
HAL Id: hal-03357785
https://hal.science/hal-03357785

Submitted on 29 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of Long Short-Term Memory (LSTM)
Neural Network for the estimation of communication

network delay in smart grid applications
Ronak Feizimirkhani, van Hoa Nguyen, Yvon Bésanger, Quoc Tuan Tran,

Antoneta Iuliana Bratcu, Antoine Labonne, Thierry Braconnier

To cite this version:
Ronak Feizimirkhani, van Hoa Nguyen, Yvon Bésanger, Quoc Tuan Tran, Antoneta Iuliana Bratcu,
et al.. Application of Long Short-Term Memory (LSTM) Neural Network for the estimation
of communication network delay in smart grid applications. EEEIC 2021 - 21st IEEE Interna-
tional Conference on Environment and Electrical Engineering (EEEIC 2021), Sep 2021, Bari, Italy.
�10.1109/EEEIC/ICPSEurope51590.2021.9584791�. �hal-03357785�

https://hal.science/hal-03357785
https://hal.archives-ouvertes.fr

978-1-6654-3613-7/21/$31.00 ©2021 IEEE

Application of Long Short-Term Memory (LSTM)
Neural Network for the estimation of

communication network delay in smart grid
applications

Ronak Feizimirkhani1, Van Hoa Nguyen1, Yvon Bésanger1, Quoc Tuan Tran2,
Antoneta Iuliana Bratcu3, Antoine Labonne1, Thierry Braconnier1

1 Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), G2Elab, Grenoble, France

2 Univ. Grenoble Alpes, INES, CEA, LITEN, Le Bourget du Lac, France
3 Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), GIPSA-lab, Grenoble, France

Abstract— Vast integration of new technologies to enable

smart control of the power grid requires a reliable, efficient and

resilient communication infrastructure. Today, many

communication protocols (e.g., IEC 61850, OPC UA, Modbus,

Internet, WiMAX, 4G, Wi-Fi, etc.) and technologies (e.g., PLC,

GSM, Optic fiber, RF radio mesh, Cellular, etc.) are established

for the smart grid applications. In case of the stability guarantee

of smart grid, the Quality of Service (QoS) is a challenge to be

considered. One of the major concerns in data delivery over the

network is a low latency message transmission to ensure the time

critical tasks, e.g., control and protection tasks. In this context,

the main contribution of this paper is to propose a model

methodology for the communication network delay in smart

grid applications. To be compatible with the further goal of

delay predictive compensation method, the present paper

proposes a message transmission delay estimation method using

Long Short-Term Memory (LSTM) neural network. To this

end, Python is the chosen programming language, including its

required libraries for the considered application. Delay values

measured on a real-time HV/MV substation application are

used as input data for validation purpose.

Keywords— smart grid, Internet, message transmission delay,

time-series forecasting, Long Short-Term Memory (LSTM)

I. INTRODUCTION

Current power grid is moving towards a modern grid,
which benefits from innovative products and services such as:
Distributed/Renewable Energy Resources, energy storage
technologies, and intelligent control-protection system.
Modern power system properly named “Smart Grid” benefits
of the Information and Communication Technologies (ICTs)
to deliver real-time information and near-instantaneously
balance the demand-response on the electrical grid. Thus,
smart grids provide: 1) self-healing technologies, 2)
distributed control and protection, 3) self-monitoring, 4) two-
way communication.

Control, supervision and protection of the smart grid are
dependent on the quality of the assigned ICT infrastructure
(i.e., Quality of Service – QoS). So, any information abruption
(e.g., data loss, data transmission delay, security attack,
failure, etc.) can affect the functionality and stability of the
power system. To this end, numerous researches are done to
study different aspects of the QoS. Here, focus is on the real-
time performance of the communication system, which
transmits information between power devices (e.g., critical
measured values, protection commands, fault detection,
device status, etc.).

Different works Study the impacts of message
transmission delay on the accurate functionality of the power
system, even instability, major faults and equipment damages.
[1] proposes a testing framework for integrating Supervision,
Control and Data Acquisition (SCADA) system with an
advanced Real-time Simulation (RTS) and Power-Hardware-
In-Loop (PHIL) in a cross-infrastructure manner. The impacts
of the communication latency are also analyzed on an
advanced voltage and frequency restoration in an isolated
Micro Grid (MG). [2] considers a scenario where Distributed
Generators (DGs) communicate through LANs and have
access to the Internet to enable the remote control of MGs via
cloud servers. The control objectives are frequency/voltage
restoration and proportional power sharing. Remote controls
over the islanded MGs are delayed, and it is shown that the
MG frequency and voltage start to oscillate, so, the MG
system in on the edge of instability.

According to the various types of communication
technologies and protocols, there are different estimation
methods proposed through the literature. The evaluation of
communication latency can be categorized by the underlying
protocols of Local Area Network (LAN) and Wide Area
Network (WAN) while applying a compatible method such as
Network Calculus Theorem, Markov chain, queuing theory,
machine learning, even simulation platforms. [3] proposes a
combination of network calculus and measurements. To
construct a real service curve model, and produce accurate
delay bounds, it is validated against the measured values over
a real Ethernet network based on IEC 61850. In this approach,
the latency component of service curve is extracted based on
measuring values: by injecting sampled value messages at low
rate and measuring the maximum delay value which is the
non-queuing delay (i.e., physical delay property of the related
switch). A new mathematical model and methodology are
proposed by [4] to evaluate the performance of large-scale RF-
mesh networks. An analytic formulation for delay is derived
based on Markov-modulated modeling of the system. The
proposed methodology is applied to a large-scale network of
several thousands of nodes, and numerical results report that a
wide variety of performance evaluations are enabled. Various
traffic scenarios were considered in the analysis in order to
evaluate the feasibility of a wider range of possible
applications.

Various works try to precisely analyze the real-time
performance of communication networks over WAN
protocols. The communication delay with Wide-Area

Measurement Systems (WAMS) for multi-energy
complementary systems is calculated in [5]. First, a three-
layer hierarchical distributed topology structure is constructed
for WAMS communication network (i.e., process modeling,
node modeling, network modeling). Then, using the dynamic
characteristics of time-division grading and sampling
intervals, the network calculus algorithm was applied to assess
the latency of the dynamic PMU data flow to the monitoring
center. Finally, an OPNET-based three-layer communication
network simulation model was established to show the
effectiveness of the proposed model.

There are numerous works on delay estimation over
Internet: [6] focuses on the stochastic delay analysis to satisfy
the delay requirement of the space traffic and guide the
network configuration in satellite data relay networks
(SDRNs) communicating over 6G communication network.
To accurately model the data offloading process in SDRNs,
authors build a series-parallel queuing model with through and
cross traffic while considering the propagation delay. Next, a
propagation delay embedded min-plus convolution method is
proposed using stochastic network calculus and a Markov-
chain method based on Monte Carlo simulation. The method
effectiveness is verified through many simulations in STK and
MATLAB®, and some real use cases. Generally, [7]
investigates the communication and networking challenges of
fog computing in smart grids, and comprehensively discusses
a 5G-based distributed network scheme. Using this
architecture, communication delay can be reduced between
different smart devices (SDs) deployed across the
geographical location within the Home Area Network (HAN),
Neighborhood Area Network (NAN), or WAN. [8] proposes
a composable analysis approach called Local Arrival Curve
(LAC) method based on the network calculus. This method
first partitions the system into smaller ones according to the
multiplexing nodes’ positions, calculates the local delay
bound based on the aggregate arrival curve and service curve,
then sums up the local results to finally get the end-to-end
delay bound.

Communication delay is also estimated using forecasting
methods by time-series and machine-learning methods. In [9],
a deep neural network (DNN) is adopted for predicting delay
in IEEE-802.15.4-standard-based applications in Internet of
Things (IoT). Results reveal that DNN achieves a prediction
accuracy of over 98% in predicting delay.

Despite a vast research on the subject of delay estimation
in smart grid, there is a lack of an accurate framework to
model and analyze the message transmission delay while
message is sent and forwarded through a control/protection
loop (i.e., from a controller unit to an actuator). Through this
work with the goal of delay estimation/compensation, the
communication channel is assumed to be unknown, meaning
that there is no information of the channel properties and
functionality of the protocols. Therefore, it is decided to base
our work on machine-learning methods. It is possible to
further analyze delay behavior online and to do the
compensation according to provided delay values. Hence, a
proper method could be a forecasting time-series method to
describe the delay behavior whereas it may be variable. In
addition, delay and its impacts on the under-study system (i.e.,
smart grid communication network) can be compensated
using a predictive control method. In this context, this paper
focuses on the pair of predictive estimation-compensation.

The rest of this paper is continued in Section II by an
introduction of the proposed delay estimation methodology
and the communication channel architecture. The choice of
LSTM model for delay analysis and its structure are detailed
in Section III. The under-study platform is presented in
Section IV, as well as the procedure of LSTM implementation
using Python open-source software libraries. Finally, this
paper is concluded by Section V.

II. DELAY ESTIMATION METHODOLOGY

As part of the enormous changes through smart grid, this
reserach aims at bringing legacy communication systems to
the cloud computing. So, there is a need to evaluate the
message transmission delay and to compensate its impacts on
the functionality of the applications that are deployed on the
cloud server (i.e., secondary and coordinated control, state
estimation and optimization, Artificial Intelligence (AI) for
forecasting, etc.). Predictive methods are the choice of the
compensation phase and require a compatible forecasting
method for delay estimation phase. To do so, delay values are
sampled over time sequentially over time to be modeled using
time-series forecasting methods.

A. Time series

A time series represents the observations on a variable
which are taken sequentially in time. Data are measured at
specific time � as a set of � observations, which is a sample
realization from an infinite population of such samples:
��, ��, … , �� . The inherent attribute of a time series is that,
typically, adjacent observations are dependent. The nature of
this dependency is an issue of practical interest. Time-series
analysis takes advantage of techniques to analyze this
dependency which requires to develop stochastic and dynamic
models.

Analyzing methods help to build, identify, fit, and check
models for time series and dynamic systems. These methods
detect and explore the linear relationship existing through the
current values, historical data and exogenous factors. Time-
series analysis methods can be used for forecasting of future
values of a time series from current and past values (i.e.,
General Additive Models (GAMs) [10]). This research
considers discrete-time (sampled-data) systems where delay
observations occur at equally-spaced intervals of time. Time-
series analysis is typically used in statistics, signal processing,
pattern recognition, econometrics, mathematical finance,
weather forecasting, control engineering, communication
engineering, etc.

To model the behavior of transmission delay, we consider
the sampled delay measurements of a conversation between
two end points as the under-study time-series data.

B. Architecture of the communication channel

A message sent by its source is received and forwarded
several times by devices located in the control/protection loop
to reach its destination. As mentioned before, through this
work transmission is provided by different communication
protocols/technologies. Any time, a message passes through a
device in the middle of its trajectory, it is decoded and recoded
in a new communication protocol to continue. So, the
communication channel is assumed to be a series of sub-
channels as illustrated in Figure 1.

Figure 1 Considered communication channel with different devices

through the path (SRC: Source, EQ: Equipment, DST: Destination,

SER: Service).

Therefore, the first step is to estimate the transmission delay
for each sub-channel, and finally the total transmission delay
is the sum of all individual delays. In this case, each subsection
includes a sender (or repeater) and a receiver, and delay values
are sampled at the receiving point of each sub-channel. By
applying the estimation process, delay is estimated and
predicted.

III. MODEL DEVELOPEMENT

In this work, we are interested to apply descriptive
methods over the observations (sampled delay values) to
model the behavior of current value according to the historical
data and some exogenous factors. Moreover, we aim at
applying forecasting methods on the observed time series, so
it is possible to use predictive delay compensators.

A. Choice of the forecasting method

Among different possible time-series forecasting methods,
Auto Regressive Integrated Moving Average (ARIMA)
model and Long Short-Term Memory (LSTM) model appear
to be as two reasonable choices. According to the literature
review, a comparison is done to select the most suitable
method for the estimation of message transmission delay that
fits particularities of Internet communication.

The state-of-the-art applications of the mentioned
forecasting methods are compared according to their
performance in three main fields: smart grid applications (data
traffic, load consumption), communication networks (network
traffic, communication delay), and economics (econometric
data sets). This comparison is summarized in Table 1.

Based on a comparison through the literature review,
LSTM is more flexible and adaptable in case of the Internet
delay estimation, because of its capacity to learn long-term
dependencies and remembering information for a long period
of time – as the Internet delay is variable, this could improve
the model accuracy.

B. Long Short-Term Memory (LSTM) neural network

LSTM is an evolution of Recurrent Neural Network
(RNN) architecture in the field of deep learning. LSTM was
introduced by Hochreiter and Schmidhuber [11] in order to
enhance RNN drawbacks using some special units in addition
to the standard units. LSTM units include “memory cells” that
can maintain information for a long period.

An RNN consists of an input layer, one or more hidden
layers, and an output layer. RNN is a chain of repeating
modules as a memory to save important information from
previous processing steps. RNN includes a feedback loop that
allows accepting a sequence of inputs. It means the output of
the previous step (t-1) is fed back into the network to influence
the current output (t) and all the subsequent steps (t+1, etc.).

Table 1 A summary of the comparison among the characteristics of

ARIMA and LSTM.

ARIMA LSTM

Stationarity needed

No parameter set up Weights and biases setting

Linear relation only Model nonlinearity of data

Simple implementation

Fast run time

 A large sample of data needed

Easier multivariable data
management

Self-similarity by FARIMA
Self-similarity is considered
through data

Less accurate if fluctuated
Internet delay

Less accurate if fluctuated
Internet delay

Auto-training and auto-
adaptability

 Less Minimum Squared Error

More accurate for Internet
application (time-variable)

Less accurate for a bigger
prediction horizon

The sequential architecture of a typical RNN is shown in
Figure 2. To solve some limitations of RNN – vanishing
gradient problem, difficult training, short-memory – LSTM is
a solution.

LSTM is chain-structured as all the RNNs but modified to
learn long-range dependencies. Unlike the repeating module
in a standard RNN, with a single layer, LSTM repeating
module has four interacting layers. Each neuron of RNN
structure is replaced by a memory unit (i.e., cells) in LSTM
structure. A unit contains a neuron with a recurrent self-
connection. The activations of those neurons within the
memory units are the state of the LSTM network.

At each time step, the memory unit receives input from the
other memory units. It then computes how much of the input
to forward to the neuron, how much of the neuron’s previous
activation to keep, and how much of its activation to output.
LSTM contains states and gates in a cell. LSTM internal
gating mechanism controls the memorizing process by
regulating the flow of information. Gates can store, write and
read information. There are three types of gates in the LSTM
structure: input gate, forget gate, and output gate.

Figure 2 Sequential processing in an RNN [12].

Figure 3 The architecture of LSTM neural network [13].

As illustrated in Figure 3, we compute the output of a
memory unit by taking its state, applying an activation
function, and multiplying the result by the output gate that
says how much activation to output. The vector of outputs
from all memory units is the output of the LSTM network.

Two states output to the next cell: cell state and hidden
state. Cell state is the main data flow that allows information
to flow forward while it remains intact.

A forget gate is described by a vector function 	
 with
values in the range of 0 to 1, corresponding to each number in
the cell state, �
��, as follows:

 	
 = �(���ℎ
��, �
� + ��) (1)

where � is the sigmoid function, �� and �� are the weight

matrix and bias of the forget gate, respectively. Function 	

decides which information to keep or remove. Information
from the previous hidden state (ℎ
��) and the current input
(�
) are passed through a sigmoid function (�), whose values
are between 0 and 1. The closer to 0 means to forget, and
closer to 1 means to keep.

 An input gate decides which information of the new input
�
 is important to store in the cell state and to update the cell
state. Two activation functions are involved in this step:
sigmoid function decides whether new information should be
stored or ignored (0 or 1), and a tanh function that assigns
weights to the values passed through, deciding their level of
importance (− 1 to 1). The multiplication of these values
updates the new cell state. So, this new memory is added to
the old one, �
��, and result in �
.

 �
 = �(���ℎ
��, �
� + ��), (2)

 �
 = ���ℎ(���ℎ
��, �
� + ��), (3)

 �
 = �
��	
 + �
�
 , (4)

where �
�� and �
 are the cell states at time � − 1 and � ,
respectively, while �� and �� are the weight matrix and bias
of the cell state, respectively.

 An output gate provides output ℎ
 that is filtered based
on the output cell state �
. Sigmoid function decides for the
important information to make the output. Then, the sigmoid
output �
 is multiplied by the new values of tanh function
provided by the cell state �
 in the range of −1 to 1.

 �
 = �(� �ℎ
��, �
� + �), (5)

 ℎ
 = �
tanh (�
), (6)

where � and � are weight matrices and bias of the output
gate, respectively.

C. Model evaluation criteria

To evaluate the performance of the LSTM models, Mean
Squared Error (MSE) is an often used statistical method to
compare the predicted values against the observed ones. MSE
is used to rate how accurately the predicted values fit over the
observed ones.

 &'(= 1 �) ∑ (+
 − +,
)��

-� , (7)

where +
 represents the observed value and +,
 is the predicted
value. The squaring means that larger mistakes result in more
error than smaller mistakes, meaning that the model is
penalized for making larger mistakes.

IV. MODEL DESIGN AND APPLICATION

Open-source libraries are properly related to the case study
considered in this research. Python [14] is selected as the
programming language. In addition, NumPy [15], Pandas
[16], Matplotlib [17] libraries are imported for processing,
management and visualization data.

Here, LSTM model illustrated in Figure 3 is implemented
using TensorFlow [18], which is an open-source software
library provided by Google for its internal use. It is a symbolic
math library constructed for machine learning, deep learning,
and numerical computation based on dataflow graphs and
differentiable programming. However, this framework is
sufficiently comprehensive to be applicable to a wide variety
of domains.

A. Model application procedure

In order to apply the LSTM model over the measured
transmission delay, the following steps are performed
sequentially:

a) The dataset is normalized. Normalization is a
rescaling of the data from the original range so that all values
are within the range between 0 and 1.

b) Split data into training dataset with 70% of the
observations and test dataset with the 30% of observations.

c) Convert the array of values into the matrix form.

d) Creat and fit the LSTM network over the training
dataset.

e) Make predictions over the training dataset, and over
the test dataset.

f) Invert the predictions before calculating error scores
to ensure that performance is reported in the same units as the
original data.

g) Calculate the MSE as a loss function to evaluate the
model accuracy.

h) Plot the error monitoring, and the prediction values
against the measured values.

B. Validation test bench: communication over cloud

This work aims to transfer the legacy systems to the Cloud
computing in the framework of smart grid development.
Delay of message transmission over cloud can affect the
applications that communicate over a cloud server (i.e.,
secondary and coordinated control, state estimation and
optimization, AI for forecasting, etc.). Hence, it is needed to
evaluate the communication latency in order to compensate
data transfer delay and consequently its impacts.

Figure 4 The Programmable Logic Controller (PLC)

communicating to Python gateway over OPC.

This experiment is performed on an emulated distribution
grid platform, which includes real medium-voltage reduced-
scale loads, generators, and a supervisory control and data
acquisition system. The reduced-scale grid can be managed by
the SCADA system.

The considered communication scenario is a test case that
includes an Automate Schneider Premium Programmable
Logic Controller (PLC – Figure 4) and a Python gateway
communicating through a cloud server over Modbus as the
communication protocol. Message transmission delay is
measured by a network analyzer, Wireshark, for 1 hour and 23
minutes each 0.5s that results in a time series of 10000
observations.

C. Model application

Next, following the application steps, LSTM model is
fitted over training data set, and the estimated model is tested
Over both training and test data sets. The predicted values are
plotted against measured values in Figure 5.

In order to validate the LSTM predictions over the original
values, a loss function is plotted for both training and test
dataset. MSE is a common loss function used in case of the
LSTM prediction. The fast convergence of test and training
loss function to an equal value (MSE=0.01) confirms a
reliable prediction model. Related training loss function is
shown in Figure 6.

In this paper tuning of the LSTM parameters (i.e., number
of epochs, batch size, number of neurons) is made to
maximize the fit from the training and test MSE line plots
viewpoint (Fig. 6). One epoch means the entire data pass
through LSTM only once; an epoch is divided into several
batches. Epoch number is selected as 10, 100, 200, 1000,
2000, whereas batch size is 8 and a single neuron is used. Best
result is for 100 epochs, as afterwards the MSE decrease
saturates. Batch size of 8, 16 and 32 are further tested and
training MSE stabilizes sooner if batch size is 16.

Forecast series is not perfectly adjusted over the original
one. To find the accuracy of LSTM forecasting model, Mean
Absolut Percentage Error (MAPE) is calculated. MPAE is
obtained as follows:

 &./(= 100 �) ∑ 123�243
23

1�

-� 5 100, (8)

where �
 is the actual value and �4
 is the forecast value. The
forecasting model is excellent if &./(6 10%, and it is
good if 10% 8 &./(6 20% [19].

The corresponding MAPE of the predicted series equals to
42.63% that can be concluded as an unsatisfactory prediction.
So, clearly the forecasting model needs to be improved.

To better identify data distribution, the histogram of the
corresponding dataset is illustrated in Figure 7. Histogram
includes multiple peaks. It may be concluded that there are
three different trajectories for data transmission.

In the non-faulty situation, messages pass through a
default trajectory using some servers in the channel. But, if an
error occurs (e.g., a server out of service), messages are
forwarded using some backup servers as other possible
trajectories.

Figure 5 Predictions over the 70% of dataset (training in orange)

and predictions over the 30% of dataset (test in green) are compared

to the original measured values. &./(= 42.63% , &'(=
 0.01.

Figure 6 Training set MSE converges to an equal value of test set

MSE of 0.01.

Figure 7 Detection of multiple peaks in histogram of the

communication scenario over Modbus.

Figure 8 Second-peak-data predictions against the original data.

&./(= 9.75%.

According to this definition, each peak corresponds to a
possible trajectory that served messages in this
communication scenario.

In order to improve the forecasting LSTM, it may be
judicious to model each trajectory dataset separately. To do
so, the identified three peaks are separated into three sub-
datasets using the mean point between each two consecutive
peaks as separation point. Then LSTM is applied to each
single peak data. As an example, second peak data is thus
identified and the result is represented in Figure 8. The MAPE
less than 10% could be considered as an acceptable
forecasting model. But, the predictions are not perfectly fitted
against the original values in Figure 8. Hence, such an
approach is not yet confirmed as the final result and it is still
under study to see if the LSTM model can be configured more
effectively. Another improvement direction would be use of a
more suitable model for high-frequency variations prediction
(e.g., ARIMA). Preliminary self-correlation tests are
necessary to analyze the degree of randomness in the
measured data.

V. CONCLUSION

In the context of smart grid development, this work aims
at bringing legacy systems to the cloud computing. As the
interacting applications are vulnerable to the communication
delays, it is important to compensate the message transmission
delay and its impacts. However, prior to the compensation,
there is a need to evaluate the message transmission delay.

Forecasting methods have been selected in this work for
compensation. In this case, time-series forecasting models are
appropriate to evaluate the transmission delay. Therefore,
delay measurement by Wireshark network analyzer is
considered as time-series data, and is further identified by an
LSTM neural network. Delay is measured over a
communication scenario (through Modbus communication
protocol) between a PLC and Python gateway. LSTM-based
identification is applied through separate steps that results in
an unsatisfactory fit (&./(= 42.63%). To reduce MAPE
and obtain a more accurate model, an idea was to apply LSTM
on the individual dataset corresponding to each transmission
trajectory.

According to the results, it is necessary to see if other
LSTM parameters must be regulated to reach a better
accuracy. Otherwise, other forecasting models may be applied
to gain more accurate fit (e.g., ARMA).

Next step is to validate the proposed forecasting LSTM-
based model over a test case that includes two remote
platforms through Internet within a distance of several tens of
kilometers.

REFERENCES

[1] V. H. Nguyen, T. L. Nguyen, Q. T. Tran, Y. Bésanger, R. Caire,
"Integration of SCADA Services and Power-Hardware-in-the-Loop
Technique in Cross-Infrastructure Holistic Tests of Cyber-Physical
Energy Systems," IEEE Transactions on Industry Applications, vol.
56, no. 6, pp. 7099-7108, Nov.-Dec. 2020.

[2] Y. Wang, T. L. Nguyen, M. H. Syed, "A Distributed Control Scheme
of Microgrids in Energy Internet Paradigm and Its Multisite
Implementation," IEEE Transactions on Industrial Informatics, vol.
17, no. 2, pp. 1141-1153, Feb. 2021.

[3] H. Yang, L. Cheng, X. Ma, "Analyzing Worst-Case Delay
Performance of IEC 61850-9-2 Process Bus Networks Using
Measurements and Network Calculus," 17th e-Energy: The Eighth

International Conference on Future Energy Systems, p. 12–22, May
2017.

[4] F. Malandra, B. Sansò, "A Markov-Modulated End-to-End Delay
Analysis of Large-Scale RF Mesh Networks With Time-Slotted
ALOHA and FHSS for Smart Grid Applications," IEEE Transactions

on Wireless Communications, vol. 17, no. 11, pp. 7116-7127,
November 2018.

[5] X. Liu, S. Zhang, X. Zeng, L. Yao, Y. Ding, C. Deng, "Evaluating the
network communication delay with WAMS for multi-energy
complementary systems," CSEE Journal of Power and Energy
Systems, vol. 6, no. 2, pp. 402 - 409, June 2020.

[6] Y. Zhu, D. Zhou, M. Sheng, J. Li, Z. Han, "Stochastic Delay Analysis
for Satellite Data Relay Networks with Heterogeneous Traffic and
Transmission Links," IEEE Transactions on Wireless

Communications, vol. 20, no. 1, pp. 156 - 170, Jan 2021.

[7] A. Kumari, S. Tanwar, S. Tyagi, N. Kumar, M. S. Obaidat, J. J. P. C.
Rodrigues, "Fog Computing for Smart Grid Systems in the 5G
Environment: Challenges and Solutions," IEEE Wireless

Communications, vol. 26, no. 3, pp. 47-53, June 2019.

[8] Y. Long, Z. Lu, H. Shen, "Composable worst-case delay bound
analysis using network calculus," IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 37, no. 3, pp.
705-709, March 2018.

[9] M. Ateeq, F. Ishmanov, M. K. Afzal, M. Naeem, "Predicting Delay in
IoT Using Deep Learning: A Multiparametric Approach," IEEE

Access, vol. 7, pp. 62022-62031, 14 May 2019.

[10] T. j. Hastie, R. J. Tibshirani, Generalized Additive Models, vol. 43,
CRC press, 1990.

[11] S. Hochreiter, J. Schmidhuber, "Long Short-Term Memory. Neural
Comput," vol. 9, no. 8, p. 1735–1780, 15 November 1997.

[12] C. Olah, "Understanding LSTM Networks," 27 August 2015.
[Online]. Available: https://colah.github.io/posts/2015-08-
Understanding-LSTMs/.

[13] Aditi Mittal, "Understanding RNN and LSTM," 12 October 2019.
[Online]. Available: https://aditi-mittal.medium.com/understanding-
rnn-and-lstm-f7cdf6dfc14e.

[14] G. Rossum, "Python tutorial," Amsterdam, The Netherlands, 1995.

[15] S. Van Der Walt, S. C. Colbert, G. Varoquaux, "The NumPy Array:
A Structure for Efficient Numerical Computation," IEEE Computing
in Science & Engineering, vol. 13, no. 2, pp. 22-30, March-April 2011.

[16] W. McKinney, "Data structures for statistical computing in Python,"
In Proceedings of the 9th Python in Science, vol. 445, pp. 51-56, June
2010.

[17] J. D. Hunter, "Matplotlib: A 2D graphics environment," IEEE

Computing in Science & Engineering, vol. 9, no. 3, pp. 90-95, 18 June
2007.

[18] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.
S. Corrado, A. Davis, J. Dean, et al., "TensorFlow: Large-scale
machine learning on heterogeneous distributed systems," Distributed,

Parallel, and Cluster Computing, Machine Learning, no. 2, March
2016.

[19] M., Gilliland, The business forecasting deal: Exposing myths,
eliminating bad practices, providing practical solutions, vol. 27, J. W.
&. Sons, Ed., 2010.

