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Abstract— Vast integration of new technologies to enable 

smart control of the power grid requires a reliable, efficient and 

resilient communication infrastructure. Today, many 

communication protocols (e.g., IEC 61850, OPC UA, Modbus, 

Internet, WiMAX, 4G, Wi-Fi, etc.) and technologies (e.g., PLC, 

GSM, Optic fiber, RF radio mesh, Cellular, etc.) are established 

for the smart grid applications. In case of the stability guarantee 

of smart grid, the Quality of Service (QoS) is a challenge to be 

considered. One of the major concerns in data delivery over the 

network is a low latency message transmission to ensure the time 

critical tasks, e.g., control and protection tasks. In this context, 

the main contribution of this paper is to propose a model 

methodology for the communication network delay in smart 

grid applications. To be compatible with the further goal of 

delay predictive compensation method, the present paper 

proposes a message transmission delay estimation method using 

Long Short-Term Memory (LSTM) neural network. To this 

end, Python is the chosen programming language, including its 

required libraries for the considered application. Delay values 

measured on a real-time HV/MV substation application are 

used as input data for validation purpose. 

Keywords— smart grid, Internet, message transmission delay, 

time-series forecasting, Long Short-Term Memory (LSTM) 

I. INTRODUCTION  

Current power grid is moving towards a modern grid, 
which benefits from innovative products and services such as: 
Distributed/Renewable Energy Resources, energy storage 
technologies, and intelligent control-protection system. 
Modern power system properly named “Smart Grid” benefits 
of the Information and Communication Technologies (ICTs) 
to deliver real-time information and near-instantaneously 
balance the demand-response on the electrical grid. Thus, 
smart grids provide: 1) self-healing technologies, 2) 
distributed control and protection, 3) self-monitoring, 4) two-
way communication.  

Control, supervision and protection of the smart grid are 
dependent on the quality of the assigned ICT infrastructure 
(i.e., Quality of Service – QoS). So, any information abruption 
(e.g., data loss, data transmission delay, security attack, 
failure, etc.) can affect the functionality and stability of the 
power system. To this end, numerous researches are done to 
study different aspects of the QoS. Here, focus is on the real-
time performance of the communication system, which 
transmits information between power devices (e.g., critical 
measured values, protection commands, fault detection, 
device status, etc.). 

Different works Study the impacts of message 
transmission delay on the accurate functionality of the power 
system, even instability, major faults and equipment damages. 
[1] proposes a testing framework for integrating Supervision, 
Control and Data Acquisition (SCADA) system with an 
advanced Real-time Simulation (RTS) and Power-Hardware-
In-Loop (PHIL) in a cross-infrastructure manner. The impacts 
of the communication latency are also analyzed on an 
advanced voltage and frequency restoration in an isolated 
Micro Grid (MG). [2] considers a scenario where Distributed 
Generators (DGs) communicate through LANs and have 
access to the Internet to enable the remote control of MGs via 
cloud servers. The control objectives are frequency/voltage 
restoration and proportional power sharing. Remote controls 
over the islanded MGs are delayed, and it is shown that the 
MG frequency and voltage start to oscillate, so, the MG 
system in on the edge of instability.  

According to the various types of communication 
technologies and protocols, there are different estimation 
methods proposed through the literature. The evaluation of 
communication latency can be categorized by the underlying 
protocols of Local Area Network (LAN) and Wide Area 
Network (WAN) while applying a compatible method such as 
Network Calculus Theorem, Markov chain, queuing theory, 
machine learning, even simulation platforms. [3] proposes a 
combination of network calculus and measurements. To 
construct a real service curve model, and produce accurate 
delay bounds, it is validated against the measured values over 
a real Ethernet network based on IEC 61850. In this approach, 
the latency component of service curve is extracted based on 
measuring values: by injecting sampled value messages at low 
rate and measuring the maximum delay value which is the 
non-queuing delay (i.e., physical delay property of the related 
switch). A new mathematical model and methodology are 
proposed by [4] to evaluate the performance of large-scale RF-
mesh networks. An analytic formulation for delay is derived 
based on Markov-modulated modeling of the system. The 
proposed methodology is applied to a large-scale network of 
several thousands of nodes, and numerical results report that a 
wide variety of performance evaluations are enabled. Various 
traffic scenarios were considered in the analysis in order to 
evaluate the feasibility of a wider range of possible 
applications. 

Various works try to precisely analyze the real-time 
performance of communication networks over WAN 
protocols. The communication delay with Wide-Area 



Measurement Systems (WAMS) for multi-energy 
complementary systems is calculated in [5]. First, a three-
layer hierarchical distributed topology structure is constructed 
for WAMS communication network (i.e., process modeling, 
node modeling, network modeling). Then, using the dynamic 
characteristics of time-division grading and sampling 
intervals, the network calculus algorithm was applied to assess 
the latency of the dynamic PMU data flow to the monitoring 
center. Finally, an OPNET-based three-layer communication 
network simulation model was established to show the 
effectiveness of the proposed model. 

There are numerous works on delay estimation over 
Internet: [6] focuses on the stochastic delay analysis to satisfy 
the delay requirement of the space traffic and guide the 
network configuration in satellite data relay networks 
(SDRNs) communicating over 6G communication network. 
To accurately model the data offloading process in SDRNs, 
authors build a series-parallel queuing model with through and 
cross traffic while considering the propagation delay. Next, a 
propagation delay embedded min-plus convolution method is 
proposed using stochastic network calculus and a Markov-
chain method based on Monte Carlo simulation. The method 
effectiveness is verified through many simulations in STK and 
MATLAB®, and some real use cases. Generally, [7] 
investigates the communication and networking challenges of 
fog computing in smart grids, and comprehensively discusses 
a 5G-based distributed network scheme. Using this 
architecture, communication delay can be reduced between 
different smart devices (SDs) deployed across the 
geographical location within the Home Area Network (HAN), 
Neighborhood Area Network (NAN), or WAN. [8] proposes 
a composable analysis approach called Local Arrival Curve 
(LAC) method based on the network calculus. This method 
first partitions the system into smaller ones according to the 
multiplexing nodes’ positions, calculates the local delay 
bound based on the aggregate arrival curve and service curve, 
then sums up the local results to finally get the end-to-end 
delay bound.  

Communication delay is also estimated using forecasting 
methods by time-series and machine-learning methods. In [9], 
a deep neural network (DNN) is adopted for predicting delay 
in IEEE-802.15.4-standard-based applications in Internet of 
Things (IoT). Results reveal that DNN achieves a prediction 
accuracy of over 98% in predicting delay.  

Despite a vast research on the subject of delay estimation 
in smart grid, there is a lack of an accurate framework to 
model and analyze the message transmission delay while 
message is sent and forwarded through a control/protection 
loop (i.e., from a controller unit to an actuator). Through this 
work with the goal of delay estimation/compensation, the 
communication channel is assumed to be unknown, meaning 
that there is no information of the channel properties and 
functionality of the protocols. Therefore, it is decided to base 
our work on machine-learning methods. It is possible to 
further analyze delay behavior online and to do the 
compensation according to provided delay values. Hence, a 
proper method could be a forecasting time-series method to 
describe the delay behavior whereas it may be variable. In 
addition, delay and its impacts on the under-study system (i.e., 
smart grid communication network) can be compensated 
using a predictive control method. In this context, this paper 
focuses on the pair of predictive estimation-compensation. 

The rest of this paper is continued in Section II by an 
introduction of the proposed delay estimation methodology 
and the communication channel architecture. The choice of 
LSTM model for delay analysis and its structure are detailed 
in Section III. The under-study platform is presented in 
Section IV,  as well as the procedure of LSTM implementation 
using Python open-source software libraries. Finally, this 
paper is concluded by Section V. 

II. DELAY ESTIMATION METHODOLOGY 

As part of the enormous changes through smart grid, this 
reserach aims at bringing legacy communication systems to 
the cloud computing. So, there is a need to evaluate the 
message transmission delay and to compensate its impacts on 
the functionality of the applications that are deployed on the 
cloud server (i.e., secondary and coordinated control, state 
estimation and optimization, Artificial Intelligence (AI) for 
forecasting, etc.). Predictive methods are the choice of the 
compensation phase and require a compatible forecasting 
method for delay estimation phase. To do so, delay values are 
sampled over time sequentially over time to be modeled using 
time-series forecasting methods. 

A. Time series 

A time series represents the observations on a variable 
which are taken sequentially in time. Data are measured at 
specific time � as a set of � observations, which is a sample 
realization from an infinite population of such samples: 
��, ��, … , �� . The inherent attribute of a time series is that, 
typically, adjacent observations are dependent. The nature of 
this dependency is an issue of practical interest. Time-series 
analysis takes advantage of techniques to analyze this 
dependency which requires to develop stochastic and dynamic 
models.  

Analyzing methods help to build, identify, fit, and check 
models for time series and dynamic systems. These methods 
detect and explore the linear relationship existing through the 
current values, historical data and exogenous factors. Time-
series analysis methods can be used for forecasting of future 
values of a time series from current and past values (i.e., 
General Additive Models (GAMs) [10]). This research 
considers discrete-time (sampled-data) systems where delay 
observations occur at equally-spaced intervals of time. Time-
series analysis is typically used in statistics, signal processing, 
pattern recognition, econometrics, mathematical finance, 
weather forecasting, control engineering, communication 
engineering, etc. 

To model the behavior of transmission delay, we consider 
the sampled delay measurements of a conversation between 
two end points as the under-study time-series data. 

B. Architecture of the communication channel  

A message sent by its source is received and forwarded 
several times by devices located in the control/protection loop 
to reach its destination. As mentioned before, through this 
work transmission is provided by different communication 
protocols/technologies. Any time, a message passes through a 
device in the middle of its trajectory, it is decoded and recoded 
in a new communication protocol to continue. So, the 
communication channel is assumed to be a series of sub-
channels as illustrated in Figure 1. 

 



 

Figure 1 Considered communication channel with different devices 

through the path (SRC: Source, EQ: Equipment, DST: Destination, 

SER: Service). 

Therefore, the first step is to estimate the transmission delay 
for each sub-channel, and finally the total transmission delay 
is the sum of all individual delays. In this case, each subsection 
includes a sender (or repeater) and a receiver, and delay values 
are sampled at the receiving point of each sub-channel. By 
applying the estimation process, delay is estimated and 
predicted. 

III. MODEL DEVELOPEMENT 

In this work, we are interested to apply descriptive 
methods over the observations (sampled delay values) to  
model the behavior of current value according to the historical 
data and some exogenous factors. Moreover, we aim at 
applying forecasting methods on the observed time series, so 
it is possible to use predictive delay compensators. 

A. Choice of the forecasting method  

Among different possible time-series forecasting methods, 
Auto Regressive Integrated Moving Average (ARIMA) 
model and Long Short-Term Memory (LSTM) model appear 
to be as two reasonable choices. According to the literature 
review, a comparison is done to select the most suitable 
method for the estimation of message transmission delay that 
fits particularities of Internet communication.  

The state-of-the-art applications of the mentioned 
forecasting methods are compared according to their 
performance in three main fields: smart grid applications (data 
traffic, load consumption), communication networks (network 
traffic, communication delay), and economics (econometric 
data sets). This comparison is summarized in Table 1. 

Based on a comparison through the literature review, 
LSTM is more flexible and adaptable in case of the Internet 
delay estimation, because of its capacity to learn long-term 
dependencies and remembering information for a long period 
of time – as the Internet delay is variable, this could improve 
the model accuracy. 

B. Long Short-Term Memory (LSTM) neural network 

LSTM is an evolution of Recurrent Neural Network 
(RNN) architecture in the field of deep learning. LSTM was 
introduced by Hochreiter and Schmidhuber [11] in order to 
enhance RNN drawbacks using some special units in addition 
to the standard units. LSTM units include “memory cells” that 
can maintain information for a long period. 

An RNN consists of an input layer, one or more hidden 
layers, and an output layer. RNN is a chain of repeating 
modules as a memory to save important information from 
previous processing steps. RNN includes a feedback loop that 
allows accepting a sequence of inputs. It means the output of 
the previous step (t-1) is fed back into the network to influence 
the current output (t) and all the subsequent steps (t+1, etc.). 

Table 1 A summary of the comparison among the characteristics of 

ARIMA and LSTM. 

ARIMA LSTM 

Stationarity needed   

No parameter set up Weights and biases setting 

Linear relation only Model nonlinearity of data 

Simple implementation  

Fast run time  

 A large sample of data needed 

Easier multivariable data 
management 

 

Self-similarity by FARIMA 
Self-similarity is considered 
through data  

Less accurate if fluctuated 
Internet delay 

Less accurate if fluctuated 
Internet delay 

 
Auto-training and auto-
adaptability  

 Less Minimum Squared Error  

 
More accurate for Internet 
application (time-variable)  

 
Less accurate for a bigger 
prediction horizon  

 

The sequential architecture of a typical RNN is shown in 
Figure 2. To solve some limitations of RNN – vanishing 
gradient problem, difficult training, short-memory – LSTM is 
a solution. 

LSTM is chain-structured as all the RNNs but modified to 
learn long-range dependencies. Unlike the repeating module 
in a standard RNN, with a single layer, LSTM repeating 
module has four interacting layers. Each neuron of RNN 
structure is replaced by a memory unit (i.e., cells) in LSTM 
structure. A unit contains a neuron with a recurrent self-
connection. The activations of those neurons within the 
memory units are the state of the LSTM network.   

At each time step, the memory unit receives input from the 
other memory units. It then computes how much of the input 
to forward to the neuron, how much of the neuron’s previous 
activation to keep, and how much of its activation to output. 
LSTM contains states and gates in a cell. LSTM internal 
gating mechanism controls the memorizing process by 
regulating the flow of information. Gates can store, write and 
read information. There are three types of gates in the LSTM 
structure: input gate, forget gate, and output gate.  

 

Figure 2 Sequential processing in an RNN [12]. 



 

Figure 3 The architecture of LSTM neural network [13]. 

As illustrated in Figure 3, we compute the output of a 
memory unit by taking its state, applying an activation 
function, and multiplying the result by the output gate that 
says how much activation to output. The vector of outputs 
from all memory units is the output of the LSTM network.  

Two states output to the next cell: cell state and hidden 
state. Cell state is the main data flow that allows information 
to flow forward while it remains intact. 

A forget gate is described by a vector function 	
  with 
values in the range of 0 to 1, corresponding to each number in 
the cell state, �
��, as follows: 

 	
 = �(���ℎ
��, �
� + ��) (1) 

where �  is the sigmoid function, ��  and ��  are the weight 

matrix and bias of the forget gate, respectively. Function 	
 
decides which information to keep or remove. Information 
from the previous hidden state (ℎ
��) and the current input 
(�
) are passed through a sigmoid function (�), whose values 
are between 0 and 1. The closer to 0 means to forget, and 
closer to 1 means to keep.  

 An input gate decides which information of the new input 
�
 is important to store in the cell state and to update the cell 
state. Two activation functions are involved in this step: 
sigmoid function decides whether new information should be 
stored or ignored (0 or 1), and a tanh function that assigns 
weights to the values passed through, deciding their level of 
importance (− 1 to 1). The multiplication of these values 
updates the new cell state. So, this new memory is added to 
the old one, �
��, and result in �
. 

 �
 = �(���ℎ
��, �
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��, �
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 �
 = �
��	
 + �
�
 , (4) 

where �
��  and �
  are the cell states at time � − 1  and � , 
respectively, while �� and �� are the weight matrix and bias 
of the cell state, respectively.   

 An output gate provides output ℎ
 that is filtered based 
on the output cell state �
. Sigmoid function decides for the 
important information to make the output. Then, the sigmoid 
output �
  is multiplied by the new values of tanh function 
provided by the cell state �
 in the range of −1 to 1. 

 �
 = �(� �ℎ
��, �
� + � ), (5) 

 ℎ
 = �
tanh (�
), (6) 

where �  and �  are weight matrices and bias of the output 
gate, respectively. 

C. Model evaluation criteria 

To evaluate the performance of the LSTM models, Mean 
Squared Error (MSE) is an often used statistical method to 
compare the predicted values against the observed ones. MSE 
is used to rate how accurately the predicted values fit over the 
observed ones.  

 &'( = 1 �) ∑ (+
 − +,
)��

-� , (7) 

where +
 represents the observed value and +,
 is the predicted 
value. The squaring means that larger mistakes result in more 
error than smaller mistakes, meaning that the model is 
penalized for making larger mistakes.  

IV. MODEL DESIGN AND APPLICATION 

Open-source libraries are properly related to the case study 
considered in this research. Python [14] is selected as the 
programming language. In addition, NumPy [15], Pandas 
[16], Matplotlib [17] libraries are imported for processing, 
management and visualization data.  

Here, LSTM model illustrated in Figure 3 is implemented 
using TensorFlow [18], which is an open-source software 
library provided by Google for its internal use. It is a symbolic 
math library constructed for machine learning, deep learning, 
and numerical computation based on dataflow graphs and 
differentiable programming. However, this framework is 
sufficiently comprehensive to be applicable to a wide variety 
of domains. 

A. Model application procedure 

In order to apply the LSTM model over the measured 
transmission delay, the following steps are performed 
sequentially:  

a) The dataset is normalized. Normalization is a 
rescaling of the data from the original range so that all values 
are within the range between 0 and 1. 

b) Split data into training dataset with 70% of the 
observations and test dataset  with the 30% of observations.  

c) Convert the array of values into the matrix form. 

d) Creat and fit the LSTM network over the training 
dataset.  

e) Make predictions over the training dataset, and over 
the test dataset. 

f) Invert the predictions before calculating error scores 
to ensure that performance is reported in the same units as the 
original data. 

g) Calculate the MSE as a loss function to evaluate the 
model accuracy.  

h) Plot the error monitoring, and the prediction values 
against the measured values. 

B. Validation test bench: communication over cloud 

This work aims to transfer the legacy systems to the Cloud 
computing in the framework of smart grid development. 
Delay of message transmission over cloud can affect the 
applications that communicate over a cloud server (i.e., 
secondary and coordinated control, state estimation and 
optimization, AI for forecasting, etc.). Hence, it is needed to 
evaluate the communication latency in order to compensate 
data transfer delay and consequently its impacts. 

 



 
Figure 4 The Programmable Logic Controller (PLC) 

communicating to Python gateway over OPC. 

This experiment is performed on an emulated distribution 
grid platform, which includes real medium-voltage reduced-
scale loads, generators, and a supervisory control and data 
acquisition system. The reduced-scale grid can be managed by 
the SCADA system. 

The considered communication scenario is a test case that 
includes an Automate Schneider Premium Programmable 
Logic Controller (PLC – Figure 4) and a Python gateway 
communicating through a cloud server over Modbus as the 
communication protocol. Message transmission delay is 
measured by a network analyzer, Wireshark, for 1 hour and 23 
minutes each 0.5s that results in a time series of 10000 
observations. 

C. Model application 

Next, following the application steps, LSTM model is 
fitted over training data set, and the estimated model is tested 
Over both training and test data sets. The predicted values are 
plotted against measured values in Figure 5. 

In order to validate the LSTM predictions over the original 
values, a loss function is plotted for both training and test 
dataset. MSE is a common loss function used in case of the 
LSTM prediction. The fast convergence of test and training 
loss function to an equal value (MSE=0.01) confirms a 
reliable prediction model. Related training loss function is 
shown in Figure 6.  

In this paper tuning of the LSTM parameters (i.e., number 
of epochs, batch size, number of neurons) is made to 
maximize the fit from the training and test MSE line plots 
viewpoint (Fig. 6). One epoch means the entire data pass 
through LSTM only once; an epoch is divided into several 
batches. Epoch number is selected as 10, 100, 200, 1000, 
2000, whereas batch size is 8 and a single neuron is used. Best 
result is for 100 epochs, as afterwards the MSE decrease 
saturates. Batch size of 8, 16 and 32 are further tested and 
training MSE stabilizes sooner if batch size is 16. 

Forecast series is not perfectly adjusted over the original 
one. To find the accuracy of LSTM forecasting model, Mean 
Absolut Percentage Error (MAPE) is calculated. MPAE is 
obtained as follows: 

 &./( = 100 �) ∑ 123�243
23

1�

-� 5 100, (8) 

where �
  is the actual value and �4
 is the forecast value. The 
forecasting model is excellent if &./( 6  10%, and it is 
good if 10% 8 &./( 6  20% [19]. 

The corresponding MAPE of the predicted series equals to 
42.63% that can be concluded as an unsatisfactory prediction. 
So, clearly the forecasting model needs to be improved. 

To better identify data distribution, the histogram of the 
corresponding dataset is illustrated in Figure 7. Histogram 
includes  multiple peaks. It may be concluded that there are 
three different trajectories for data transmission.  

In the non-faulty situation, messages pass through a 
default trajectory using some servers in the channel. But, if an 
error occurs (e.g., a server out of service), messages are 
forwarded using some backup servers as other possible 
trajectories.  

   
Figure 5 Predictions over the 70% of dataset (training in orange) 

and predictions over the 30% of dataset (test in green) are compared 

to the original measured values. &./( =  42.63% , &'( =
 0.01. 

 
Figure 6 Training set MSE converges to an equal value of test set 

MSE of 0.01. 

 
Figure 7 Detection of multiple peaks in histogram of the 

communication scenario over Modbus. 



 
Figure 8 Second-peak-data predictions against the original data. 

&./( =  9.75%. 

According to this definition, each peak corresponds to a 
possible trajectory that served messages in this 
communication scenario. 

In order to improve the forecasting LSTM, it may be 
judicious to model each trajectory dataset separately. To do 
so, the identified three peaks are separated into three sub-
datasets using the mean point between each two consecutive 
peaks as separation point. Then LSTM is applied to each 
single peak data. As an example, second peak data is thus 
identified and the result is represented in Figure 8. The MAPE 
less than 10% could be considered as an acceptable 
forecasting model. But, the predictions are not perfectly fitted 
against the original values in Figure 8. Hence, such an 
approach is not yet confirmed as the final result and it is still 
under study to see if the LSTM model can be configured more 
effectively. Another improvement direction would be use of a 
more suitable model for high-frequency variations prediction 
(e.g., ARIMA). Preliminary self-correlation tests are 
necessary to analyze the degree of randomness in the 
measured data.  

V. CONCLUSION 

In the context of smart grid development, this work aims 
at bringing legacy systems to the cloud computing. As the 
interacting applications are vulnerable to the communication 
delays, it is important to compensate the message transmission 
delay and its impacts. However, prior to the compensation, 
there is a need to evaluate the message transmission delay. 

Forecasting methods have been selected in this work for 
compensation. In this case, time-series forecasting models are 
appropriate to evaluate the transmission delay. Therefore, 
delay measurement by Wireshark network analyzer is 
considered as time-series data, and is further identified by an 
LSTM neural network. Delay is measured over a 
communication scenario (through Modbus communication 
protocol) between a PLC and Python gateway. LSTM-based 
identification is applied through separate steps that results in 
an unsatisfactory fit (&./( =  42.63%). To reduce MAPE 
and obtain a more accurate model, an idea was to apply LSTM 
on the individual dataset corresponding to each transmission 
trajectory. 

According to the results, it is necessary to see if other 
LSTM parameters must be regulated to reach a better 
accuracy. Otherwise, other forecasting models may be applied 
to gain more accurate fit (e.g., ARMA). 

Next step is to validate the proposed forecasting LSTM-
based model over a test case that includes two remote 
platforms through Internet within a distance of several tens of 
kilometers. 
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