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Abstract 32 

Understanding management factors driving soil biota is pivotal to improve the sustainability of cropping 33 

systems, especially given the emergence of new cropping systems induced by bioeconomy. Here, we 34 

investigated the combined effects of tillage practices (tillage versus no-tillage) and contrasted cropping 35 

systems, including conventional, feed and biogas cropping systems, on earthworm communities and 36 

microbial metabolic activity and diversity (using Biolog Ecoplate). After three years, our results revealed that 37 

tillage overrode the effect of cropping systems on soil biota while being also detrimental for both earthworm 38 

communities and microbial activity and diversity compared with no-tillage. By contrast, no-tillage had 39 

generally a beneficial effect on soil microbial activity and earthworm abundance. More importantly, under 40 

no-tillage, feed and biogas systems increased microbial activity and diversity which was likely due to the 41 

higher crop diversity and the use of digestate instead of manure and slurry compared with the conventional 42 

system. Taken together, our findings show that both earthworm communities and microbial activity and 43 

diversity are very sensitive to tillage. Moreover, microbial activity and diversity are also rapidly affected by 44 

the type of cropping system, suggesting that it would be a better indicator to detect short-term changes in 45 

soil functioning following change in land use. Our study also indicates that, provided that no-tillage is 46 

included, biogas cropping system with high crop diversity can promote soil biota compared with conventional 47 

farming practices, leading likely to the improvement of soil functioning and ecosystem service delivery. 48 

Keywords 49 

Conventional tillage; No-tillage; Soil biodiversity; Soil fauna; Soil microorganisms   50 
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1. Introduction 51 

Soil biota plays a major role in sustaining soil functions (Wagg et al., 2014). It drives a number of 52 

ecological processes including organic material decomposition, nutrient turnover and energy transfer (Zhang 53 

et al., 2017). Earthworms promote macroporosity by creating underground galleries and improve water 54 

access, nutrient availability and soil aeration (Dulaurent et al., 2020). They are also involved in soil organic 55 

matter (SOM) degradation at several stages, according to their ecological groups, i.e. epigeic, endogeic and 56 

anecic (Huang et al., 2020). Soil microorganisms also mediate many processes that are essential to sustain 57 

soil functions and ecosystem services such as SOM and nutrient recycling, maintenance of soil structure, 58 

reduction of soil erosion, degradation of organic contaminants and the control of pests and diseases 59 

(Kirchman, 2018). Because they respond quickly to change in soil management, both earthworms and 60 

microbial activity have been used as short-term indicators of change in soil functioning and quality (Stone et 61 

al., 2016; Bünemann et al., 2018) and can therefore help in guiding agricultural practices aiming at restoring 62 

soil ecosystem services (Pulleman et al., 2012). 63 

It is long known that agricultural practices affect earthworm communities and microbial activity. For 64 

example, earthworm population generally declines following tillage due to mechanical injuries, disruption of 65 

their habitat and modification of their food resources through the inversion of crop residues and the decrease 66 

in available soil water (Ashworth et al., 2017). Tillage practices may also negatively affect microbial activity 67 

by destroying aggregates and habitats and changing environmental conditions such as SOM concentration, 68 

soil moisture and temperature (Roger-Estrade et al., 2010). Although tillage practice is often considered the 69 

main factor affecting soil biota, several studies have shown that cropping systems, rather than tillage 70 

practice, might be the main driver explaining the response of soil organisms to change in land management 71 

(Lopes and Fernandes, 2020). By depositing a more diverse composition of plant residues and root exudates, 72 

crop diversification generally benefits soil organisms diversity and activity (Acosta-Martínez et al., 2007). In 73 

addition, pesticides (Pelosi et al., 2021) and  input of organic materials including crop residue, cover crop, 74 

manure, compost and other organic amendments can strongly mediate earthworm population and 75 

communities (Briones and Schmidt, 2017; Leroy et al., 2008).   76 



4 
 

Understanding management factors driving soil biota is needed to improve our capacity to predict 77 

the sustainability of cropping systems, especially given the emergence of new cropping systems induced by 78 

bioeconomy combining food, feed and bioenergy crops (Sheppard et al., 2011). As a low carbon (C) economy, 79 

bioeconomy predominantly relies on biomass which is considered the single source of renewable and natural 80 

C present in enough quantity to be substitutable to fossil fuels and capable of providing human needs, while 81 

storing C to decline global warming (European Commission., 2018). In this context, growing energy-efficient 82 

crops are increasingly integrated to cropping systems in which agro-ecological practices are associated to the 83 

production of biomass for, among others, biogas production (Von Cossel et al., 2019). According to the 84 

seventh European Environmental Action Program, biodiversity conservation and soil protection should be 85 

fully considered in such decisions relating to renewable energy. However, the impact of these innovative 86 

systems (e.g. biogas cropping systems) on soil biology and functioning is poorly documented so far. More 87 

generally, most studies have focused on either the impact of different tillage practices or the effects of 88 

cropping systems on the communities and activities of soil organisms. Whereas it is known that tillage 89 

practice combined with cropping system should be considered a complete system applied in the agricultural 90 

production, few studies have paid attention on the interaction between tillage and cropping system on soil 91 

biota and, ultimately, soil functioning (Zhang et al., 2018). To address this knowledge gap, we investigated 92 

the combined effects of tillage practices and contrasted cropping systems, including biogas cropping system, 93 

on earthworm communities and microbial metabolic activity and diversity.  94 

 95 

2. Materials and Methods 96 

2.1. Study site and experimental design 97 

Our study was carried out on a permanent field experiment established in Beauvais (UniLaSalle farm), 98 

Northern France (49°28'06.6"N 2°04'19.7"E), after wheat crop in 2015. The soil was classified as a Haplic 99 

Luvisol  with 14 % sand, 69 % silt and 17 % clay (Gómez-Suárez et al., 2020). Organic C and total N 100 

concentrations were 19.2 g kg-1 and 0.96 g kg-1 respectively, and pH was 7.8. The oceanic climate is 101 

characterized by an average precipitation of 655 mm year -1. Average minimum and maximum temperatures 102 

vary from 1 to 6.7 °C in winter, 5 to 14.5 °C in spring, 12 to 23 °C in summer and from 7.2 to 15.3 °C in autumn. 103 
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The field trial started on August 2016 under summer season. Six plots representing two tillage practices and 104 

three cropping systems were studied at this site. Each plot was divided to obtain six replicated subplots. The 105 

size of individual subplots was 24 m x 14 m. The details of each cropping system are shown in Supplementary 106 

Fig S1. Briefly, the conventional cropping system (Conv) was typical of mixed crops and livestock farming in 107 

the region of Picardy (Northern France). The crop rotation was rape/wheat/corn/wheat and the combination 108 

of manure and slurry from cattle was used as soil organic amendment (see Supplementary Table S1 for more 109 

details). The rotation of the transitory system (Feed) was representative of a feed farming system with cover 110 

crops implemented for both forage and biogas production. In this system, crop rotation included 10 crop 111 

species and biogas raw digestate was used as soil organic amendment. The third cropping system aimed at 112 

maximizing the production of biomass for biogas production (Biom). Crop rotation included 12 crop species 113 

consisting mainly in fodder and energy cover crops and biogas raw digestate was used as soil organic 114 

amendment. Treatment frequency index (TFI), which reflects the intensity of pesticide use (Hossard et al., 115 

2017), is shown for each cropping system in Table S2. 116 

 117 

2.2. Soil sampling and microbial analyses 118 

Soil samples were collected in May 2019 and community-level physiological profiles (CLPPs) based 119 

on the ability of microorganisms to oxidize various substrates were assessed using BIOLOG Ecoplate (BIOLOG 120 

Co.,Hayward, CA, USA).  In each of the six subplots, five grams of fresh soil from a 2-kg composite soil sample 121 

were collected in each plot and shaken with 45 ml of sterile 0.85% NaCl for 30 min at 200 rpm and then 122 

diluted to 1:1000. Each plate was inoculated with 150 μL of the dilution and the plates were incubated at 25 123 

°C. Color development was obtained in terms of optical density (OD) at 590 nm using an automated plate 124 

reader (Varian, Inc., Walnut Creek, CA, USA) (Houben et al., 2020). Average well color development (AWCD) 125 

was calculated as: AWCD = Σ(Ci − R)/31, where R is the absorbance of the control well (containing water 126 

instead of C source) and Ci is the absorbance of plate well inoculated with C source i. Optimal incubation time 127 

was considered at 96h, the most active microbial communities period, as suggested by kinetic curves that 128 

reached the asymptote of color development. This point was therefore considered for further statistical 129 

analyses for each treatment. Richness (S), as the number of oxidized C substrates and the Shannon-Weaver 130 
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index (H) were calculated using an OD of 0.25 as threshold for positive response. Shannon-Weaver index was 131 

calculated as H = −Σpi (lnpi) where pi = (Ci − R)/Σ(Ci–R).  132 

 133 

2.3. Earthworm sampling 134 

Earthworm abundance was assessed in May 2019 using an extraction with formaldehyde solution 135 

coupled with a soil excavation on 20 cm (ISO, 2006). Briefly, in each plot, three extractions were implemented 136 

on 0.7*0.7 meters quadrats (0.5 m2). A solution of 10ml of formaldehyde solution (37%) for 10L of water was 137 

watered 3 times on each quadrat, followed by an observation of 15 minutes. Earthworms were kept in 70% 138 

ethanol for further ecological group (i.e. epigeic, endogeic and anecic) determination (ISO, 2018) based on 139 

morpho-anatomical traits including body length, skin coloration and skin pigmentation. The number of 140 

earthworms was recorded per ecological group for total abundance per plot.  141 

 142 

2.4. Statistical analyses 143 

Data were analyzed using the statistical software R (version 3.3.2) (R Core Team, 2017). All recorded 144 

data were analyzed using descriptive statistics (mean ± standard error) and normality was determined using 145 

the Shapiro-Wilk test. The data were subjected to one-way ANOVA and Tukey’s post-hoc test to compare 146 

treatments, which had a normal distribution. Data without normal distribution were subjected to the 147 

Kruskall-Wallis test and Mann-Whitney post-hoc test. In addition, soil enzymatic activity was evaluated via 148 

AWCD, Shannon diversity and Richness indices and considered for two factors: tillage (“Tillage” vs. “No-149 

tillage”) and cropping system (“Conv”, “Feed” and “Biom”). Multivariate analyses were based either on two-150 

ways ANOVA when the normality (Shapiro-wilk test) and heteroscedasticity (Bartlett test) of the variables 151 

was respected, or on Generalized Linear Model (GLM) with the Gamma family using the fistdistrplus package 152 

(Delignette-Muller and Dutang, 2015). The same type of tests was performed on earthworm total abundance 153 

and abundances per ecological group (i.e. epigeic, anecic and endogeic). 154 

 155 
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3. Results and Discussion 156 

Our results revealed a strong impact of tillage practices on microbial metabolic activity and diversity 157 

and earthworm communities (Fig. 1 and 2). Unlike no-tillage, tillage overrode the effect of cropping systems 158 

on microbial metabolic activity and diversity since AWCD, Shannon diversity and richness were not 159 

significantly different between the cropping system under tillage (Fig. 1a, b and c). In addition, in the Feed 160 

and Biom cropping system, AWCD, Shannon diversity and richness were much lower (p<0.05) under tillage 161 

than under no-tillage (Fig. 1a, b and c), suggesting that tillage not only overrode the effect of cropping 162 

systems but was also detrimental for microbial activity and diversity compared to no-tillage. Our results were 163 

in agreement with reports from other agrosystems comparing the effect of tillage practices (ploughing, 164 

reduced or no-tillage) on microbial metabolic activity (Sun et al., 2016). In conventional agriculture, tillage 165 

has generally the predominant impact on biological properties since physical disturbance changes soil water 166 

content, temperature, aeration, and the degree of mixing of crop residues within the soil matrix (Lienhard et 167 

al., 2013) while it alters aggregate microhabitat and disturbs fungal hyphal growth (Ashworth et al., 2017). 168 

As a result, most studies report tillage as an abiotic stress in soil biota environment resulting in a decline of 169 

microbial metabolic activity and functional diversity (Govaerts et al., 2007; Houben et al., 2018).  170 

 171 
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 172 

Fig. 1. Average well color development (AWCD) (A), Shannon diversity Index (B) and Richness (C) in each 173 

cropping system. Columns with the same letter do not differ significantly at the 5% level (Mann-Whitney 174 

test for AWCD and Tukey test for Shannon diversity Index and Richness). 175 

 176 

 

a 
b 

(A) 
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By contrast to cropping systems under tillage, the type of cropping systems had a marked effect on 177 

microbial metabolic activity and diversity under no tillage (Fig. 1a, b and c). The three cropping systems 178 

differed by diverse factors including crop diversity in the rotation (Supplementary Fig. S1) and the type of 179 

organic fertilization (Supplementary Table S1). The Feed and Biom systems were characterized by higher crop 180 

diversity in rotation compared to the Conv one. Under no-tillage, Lienhard et al. (2013) found that crop 181 

diversity was the main factor influencing soil microorganisms. Increasing crop diversity generally stimulates 182 

above-belowground interactions (Zhang et al., 2021) by creating a more habitable resource niche (Zak et al., 183 

2003). It is therefore likely that the significantly (p<0.05) higher microbial metabolic activity and diversity in 184 

Feed and Biom was due, at least in part, to the higher number of crops in the rotation of these systems. 185 

Overall, our results converge with other works reporting that higher temporal crop diversity provides 186 

belowground benefits including increases of soil microbial metabolic activity, soil microbial biomass and soil 187 

microbial diversity (Acosta-Martínez et al., 2007; McDaniel et al., 2014). High crop diversity was 188 

demonstrated to be the key of bioenergy cropping systems as it favors C sequestration while reducing 189 

agrichemical use (Tilman et al., 2006). Here, our results suggest that implementing crop diversity in biogas 190 

cropping system also supports soil microbial activity and, possibly, soil functioning. In addition, applying 191 

biogas digestate in Feed and Biom instead of manure and slurry might also have increased microbial activity. 192 

Although our understanding of the effects of digestate on soil biota is still incomplete due to their wide 193 

variation in chemical composition (Risberg et al., 2017), our results agree with Walsh et al. (2012) showing 194 

that, due to its higher level of nutrients compared to manure and, especially, slurry (Supplementary Table 195 

S1), digestate might stimulate microbial metabolic activity.  196 

 197 
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 198 

Fig. 2. Total abundance of earthworms and distribution into ecological groups. Columns with the same 199 

letter do not differ significantly at the 5% level (Tukey test). Standard error and letters above the columns 200 

account for total abundance. 201 

 202 

Tillage had also a marked effect on earthworms (Fig. 2).  Tillage had a detrimental effect on 203 

earthworms since cropping systems under tillage had generally a significantly (p<0.05) lower earthworm 204 

abundance compared to no-tillage, especially for epigeic and total abundance. These results are in agreement 205 

with many studies showing that tillage involves a physical perturbation of the tilled layer which leads to a 206 

disruption of aggregates, causing mortalities, injuries and earthworm locking up in soil clods (Briones and 207 

Schmidt, 2017). Given the myriad of ecosystem services delivered by earthworms, their decline in tilled 208 

cropping systems is often associated with undesirable change in the ecological performance of 209 

agroecosystems (Chan, 2001). The simultaneous increase of earthworm abundance and microbial activity 210 

under no-tillage is similar to the findings of Kuntz et al. (2013) who concluded that reduced tillage provides 211 

an approach for eco-intensification of agriculture by not only reducing external inputs but also providing 212 

additional agroecological services. Although this was not studied in the present study, it must be considered 213 

that beyond its direct effect on soil biota, no-tillage may also alter trophic interaction, possibly resulting in 214 

positive feedback between microorganisms and soil fauna (Miura et al., 2008).  Unlike microbial activity and 215 
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diversity, the type of cropping systems had no significant (p>0.05) effect neither on total abundance nor on 216 

abundance per ecological group (Fig. 2), suggesting that tillage was the predominant factor affecting 217 

earthworms on the sort-term. These findings agree with Simonsen et al. (2010) who concluded that, by 218 

comparing contrasted cropping systems, tillage was the most important factor impacting earthworm 219 

abundance while organic amendment had low effect and crop diversity had no effect. Similarly, Eriksen-220 

Hamel et al. (2009) also found that no-tillage favored earthworms while cropping management had no 221 

impact, suggesting that physical disturbance, rather than food availability, was the main driver of earthworm 222 

communities. It must however be noted that we analyzed here the relatively short-term response of 223 

earthworms to change in farming practices at only one site. Studies in a longer run and at different places 224 

should be performed to better assess the temporal effect of cropping systems on earthworm communities 225 

while taking into account their spatial variability. For instance, under similar tillage practice, earthworm 226 

abundance is usually positively related to soil organic matter content (Ouellet et al., 2008) even though 227 

negative relationship have also been unexpectedly observed (Bartz et al., 2013). Since change in soil organic 228 

matter content due to e.g. change in crop residue or organic amendment management takes time (Houben 229 

et al., 2018), longer-term studies might possibly reveal different earthworm abundance and communities 230 

between the studied cropping systems. In addition, it has been recently reported that pesticides such as 231 

glyphosate can be chronically toxic to earthworms (García-Pérez et al., 2020), which can alter biodiversity, 232 

hinder recovery, and affect functions (Pelosi et al., 2021). In this study, the relationship between earthworm 233 

abundance and the total use of pesticides in cropping systems was unclear. For instance, irrespective of the 234 

tillage practice, despite a lower use of pesticides (Supplementary Table S2), Conv did not show a higher 235 

earthworm abundance compared to Feed. As demonstrated by García-Pérez et al. (2014), evaluation of the 236 

effects of pesticides is difficult in field studies because their short-term effects can very subtle and are mixed 237 

with other factors. Therefore, the relative contribution of pesticides on earthworm communities should also 238 

be better elucidated in longer studies in order to optimize the design of innovative cropping systems. 239 

Taken together, our findings show that both earthworm communities and microbial metabolic 240 

activity and diversity are very sensitive to tillage. Moreover, microbial metabolic activity and diversity are 241 

also rapidly affected by the type of cropping system, suggesting that it would be a better indicator to detect 242 
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short-term changes in soil functioning following change in land use. More specifically, our study indicates 243 

that, provided that no-tillage is included, biogas cropping system with high crop diversity can promote soil 244 

biota compared with conventional farming practices.  245 

 246 
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Fig. S1. Crops rotation in Biom, Feed and Conv with or without tillage. 451 
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Table S1: Rate of application and composition of soil amendment applied onto each cropping. 471 

Cropping 
system 

Tillage 
practice Date Amendment 

Rate of application 
(m3 ha-1 or t ha-1*) 

N 
(g kg-1) 

P2O5 
(g kg-1) 

K2O 
(g kg-1) 

Conv No tillage 13/08/2016 Manure 35 * 8.17 5.55 5.41 

Conv Tillage 13/08/2016 Manure 35 * 8.17 5.55 5.41 

Conv No tillage 04/05/2017 Slurry 44 1.8 0.26 1.4 

Conv Tillage 04/05/2017 Slurry 44 1.8 0.26 1.4 

Conv No tillage 31/08/2018 Slurry 24 1.27 0.22 1.39 

Conv Tillage 31/08/2018 Slurry 24 1.27 0.22 1.39 

Feed No tillage 05/08/2016 Digestate 26.5 6.08 1.07 6.18 

Feed Tillage 05/08/2016 Digestate 26.5 6.08 1.07 6.18 

Feed No tillage 10/05/2017 Digestate 26.5 5.24 0.82 4.5 

Feed Tillage 10/05/2017 Digestate 26.5 5.24 0.82 4.5 

Feed No tillage 01/03/2018 Digestate 24.5 3.2 0.51 2.2 

Feed Tillage 01/03/2018 Digestate 24.5 3.2 0.51 2.2 

Feed No tillage 27/07/2018 Digestate 20.5 3.9 0.65 2.9 

Feed Tillage 27/07/2018 Digestate 20.5 3.9 0.65 2.9 

Feed No tillage 16/03/2020 Digestate 20 4.07 1.67 3.97 

Feed Tillage 16/03/2020 Digestate 20 4.07 1.67 3.97 

Biom No tillage 05/08/2016 Digestate 26.5 6.08 1.07 6.18 

Biom Tillage 05/08/2016 Digestate 26.5 6.08 1.07 6.18 

Biom No tillage 01/03/2018 Digestate 24.5 3.2 0.51 2.2 

Biom Tillage 01/03/2018 Digestate 24.5 3.2 0.51 2.2 

Biom No tillage 08/06/2018 Digestate 25 3.47 0.6 2.7 

Biom Tillage 08/06/2018 Digestate 25 3.47 0.6 2.7 

Biom No tillage 22/03/2019 Digestate 22 3.8 1.66 3.69 

Biom Tillage 22/03/2019 Digestate 22 3.8 1.66 3.69 
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 485 

Table S2: Treatment frequency index (TFI) for each cropping system. Data show total TFI which is the sum 486 
of the TFI for herbicides and the TFI for pesticides other than herbicides. 487 

Tillage Practice Cropping system  Year  Total TFI   TFI for herbicides   TFI for others  

Tillage Conv 2017 1.63 1.63  0       
Conv 2018 5.9 2.58 3.32 

  Conv 2019 7.1 1.6 5.5   
Average 4.88 1.94 2.94 

Tillage Feed 2017 1.63 1.63  0       
Feed 2018 5.9 2.58 3.32  
Feed 2019 14.2 3.2 11   

Average 7.24 2.47 4.77 

Tillage Biom 2017 2.37 1.37 1  
Biom 2018 4.5 2.58 1.92  
Biom 2019 1  0      1   

Average 2.62 1.32 1.31 

No-tillage Conv 2017 2.23 1.8 0.43  
Conv 2018 7.26 2.94 4.32  
Conv 2019 8 2.08 5.93   

Average 5.83 2.27 3.56 

No-tillage Feed 2017 2.56 2.13 0.43  
Feed 2018 7.26 2.94 4.32  
Feed 2019 8 2.08 5.93   

Average 5.94 2.38 3.56 

No-tillage Biom 2017 3.47 2.04 1.43  
Biom 2018 5.5 2.58 2.92  
Biom 2019 4 1 3   

Average 4.32 1.87 2.45 
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