three-phase Mori-Tanaka model with progressive interphase and void damage 

 

 The extended Mori-Tanaka approach is based on the transformation field analysis proposed 

by Dvorak (1992) and Dvorak and Benveniste (1992). For a three-phase composite consisting of 

the fiber (referred to subscript 1), the interphase (referred to subscript 2), and the matrix (referred 

to subscript 0) phases, as illustrated in Figure 3, the average strain rε  of the thr  phase reads: 

 0 0 0 1 1 2 2: : : :in in in in in in

r r r r r   ε T ε T ε T ε T ε   (1) 

where 1, 2r  . 0ε  denotes average matrix strain. in

rε  represents the inelastic strain of the thr  

phase. rT  and  ( 0,1,2)in

rp p T  are the fourth-order elastic and inelastic interaction tensors given 

by (Chatzigeorgiou and Meraghni, 2019): 
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where rc  denotes the volume fraction of the thr  phase.   is the fiber and interphase volume ratio: 

 1 1 2c c c   . 0C , 1C , and 2C  are the secant moduli of the matrix, fiber, and interphase, 

respectively. Moreover, 
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  (3) 

  / 2ijkl ik jl il jkI       is the fourth-order identity tensor. ij  is the Kronecker delta.  0S C  and 

 2S C  are the Eshelby tensors (Eshelby, 1957) expressed in terms of the matrix and interphase 

secant moduli and the geometry of the fiber, respectively. In the case of infinitely long cylindrical 

fibers embedded in an isotropic matrix, an explicit expression for the Eshelby tensor may be found 

in the literature (Mura, 1987). Otherwise, the Eshelby tensor must be evaluated numerically using 

the technique developed by Gavazzi and Lagoudas (1990). 

2.2 Modified Mori-Tanaka TFA Approach with Multiple Fiber Orientations: 

New Development 

To account for multiple coated fiber orientations in a matrix, the equations in the previous 

subsection must be further extended and reformulated. For an N-orientation coated fiber composite, 

Eq. (1) can be rewritten in a more general manner for the 𝑖th fiber with its 𝑖th coating as follows: 
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, , , ,

0 0 0 1 1 2 2: : : :i i i in i i in i i i in i

r r r r r   ε T ε T ε T ε T ε
  (4) 

where 1,...,i N .  ( 1, 2)i

r r T  are the elastic interaction tensors of the 𝑖th fiber and 𝑖th coating, 

respectively.    0,1,2i

rp p T  are the inelastic interaction tensors, with the superscript “in” 

omitted for the sake of simplicity. The expressions for the elastic and inelastic interaction tensors 

are given by analogous relations with the previous subsection. The macroscopic or the effective 

strain of an N-phase composite is expressed as a weighted sum of the average strains over all 

phases: 
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i i i i

i

c c c
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  (5) 

Using Eq. (4) in the definition of the composite overall strain, Eq. (5), we obtain: 
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where 1

ic  and 2

ic  are the volume fractions of the 𝑖th fiber and 𝑖th coating, respectively. 𝑐0 is the 

matrix volume fraction computed by: 𝑐0 = 1 − ∑ (𝑐1
𝑖 + 𝑐2

𝑖 )𝑁
𝑖=1 . From Eq. (6), the matrix strain can 

be obtained as follows: 

 

, ,
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  (7) 

with 
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 Substituting Eq. (7) into Eq. (4) yields: 
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 The macroscopic secant modulus of the composites *
C  is then expressed in terms of phase 

volume fractions, secant stiffness matrices, and elastic concentration tensors as follows: 
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2.3 Model Formulation Accounting for Random Orientations with Finite Fiber 

Length 

Theoretically, there is no specific number of inclusions that can be determined in an absolute 

manner. A composite with randomly oriented fibers, in theory, has fibers in all possible 

orientations. However, it is possible to identify an orientation density function that defines a 

probability for each orientation to appear. A common composite that appears frequently in the 

automotive industry consists of a matrix reinforced with fibers and the fibers are distributed in 

random orientation. Automotive structures exhibit three-dimensional fiber orientations, leading to 

an ODF described by two orientation angles (Zhu et al., 1997). Assume that fibers and coatings 

have a total volume fraction of 1c  and 2c , respectively, and the fiber and interphase volume ratio 

  is kept the same at every orientation. For a general case, if   denotes the angle of orientation 

with respect to 3x  axis and   denotes the out of plane angle of orientation with respect to 1x  axis, 

Eq. (12) can be written as: 

 

     

     

* 2
0 0 0 1 1 1
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2
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








        

        



 



 

   

 

A A

A

C C C

C

  (13) 

where  ,g    denotes the fiber orientation density function in the case fibers are distributed in 

all possible directions in the three-dimensional space, and  
2

2
, sin d d 1g

 

 
    

 

 
  . In the 

case the function  ,g    is a constant, there is an equal probability of appearance of all 
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orientations. When the function  ,g    has an analytical expression, the scalar integral of Eq. 

(13) can be computed exactly. 

For structural components produced in the form of the thin plate (the thickness ranging 

between 1 mm  and 4mm ), however, the fiber orientation angles   with respect to the out-of-

plane axis 1x  are very small (Arif et al., 2014b). As consequence, the micromechanics analysis in 

the present work is performed considering the fibers distributed randomly on the 2 3x x  plane, 

Figure 4(a), and the fiber orientation density function is characterized by just one angle  , Figure 

4(b). In such case, Eq. (12) can be rewritten as: 

 

     

     

* 2
0 0 0 1 1 1

2

2
2 2 2

2

d

       d

A A
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c c g

c g




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   

   









 







C C C

C

  (14) 

where  g   denotes the fiber orientation density function in the case fibers are randomly 

distributed on a plane, and  
2

2
d 1g




 




 .  The initial fiber length l  in the composites can be 

either finite or infinite, depending on the manufacturing process and geometry of the constituent 

fibers (Launay et al., 2011).  The averaged fiber aspect ratio determined via the experiment for an 

actual composite is employed in the present work. 

 
        

        (a)             (b) 
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(c)  

Figure 4 (a) Illustration of short-fiber reinforced composites with random fiber orientation; (b) The relative position 

of a fiber rotated by an angle of   with respect to 3x  axis on the 2 3x x  plane; (c) Approximation of the orientation 

density function using rectangles of constant width 

 In order to keep the comprehensive structure of Eq. (12), which is also more suitable for 

numerical implementation, the integral is approximated using the rectangles of constant step. 

Considering N discrete orientations, Figure 4(c), the step h  becomes h . The macroscopic 

secant modulus of the N-orientation composites reads: 

    *

0 0 0 1 1 1 2 2 2

1

: :A A A
N

i i i i

i i

i

c c g c g
N


 



    C C C C   (15) 

3. Numerical Implementation 

Apart from the micromechanics scheme, the accurate characterization of the composite 

homogenized behaviors relies on a sophisticated constitutive law that describes the stress 

increments for the given strain increments at each phase. In this present work, the randomly 

oriented composites consist of three constituent materials. The inclusion phase is glass fibers 

which are assumed to be linearly elastic during the entire loading history. The matrix is the PA66 

polyamide that exhibits viscoelastic-viscoplastic behavior with ductile damage. The interphase 

surrounding fibers consists of a PA66 polyamide, which is characterized using the viscoelastic-
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viscoplastic model with void creation. For the readers’ convenience, the essential information 

about the matrix and interphase constitutive laws is summarized below. A full exposition of those 

phase models can be found in previous publications (Chen et al., 2021a; Praud et al., 2017a). 

3.1 Constitutive Law for the Matrix 

Semi-crystalline polymers are known to exhibit substantial time-dependent inelastic stress-strain 

behavior and accordingly have been modelled using viscoelastic-viscoplastic formalism. In 

particular, the inelastic strains 0

in
ε  appearing on right-hand sides of Eqs. (7) and (9) are integrated 

using the viscoelastic-viscoplastic (VE-VP) constitutive equation developed by Praud et al. (2017a) 

based on an appropriate thermodynamic principle, under the infinitesimal deformation assumption 

and isothermal conditions. Moreover, these materials are assumed to experience a gradual stiffness 

degradation during the loading/unloading due to the initiation and growth of matrix microcracks. 

The damage mechanisms in the matrix phase can be characterized through continuum damage 

theory based on the well-known principle of effective stress introduced by Lemaitre and Chaboche 

(1994). 

          The rheological model for the matrix phase can be described using N Kelvin-Voigt branches 

and a viscoplastic branch positioned in series, as illustrated in Figure 5. Under the thermodynamics 

framework, the Helmholtz free energy for the matrix medium reads: 

 

   

   

1 1

0
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r d d

d R d



 

 
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   
        

   

  

 

 

ε ε ε ε ε ε C ε ε ε

ε C ε

  (16) 

where eC  (representing the initial matrix stiffness tensor 0C ) and viC denote the elastic stiffness 

tensor and the viscoplastic tensor of the thi  branch, respectively. ε , viε , and vpε  are total, 
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viscoelastic, and viscoplastic strains, respectively. d  denotes the ductile matrix damage variable 

represented as a scalar quantity. R  is the hardening function. 

 

Figure 5 Rheological scheme of the VE-VP-d (Praud et al., 2017a) adopted for the polyamide matrix 

The associated thermodynamic variables are obtained from the derivation of the potential 

with respect to their corresponding state variables, which are summarized in Table 1, where viV  

are the fourth-order viscous tensors, viσ  are the viscoelastic stresses, dev(𝛔 ) designates the 

deviatoric stresses, eq(𝛔) is the equivalent von Mises stress. 

Table 1 Summary of the constitutive relations for the VE-VP-d matrix phase 

State variables Associated variables Evolution law 

Observable state variable   

Total strain 𝛆 








σ
ε

 - 

Internal state variable   

Viscoelastic strain 𝛆𝑣𝑖 vi

vi





 


σ
ε

  
1 :vi vi vi

ε V σ&   

Viscoplastic strain 𝛆𝑝 
p





  


σ
ε

  
 
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2 1 ( )
p
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d eq




σ
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σ
& &  

Accumulated plastic strain 𝑝 ( )R p
p








  p  &&   

Accumulated damage 𝑑 Y
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
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 
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3.2 Constitutive Law for the Interphase 

The interphase is assumed to possess the same material as the matrix phase before undergoing the 

void initiation and coalescence. Therefore, the inelastic rheological behavior of the interphase 

follows the same VE-VP constitutive law as that of the matrix phase. The Mori-Tanaka method, 

however, is based on the average stress per phase. Hence, it significantly overestimates the 

macroscopic stress-strain response in the elastic-plastic region, if not the homogenized elastic 

moduli. It is also noted from the full-field analysis that the interphase surrounding the matrix 

accumulates substantial inelastic deformation that affects the post-yield stress-strain response. On 

this basis, the stress overshoot is corrected by the inelastic strains in the interphase layers which 

are directly linked to the matrix strain through a correction tensor Y , as proposed by Barral et al. 

(2020): 

 2 0:in inε Y ε   (17) 

For a short fiber-reinforced composite with fiber oriented in 3x  direction, the correction 

tensor may be expressed in the following form: 

 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

N

N

L

ST

SL

SL













 
 
 
 

  
 
 
 
  

Y   (18) 

In the above equation, 
N , 

L , 
ST , and 

SL  denote the difference between matrix and interphase 

inelastic strains in transverse normal, longitudinal, transverse shear, and axial shear directions, 

respectively following the local coordinate system in Figure 3. 
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 Conversely to the matrix damage which occurs in a rather slowly processing manner, the 

damage in the vicinity of the fiber is characterized by sudden occurrence and coalescence of voids 

or defects, which is supported by the experimental microscopic observations for short glass fiber 

reinforced polyamide composites (Arif et al., 2014a). This is supposed to be an outcome of the 

high-stress concentration due to the large fiber/matrix property mismatch (contrast) and the 

manufacturing defects during the consolidation process that commonly appear in this region. 

 The void accumulation in the interphase layers is described using the stiffness reduction, 

which is depicted by a fourth-order tensor  cD  that recessively degrades the initial stiffness 

tensor of the interphase 2C  occupying this layer, Figure 6, cf. Praud et al. (2017b); Chen et al. 

(2021a). It is recalled that the interphase’s initial elastic stiffness is 2 0C C . The interphase 

stiffness reduction tensor  cD  is then expressed as a function of interphase void volume fraction 

c , representing the microcrack density, by assuming scale separation between the voids and the 

overall interphase layer. Following the Mori-Tanaka homogenization, the overall interphase 

stiffness of the equivalent interphase medium reads: 

        2 0 01 :c c c m c      C D C AC   (19) 

where  m cA  is the strain concentration tensor of the net matrix embedding voids. The strain 

concentration tensor  m cA  is directly computed using the two-phase Mori-Tanaka model: 

    
1

: 1m c m c m c c  


    Α T T T   (20) 

with m T I ,  
1

0c



   T I S C  and  0S C  denotes the Eshelby tensor determined by the 

stiffness tensor of the net matrix surrounding the voids and the ellipsoidal geometry of the voids. 
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The final expression of the overall interphase stiffness with void creation and growth is obtained 

by substituting Eq. (20) into Eq. (19): 

      2 0 0 0 : :c c c c m c      C D C C T AC   (21) 

 

Figure 6 Discrete void-type damage in the interphase represented by the microcrack density 
c . The secant modulus 

2C  of the homogenized interphase is evaluated in terms of the net matrix modulus 
0C   and microcrack density 

c   

Depending on the fiber/matrix bonding state of particular interphase, the void initiation and 

accumulation in the interphase can occur even at very low stresses, which may significantly affect 

the load-bearing capability of the composite materials. The void growth in the interphase region 

can be modelled using a Weibull probabilistic density function (Desrumaux et al., 2000; Weihull, 

1951) that is commonly used in the micromechanics-based models to characterize various types 

of damage evolution. The cumulative probability function of the interphase void content reads: 

 
2

max 1 exp

eff

a

c

c



 
 



        
       

  (22) 

 In the above equation, max  represents the saturation limit of the microcrack density such that 

maxc  . 2

eff  denotes the homogenized interphase effective stress. c  and   are the Weibull 

parameters, the combination of which controls how rapid interphase microcrack may grow. a  

denotes the damage threshold stress activating the microcrack initiation in the interphase.  
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indicates the Macaulay bracket. Figure 7(a) illustrates the effect of the Weibull exponent   on the 

interphase void growth in the case of 50 MPac  , 0 MPaa  , and 1c  . As observed, for 

small   cases, the interphase void damage is activated at very low stresses and the microcrack 

density increases with the effective interphase macroscopic stress but with a diminishing rate. For 

large   cases, a lower probability of interphase microcrack is expected at the initial stage of the 

deformation. The interphase microcrack formation, however, may occur abruptly when the 

effective stress approaches the critical stress 50 MPac  , indicating a catastrophic failure of the 

interphase. Figure 7(b) illustrates the effect of critical stress c  on the interphase void growth 

when the Weibull exponent   is held constant as 0.5. It is clearly shown that decreasing c  

substantially promotes the interphase void growth.  

  
(a) (b) 

Figure 7 (a) Illustration of the effect of Weibull exponent   on the interphase void growth in the case of constant 

50 MPac  ; (b) effect of critical stress c  on the interphase void growth in the case of constant 0.5    

3.3 Interphase Damage Induced Progressive Effective Fiber Length Reduction 

The initiation and growth of the interphase microcracks near the fiber ends significantly alter the 

stress-transfer mechanisms between the fibers and the supporting matrix. The load transfer occurs 

thus only in the residual active fiber length that remains attached to the matrix, namely, the non-
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debonded portion. As a result, the effective (or active) fiber length, which plays a vital role in 

controlling the load-bearing capability in the short-fiber composites, may also decrease 

progressively with increasing interphase voids due to the interphase decohesion. The effective 

fiber length l  can be expressed as a function of the interphase damage progressive degradation, 

namely, the interphase microcrack density c .  Herein, the effective fiber length l  is linked to c  

in simple form: 

  0 1 cl L     (23) 

where 0L  denotes the initial fiber length.   is the parameter controlling how fast the effective 

fiber length reduction may be activated.   For simplicity,   has been kept as 1 in generating results 

that follow. The effective fiber length reduction can take into account the effect of interphase 

discrete damage on the stress-transfer mechanisms between the fibers and the supporting matrix 

in this class of materials, enabling more accurate characterization of the stress-strain behavior via 

the modified Mori-Tanaka approach with random fiber orientations. 

3.4 Iterative Strategy 

The modified Mori-Tanaka TFA approach with randomly oriented fibers is implemented using the 

secant stiffness matrix approach based on the return mapping algorithm (Chatzigeorgiou et al., 

2018; Simo and Hughes, 1998). The homogenized constitutive equation can be expressed as: 

 * in σ ε σC   (24) 

where *
C  is the homogenized secant stiffness matrix of the randomly oriented fiber-reinforced 

composites given by Eq. (12) or the Eq. (15), based on the secant stiffness tensors of the matrix 

0 0(1 )d  CC , fiber 1 1CC , and the interphase  2 0 c C DC , 0C  and 1C  are the initial elastic 

stiffness tensors of the matrix and fiber phase, respectively. For a given macroscopic strain 
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increment, the stress overshoot is corrected through the inelastic stresses in
σ . The convergence of 

the numerical procedure is obtained till either the difference of the macroscopic strains between 

two successive iterations is within a specified tolerance or the iterations reach a prescribed number. 

It should be mentioned that the employed secant stiffness matrix approach is more advantageous 

than the tangential stiffness matrix approach typically used in the finite-element or finite-volume-

based solutions (Chatzigeorgiou et al., 2016; Chen et al., 2021b) in several aspects. In particular, 

the former doesn’t require the formulation of the tangent stiffness matrix which must be reformed 

many times during the Newton-Rapson iterations. In addition, the tangent stiffness matrix may 

become singular or ill-conditioned in the nonlinear stress-strain region, which consequently 

produces numerical instabilities and non-converged results. The general iterative scheme of the 

modified Mori-Tanaka TFA method is described in detail in Table 2. 

Table 2 Iterative scheme of the modified Mori-Tanaka TFA method for composites with random 

fiber orientations 

1. At time step 𝑛, everything is known for all the phases in both scales.  

2. At the beginning of the time step 𝑛 + 1, set all the average microscopic variables, secant 

moduli, and the concentration tensors at every phase equal to their corresponding values at time 

step 𝑛. At the specific iteration, the macroscopic strain increment ε  for the composites is 

calculated from the homogenized Hooke’s law, Eq. (24).  

3. Compute the microscopic strain increment for each phase from: 
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   ε ε A ε ε A ε A ε A ε   
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1 1 1N N
n n i n i ni i i i

i i

c c
c c c 

             
      ε ε ε ε ε ε ε ε   

 

4. At every phase, evaluate the microscopic inelastic strain as well as the secant modulus using 

the phase constitutive law described in previous subsections. The microscopic stress per phase 

is then computed by: 
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   

1 1 1 1 1 1 1: :
i n i ni i i      

   
σ ε ε C ε εC   

      ,

2 2 2 2 2 0 2 2 0: : :
ii n i ni i i in i i in

c                
σ ε ε ε C D ε ε Y εC   

   
0 0 0 0 0 0 0 0 0: (1 ) :

n nin ind         
   

σ ε ε ε C ε ε εC  

5. Evaluate the concentration tensors at every phase, according to Eqs. (8), (10) and (11). 

6. Check the local convergence of the average strain per phase. If the phase strain ceases to 

change then continue with step 7, otherwise return to step 3. 

7. Compute the macroscopic stress and the macroscopic inelastic stress: 

0 0 1 1 2 2

1

N
i i i i

i

c c c


    σ σ σ σ  

 * :
nin    

 
σ σ ε εC   

8. Check the global convergence criterion. If the global convergence of macroscopic strain is 

satisfied then go to the next macroscopic strain increment, otherwise return to step 2. 

4. Identification of the Interphase Parameters 

In this section, the extended Mori-Tanaka TFA framework is employed to describe the uniaxial 

loading/unloading and oligocyclic stress-strain response of short fiber-reinforced composites at 

different loading rates. The simulated response is validated extensively against the experimental 

response under various off-axis configurations.  

The first investigated composite is the thermoplastic short glass fiber-reinforced polyamide 

(PA66/GF35) composite containing 35% fiber weight content, corresponding to 18.5% fiber 

volume fraction. The matrix is modelled by a phenomenological model consisting of four Kelvin-

Voigt branches and a viscoplastic branch model, with damage characterized by the gradual 

stiffness degradation. Identification of such complex constitutive laws for the polyamide matrix, 

where multiple mechanisms are simultaneously involved, typically requires a complex 

methodology (Praud et al., 2017a). Very often it is impossible to completely isolate a single 

mechanism in order to identify independently its related parameters. Consequently, the 
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identification of matrix parameters necessitates the use of appropriate reverse engineering methods. 

In the present work, the matrix properties listed in Table 3 are directly taken from Praud et al. 

(2021). These parameters are identified by calibrating the constitutive model (VE-VP-d) 

predictions against the monotonic tensile, incremental load/unload tensile, and incremental 

load/relaxation/unload/relaxation tensile tests on the pure polyamide 6-6 using an optimization 

algorithm. The readers are referred to Praud et al. (2017a; 2021) for more complete references.  

The glass fiber is assumed to be linearly elastic during the entire loading history, the elastic 

properties of which are listed in Table 3. The fiber orientation density function for the PA66/GF35 

is obtained by the microcomputer tomography scan, and the measured fiber aspect ratio is 22 on 

average. It is important to point out that the polyamide and polyamide composites are known to be 

highly sensitive to the environmental condition, in particular, the relative humidity (RH) and the 

working temperature T . Herein, the room temperature o23 CT   is considered whereas the 

relative RH is equal to 50%. 

Table 3 Identified material parameters used in the random Mori-Tanaka TFA simulation (
o23 CT  , 

RH=50%) 

 Glass Fiber Polyamide Interphase  Polyamide Matrix 

E  72.4 GPa 2731 MPa 2731 MPa 

𝜐 0.22 0.3 0.3 

1vE    8766 MPa 8766 MPa 

1v    1395 MPa s 1395 MPa s 

2vE    13754 MPa 13754 MPa 

2v    165601 MPa s 165601 MPa s 

3vE    15010 MPa 15010 MPa 

3v
   457955 MPa s 457955 MPa s 

4vE    11634 MPa 11634 MPa 

4v
   1307516 MPa s 1307516 MPa s 

0R    4.86 MPa 4.86 MPa 

K    1304.33 MPa 1304.33 MPa 

n    0.674 0.674 

H    47.35 MPa s 47.35 MPa sm 

m    0.068 0.068 
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S     21.607 

     -1.105 

 L   1  
N    6  
ST   2.64  
SL   3.7  

max   0.99   

   0.62  

c    55.20 MPa   

 

The estimated fiber-to-interphase volume ratio obtained from the experiment is 0.57  . 

As reported by Barral et al. (2020), this value also ensures the inelastic strain concentrations in the 

vicinity of the fiber in a reasonable range relative to the full-field finite-element simulations. The 

parameters that remain to be determined are the interphase Weibull parameters c , a ,  , and 

max , and the inelastic strain correction tensor Y . These parameters, however, are not directly 

measurable, as it is impossible to separate the interphase from the composites to perform a 

mechanical test on them. Consequently, the interphase parameters are calibrated from the 

macroscopic response of the glass/polyamide composites under uniaxial off-axis 

loading/unloading paths. The identification of the interphase properties is achieved by minimizing a cost 

function expressed by the least squares between the numerical and experimental uniaxial stress responses, 

num   and  
exp respectively: 

2

1

1
ArgMin 

2

pN

num exp

k k k

k

w  


    

where  pN  is the number of measuring points and  kw denotes the weight for  thk  measuring point.   

In addition, it is observed experimentally that the formation of the interphase damage in 

this type of material manifests itself at very low stresses, with a catastrophic interfacial separation 

Jo
urn

al 
Pre-

pro
of



29 
 

(Arif et al., 2014a). To be consistent with this observation and also to reduce the number of 

parameters to be identified, a  and max  are taken directly as 0 and 0.99. In the sequel, the 

remaining interphase parameters 
c ,  , and Y  are calibrated against uniaxial loading/unloading 

tests of PA66/GF35 composites at two strain rates and three loading directions. Then the suitability 

of the identified parameters is verified by comparing the predicted stress-strain responses against 

the separate and hold-out experimental data under both uniaxial and oligocyclic loading/unloading 

paths. 

Figure 8 presents the orientation density function of the glass/polyamide (PA66/GF35) 

obtained experimentally by mCT technique. This orientation density function distribution is 

consistent with the skin-shell-core microstructure of the PA66/GF30 plate observed by the 

scanning electron microscope test, cf. Arif et al. (2014a), as described in Figure 1. The angular 

spatial resolution of the ODF during the testing is 5o
, hence yielding 36N  coated fiber phases 

(Eq. (15)). 

 

Figure 8 Experimentally measured fiber orientation density function by mCT scan investigation for PA66/GF35, 

showing the skin-shell-core effect 
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The quasi-static tensile experimental tests are first carried out on the randomly oriented 

PA66/GF35 glass/polyamide specimens cut from the plate with different orientations relative to 

the global axis, namely   = 0o , 45o , and 90o with respect to x  axis. They are loaded in the 

laminate plane under strain-controlled loading by the normal in-plane stress 0xx  , as illustrated 

in Figure 9,  Moreover, in order to capture the strain rate effects, these tests are performed with a 

servo-hydraulic tensile machine at four different loading rates, namely, 1 × 10−3/s, 5 × 10−3/s, 

1 × 10−2/s , and 5 × 10−2/s , where the axial macroscopic strain xx  is measured by an 

extensometer, while the axial macroscopic stress  xx  is collected by a load cell. 

 
Figure 9 An off-axis specimen uniaxially loaded along the x  axis in the global coordinates  

 The identification of the interphase parameters is achieved by minimizing a cost function 

containing the differences between the numerical and experimental macroscopic stresses for the 

0o , 45o , and 90o  PA66/GF35 dogbone specimens with the actual dimensions given in Arif et al. 

(2014b). The identified interphase parameters are listed in Table 3. Figure 10 shows the calibrated 

stress-strain behaviors generated by the extended Mori-Tanaka methods against the experimental 

data, which are carried out at loading rates of 1 × 10−3/s and 5 × 10−2/s, thus covering a wider 

range of loading rates. To verify the correctness of the calibrated interphase parameters, the 

comparison between the simulated stress-strain response and experimental values at two additional 

loading rates of  1 × 10−2/s and 5 × 10−3/s. The stress-strain responses for these two loading 

configurations, which are not used in the identification process are shown in Figure 11. As 
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expected, substantial nonlinearity is observed in the response of 45o  and 90o  specimens due to the 

high viscoelastic-viscoplastic effects and a remarkable amount of interphase and matrix damage. 

In contrast, the 0o  specimen response is much stiffer than the response of 45o  and 90o specimens 

because of the higher probability of fibers oriented in the loading direction. The interphase and 

matrix damages are supposed to be the primary cause for the nonlinearity in the o0  stress-strain 

response. The overall stress-strain behavior is captured with sufficient accuracy for the 0o  and 45o  

configurations. For the 90o  specimen, the MT-TFA predictions coincide with the experimental 

values at the initial loading stages but predict stiffer response than the experimental results with 

continued applied strains. The deviation of the response at large applied strains at 90o  specimen 

can be attributed to several factors that are not taken into account in the present work, such as the 

inelastic flow involving a beginning of finite strains and rotations or the hydrostatic stress effect 

commonly admitted in the polymeric materials. Nevertheless, the obtained results demonstrate the 

model’s capability to capture properly the strain rate effect, the damage evolution in the interphase 

and matrix phases, as well as the viscoelastic-viscoplastic deformation. 

  
(a)  5 × 10−2/s 
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                (b)  1× 10−3/s 

Figure 10 Calibration of the interphase material based on uniaxial macroscopic load/unload stress-strain curves at 

strain rates of (a)  5 × 10−2/s; (b) 1× 10−3/s 

  
(a)  5 × 10−3/s 
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(b)  1× 10−2/s 

Figure 11 Comparison of the macroscopic stress-strain curves of PA66/GF35 generated using the MT-TFA approach 

with the deduced interphase parameters with the experimental data at strain rates of (a)  5 × 10−3/s; (b) 1× 10−2/s 

 To get more evidence on the validity of the proposed MT-TFA damage framework, 

comparison between the simulated and test stress-strain response is presented in Figure 12 for 

PA66/GF30 composite system containing 30% fiber content, which corresponds to 15.5% fiber 

volume fraction.  For this material system, the uniaxial monotonic loading tests are performed on 

o0 , o15 , 30o , 45o , 60o  and 90o  orientations with respect to the mold-flow injection direction at a 

constant strain rate of 1× 10−3/s. It should be pointed out that the fiber orientation density function 

of the PA66/GF35 is directly used for the PA66/GF30 since they are both manufactured using the 

injection molding methods and their fiber volume contents are close. Similar conclusions for 

analytical/experimental correlations can be drawn for the PA66/GF30 composite systems as in the 

PA66/GF35. 
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Figure 12 Comparison between the macroscopic stress-strain curves of PA66/GF30 generated using the MT-TFA 

approach with the deduced interphase parameters and the experimental data at strain rate of 1× 10−3/s 

5 Oligocyclic Loading 

The predictive capabilities of the extended Mori-Tanaka TFA approach are further validated upon 

simulating the oligocyclic response of the randomly-oriented PA66/GF35 composites based on the 

interphase and matrix parameters identified in the previous subsection. It should be pointed out 

that accurate simulating the oligocyclic response is more difficult relative to the uniaxial 

monotonic loading cases, as the effect of damage is the dominant mechanism in controlling the 

overall composite response with increasing load cycle. An additional complication is the fact that 

interactions between the viscoelasticity-viscoplasticity and the damage in different phases are 

more important during cyclic loading. Hence, it provides a very rigorous test and critical 

assessment of the accuracy of the proposed technique. The incremental load/unload cyclic tests 

are carried on the 0o , 45o , and 90o  PA66/GF35 specimens until fracture, at two averaged strain 

rates of 10−2/s and 10−3/s, respectively.  

 Using the derived interphase properties, the extended MT-TFA simulations based on the 

actual fiber orientations of the PA66/GF35, subjected to oligocyclic loading, are compared with 
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the corresponding experimental response. Figures 13-15 illustrate the MT-TFA-experimental 

correlations for the 0o , 45o , and 90o  off-axis specimens at two average strain rates: 
310 s

 and 

210 s
, respectively. It should be noted that at the considered load level, macroscopic fracture 

occurs after 5 loading/unloading cycles in the case of 0o  specimen.  In the case of 45o , and 90o

specimens, the oligocyclic loading can be performed up to 10 cycles. Overall, the predicted 

response of the o0  specimen exhibits good accordance with the experimental data in the nonlinear 

region, although a slight deviation may be observed after two cycles. Similar comments can be 

applied to the o90  specimen. In contrast, the predicted hysteresis response of the 45o  specimen 

closely matches the experimental results of the entire deformation history, including the actual 

magnitudes and the observed trends as a function of the applied strains. It is important to note that 

at the early stage of the loading, there is virtually no difference between the MT-TFA predictions 

and experimental results for all the three orientations. The nonlinearity of the response is mainly 

attributed to the damage development, as the viscoelastic-viscoplastic effects are less significant 

at this load range. This suggests that the developed damage constitutive model is capable of 

offering realistic damage predictions. 

The viscoelastic-viscoplastic and damage framework captures well the first 

loading/unloading cycles that present narrow hysteresis loops. However, with the increase of 

inelastic strain, the model is less accurate compared to the experiments, which exhibit larger 

hysteresis loops. Indeed, the later loops take progressively a banana shape due to the fiber/matrix 

friction at the debonded interfaces combined with the viscoelasticity nature of the polyamide 

matrix.  Despite this issue, the agreement between the present predictions and testing data is still 

encouraging for the possible use of the proposed technique for predicting the nonlinear stress-

strain behavior with progressive damage evolution in this class of materials. 
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(a) Strain VS time 

  
(b) Stress VS time 
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(c) Stress VS strain 

Figure 13 Comparison of the cyclic response of the 0o PA66/GF35 composites generated by the modified 

MT-TFA approach and the experimental data at averaged loading rates of 10−2/s (left) and 10−3/s (right), 

respectively 

 

  
(a) Strain VS time 

  
(b) Stress VS time 
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(c) Stress VS strain 

Figure 14 Comparison of the cyclic response of the 45o PA66/GF35 composites generated by the modified 

MT-TFA approach against the experimental data at averaged loading rates of 10−2/s (left) and 10−3/s 
(right), respectively 

 

  
(a) Strain VS time 
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(b) Stress VS time 

  
(c) Stress VS strain 

Figure 15 Comparison of the cyclic response of the 90o PA66/GF35 composites generated by the modified 

MT-TFA approach and the experimental data at averaged loading rates of 10−2/s (left) and 10−3/s (right), 

respectively 

 

Figure 16 presents the corresponding damage evolution in the selected interphases and the 

matrix phase, c  and d ,  for the 0o , 45o , and 90o  specimens subjected to oligocyclic loading 

conditions. As anticipated, the damage evolutions in the interphase and matrix phases of the 

considered composites are completely different. They initiate from the interphase and then 

propagate through the polyamide matrix, which are supported by the experiment observations by 
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Arif et al. (2014a). Indeed, the interphase discrete damage c   accumulation is more rapid at the 

early stage of loading and the rate of the interphase damage formation decreases gradually with 

time. It is also observed that damage in both matrix and interphase is always increasing or remains 

constant, which is in accordance with the second principle of thermodynamics through Clausius 

Duhem inequality (Praud et al., 2017b). This figure also confirms the micro damage-induced 

global nonlinear stress-strain response at the early loading stages. In general, the microcracks 

initiate in the interphase and develop rapidly at the early loading stages while the matrix damage 

is not or less activated. Since the ductile damage is assumed to be proportional to accumulated 

viscoplastic strains, as shown in Table 1, the viscoplastic strains are not significant either. 

Therefore, the interphase degradation is the primary cause of the observed nonlinearity in the 

stress-strain response at the early loading stages.  

 

  

(a) 
o0   
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(b) 
o45   

  

(c) 
o90  

Figure 16 Comparison of matrix ductile damage d  and selected interphase damage c  as a function of time for three 

off-axis PA66/GF35 composites at averaged loading rates of 10−2/s (left) and 10−3/s (right), respectively. It is noted 

that the interphase orientation is given with respect to the 2 3x x  plane 

Finally, comparison of the composite’s effective “apparent” stiffness normalized by the 

initial values o

xx xxE E  in the global coordinate systems obtained from unloading branches is 

presented in Figure 17. Very little data are readily available in the open literature concerning the 

stiffness reduction of the short fiber-reinforced polyamide composites during the oligocyclic 

loading, which is a good indicator that quantifies the overall damage evolution in composite 
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structures. Some differences are observed in the case of 45o  and 90o  specimens due to the errors 

in the evaluation of the initial stiffness. Nonetheless, the basic trends for stiffness reduction in 

experiments are seen to be captured by the modified MT-TFA model.  
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Figure 17 Comparison of the stiffness reduction
o

xx xxE E  for the cyclic loading obtained by the MT-TFA approach 

and experimental results at averaged loading rates of 10−2/s (left) and 10−3/s (right), respectively 

6. Summary and Conclusion 

Characterizing the response of thermoplastic composites continues to be an active and important 

area of research. The present work attempts to present an extended mean-field approach, based on 

the modified Mori-Tanaka and TFA techniques, to describe the experimentally-observed multi-

mechanism inelastic deformation of short glass-fiber reinforced polyamide composites, under 

various loading conditions. In particular, the matrix inelastic behavior is simulated by a 

phenomenological model consisting of four Kelvin-Voigt branches and a viscoplastic branch, 

which is coupled with ductile damage. The interphase is described using a discrete damage model, 

wherein the microcrack/void initiation and growth follow the Weibull probabilistic function. The 

ability to incorporate the actual fiber arrangement and the ability to simulate different inelastic 

deformation and damage mechanisms at phase level make the developed techniques unique among 

the presently available micromechanics approaches. 

The parameters of the developed models are calibrated using a minimum amount of 

experimental data obtained from uniaxial loading paths. The subsequent successful simulation of 
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the oligocyclic response of PA66/GF35 composites with three off-axis loading orientations at two 

loading rates, based on the deduced parameters, demonstrates the potential of the developed 

technique in accurately mimicking the response of polyamide composites under complex loading 

paths. The progressive interphase and matrix damage under various loading paths are also 

presented in support of the predictive capabilities of the extended MT-TFA approach. The 

numerical simulations indicate that local damage modes are induced by interfacial debonding in 

the vicinity of the reinforcements, followed by propagating through the matrix phase, which is 

consistent with the experimental observations. 

Since the response of the polyamide is affected by the environmental conditions, it is 

imperative to incorporate a fully coupled thermo-hygro-damageable-mechanical phase 

constitutive model to address the temperature and moisture effects on the polyamide composite 

response. The extension to simulate the high-cycle fatigue damage by incorporating the cycle-

jump techniques is also a worthwhile pursuit given the demonstrated accuracy of the present mean-

field approach. 
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HIGHLIGHTS 
 

 A probabilistic micromechanics damage framework is proposed, based on the modified Mori-Tanaka 
method and Transformation Field Analysis, 

 The first time that a modified Mori-Tanaka TFA approach that involves multi-deformation mechanisms 
and integrates the actual material microstructure is developed for short glass-fiber reinforced 
polyamide composites,  

 The developed approach considers several deformation and damage mechanisms simultaneously. 
Namely, the matrix is described by the viscoelastic-viscoplastic model coupled with ductile damage. 
The fiber/matrix debonding is characterized by void creation and accumulation. The progressive 
degradation of the load transfer is introduced through a reduction of the effective fiber length, 

 The developed approach is extensively validated against the experimental data under monotonic and 
oligocyclic loading paths. Progressive matrix and interphase damage are compared in support of the 
modified MT-TFA technique’s capabilities to capture the experimentally observed damage 
mechanisms. 
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