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Abstract: Resonant scattering, guided mode propagation phase and/or orientation-dependent 

phase retardations are the three main mechanisms used until now to conceive optical metasurfaces. 

Here we introduce an additional degree of freedom to address optical phase engineering by 15 

exploiting the topological features of non-Hermitian matrices operating near their singular points. 

Choosing metasurface building blocks to encircle a singularity following an arbitrarily closed 

trajectory in parameter space, we engineer topologically-protected full 2𝜋 − phase on a specific 

reflected polarization channel. The ease of implementation together with its compatibility with 

other phase-addressing mechanisms bring topological properties into the realm of industrial 20 

applications at optical frequencies, and prove that metasurface technology represents a convenient 

test bench to study and validate topological photonic concepts.  

 

One Sentence Summary: Topology-protected 2𝜋  phase by encircling exceptional point in 

arbitrary closed path for unique metasurface wavefront shaping.    25 
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Metasurfaces (1–6) are artificial materials constructed with subwavelength arrays of spatially-

distributed nanostructures that enable versatile wave front engineering. From a fundamental 

perspective, a metasurface is an open system, continuously exchanging and/or absorbing energy 

between the impinging field and the resonant nanostructures. Unlike closed systems, open systems 

experience a phase transition at the exceptional point (EP) leading to complex scattering 5 

phenomena related to optical singularities (7). The latter can be equivalently described in an optical 

system using the scattering matrix and Hamiltonian representations (8–10). Singularities also 

manifest in the reflection-zero regime, perfect absorption and bound state in the continuum, giving 

rise to unidirectional transmission or reflection (11, 12), single mode laser operation (13), extreme 

sensitiveness to perturbation (14, 15), etc. Tailoring light reflection, or transmission, with 10 

metasurfaces consists in addressing the values of complex coefficients by varying the 

nanostructure geometries. Choosing any arbitrary loop in parameter space to achieve phase 

distribution does not necessarily lead to full 2π phase accumulation. Here we show how to leverage 

on the 2𝜋-phase excursion occurring on the coefficient value by encircling zeros/singularities in 

the complex plane. Encircling singular point to accumulate an optical phase difference is of crucial 15 

interest for wavefront engineering, enrichening the metasurface design toolbox with an additional 

phase addressing mechanism. 

Previous works on metasurfaces have shown that non-Hermitian metasurfaces can operate close 

to an EP, and have approached the singularity thanks to a series of individually-distinct 

metasurfaces for which a given parameter is changed (16–19). The exploitation of the robust 20 

topological phase around the EP, referred to as exceptional topological (ET) phase, to realize 

functional devices has remained elusive. The proposed ET-phase is fundamentally different from 

conventional Pancharatnam-Berry (PB) phase (20–23) and, as a consequence, ET can be combined 

with other phase addressing mechanisms, including PB, to achieve full and independent control of 

the polarization channels. We demonstrate a meta-hologram using the ET phase encircling the EP 25 

to project an image of “C” for left circular polarized (LCP) light, leaving the cross right circular 

polarized (RCP) channel unaffected. By combining the ET and PB phases, we decouple the two 

circular polarizations (CP) and achieve two different holographic projections with an image of “A” 

for LCP light and “B” for RCP light. 

The plasmonic topological metasurface consists of three layers, where a dielectric layer is 30 

sandwiched between a metal ground and a metallic structured layer, as shown in Fig. 1A. The 
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metal ground blocks all the transmission so that the metasurface works in the reflective regime. 

The structured layer is formed by a two-dimensional (2D) planar chiral structure array, which is 

composed of an “L” shaped nanostructure, near-field coupled to a straight nano rod, representing 

a Hangul syllable of “느”. To observe the EP complex-square-root topology of the eigenvalues 

surface, two parameters need to be varied, defining thereby the parameter space 𝑹 = (𝐿1, 𝐿3), with 5 

𝐿1 and 𝐿3 being the geometrical parameters shown in Fig. 1A. 𝐿1 and 𝐿3 are chosen as they play 

key roles in the y- and x-polarized resonances, as shown in Supplementary fig. S9 and Note 4, 

giving access to a full 2π reflection phase for 𝑟+− (where the subscript +− represent reflected CP 

conversion from RCP (|−⟩) to LCP (|+⟩)). The EP is obtained by adjusting the nanostructure 

structural properties, so that both eigenstates degenerate as CP beams. If the degenerate eigenstate 10 

is RCP, i.e., �̂�|−⟩ = 𝜆1,2|−⟩, where �̂�  is the reflection matrix and 𝜆1 = 𝜆2  are two degenerate 

eigenvalues, then RCP input light is preserved, and the CP conversion channel from RCP to LCP 

vanishes, i.e., 𝑟+− = 0. A zero point or singularity point, equivalent to perfect absorption cases 

(24–26), is obtained for 𝑟+−  as shown in Fig. 1B. The chiral response of the surface current 

distribution at the EP, shown in the Supplementary fig. S7, is a key ingredient to achieve circular 15 

polarization dependent reflectivity. The induced chirality is an inherent property of the EP from a 

symmetric non-Hermitian Hamiltonian (27) and leads to an asymmetric conversion from one 

circular polarization to the other and vice versa (i.e., 𝑟+− ≠ 𝑟−+ ).  Interestingly, the spectral 

response of only one of the two CP conversion undergoes a 2𝜋 phase change around the EP 

wavelength. Due to the topological protection provided by encircling of the EP, as discussed in 20 

Supplementary Note 1 and 2, the 2π phase accumulation is maintained for the reflected phase map 

irrespective of the closed path, as long as it encircles one EP in parameter space. Given the 

metasurface versatility, we realize on a single component an assembly of antennas with different 

parameters chosen so as to move around the EP in the parameter space, thus realizing 

simultaneously a set of optical responses (see Fig. 1G and 1J). Amplitude variation with singular 25 

value is also observed. The other reflective CP conversion coefficient (𝑟−+) does not present a 

singularity in this parameter space, resulting in an almost constant phase and amplitude profiles as 

shown in Fig. 1C.  

The conventional PB phase works oppositely for the two reflective CP conversion beams, as 

reported in Fig. 1D-1F. Being fundamentally different, ET phase is imposed on only one CP 30 
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conversion and thus can be combined with the standard PB phase (see more details in 

Supplementary Note 5). As a result, the combination of ET and PB phases can be used to decouple 

the phase of the two CP conversion beams, leading to independent control of each polarization 

converted wavefront, as shown in Fig. 1G-1L.  

A spectral singularity point of 𝑟+−, together with its degeneracy of the eigenvalues and eigenstates 5 

at 𝜆 = 600 nm proof the existence of an EP as shown by the red star in Fig. 2. This behavior is 

further confirmed by the intersecting double Riemann surface corresponding to the reflection 

matrix eigenvalues as shown in Fig. 3A and 3B. Various phase and amplitude-conversion 

distribution choices are possible for the deflecting unit-cell. Here we chose a simple unit-cell phase 

coverage, i.e., considering 90°  phase steps, so as to keep the distance between neighboring 10 

antennas constant, which slightly compromises the amplitude of the third structure as shown in 

Fig. 3E. Seven designs of PB phase interval of 60° are also presented in Fig. 3C-3H for the 

combination with ET phase. 

We experimentally demonstrate an ET-phase gradient metasurface, behaving as a beam deflector 

and a meta-hologram. The scanning electron micrograph (SEM) of the fabricated beam deflector 15 

is shown in Fig. 4A. An asymmetric reflection of the two CP conversion beams is measured in 

Fig. 4B, with a maximum efficiency of 12% and power ratio around 10:1 as quantified in Fig. 4C. 

The spectral position of the singular design (EP antenna) evolves as a function of the antenna 

structural parameters, as shown in Fig. S13, indicating that small nanofabrication errors can 

slightly shift the position of the EP and modify the expected deflection efficiencies and power 20 

ratio. To show the versatility of this wavefront phase encoding technique we realize a meta-

hologram as fabricated in Fig. 4D. As expected, a holographic image of “C” is displayed for 𝑟+− 

as shown in Fig. 4E, but no image appears for 𝑟−+ as shown in Fig. 4F. 

The wealth of applications of the ET phase expands by combining it with other phase-control 

mechanisms. Here, ET is combined with the widespread PB phase by simply rotating the 25 

metasurface elements, as shown in Fig. 4G-4L, to decouple the deflection angles of the two CP 

beams in Fig. 4H and 4I. Similarly, ET+PB phase encoding is applied to project two different CP 

holographic images as shown in Fig. 4K and 4L.  

 

Concluding remarks. We have demonstrated a planar chiral plasmonic metasurface that exhibits 30 

2π topological phase accumulation in reflection regime by choosing nanoantenna designs 
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distributed along any arbitrarily closed parameter loop encircling the EP. We have shown 2π-phase 

accumulation is imposed on only one of the CP conversion beams defined by the chirality of the 

encircled EP. Exploiting a linear combination of ET and PB phases we decoupled LCP and RCP 

channels. Addressing phase retardation by encircling singularities of the S-matrix open vast 

research opportunities for unusual polarization, linear and nonlinear topological electromagnetic 5 

field control at optical frequencies. 
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Fig. 1. Design principle of the topological metasurface. (A) Perspective (top panel) and top 

(bottom panel) view of 2D chiral meta-atom design in reflection. The dimension is L2 = 140 nm, 

P = 300 nm, w = 50 nm, g = 70 nm, h = 30 nm, h1 = 40 nm, h2 = 150 nm. (B) Simulated CP 

conversion coefficients 𝑟+− and (C) 𝑟−+ in the parameter space covered by 𝐿1 ∈ [0, 100 nm] and 5 

𝐿3 ∈ [50 nm, 200 nm]. An EP is obtained at (𝐿1, 𝐿3) = (52 nm, 119 nm). A vortex phase profile 

for 𝑟+− and a topological protected 2π phase accumulation is obtained by encircling the EP. (D) 

Top view of meta-atom with rotation angle of 𝜃. (E) Simulated CP conversion coefficients 𝑟+−
𝜃  

and (F) 𝑟−+
𝜃  with 𝜃 ∈ [0, 2𝜋]. In E and F, the original ET phase without rotation (𝑟±∓

0 ) has been 

subtracted to display PB phase only. The z-axis in B, C, E and F represents the amplitude and the 10 

color scale represents the phase. The combination of (G) ET phase and (H) PB phase is designed 

to realize an ET+PB phase metasurface in (I). Schematics of the design implemented for 

combining the (J) ET and (K) PB phase control in (L) a single ET+PB phase metasurface, able to 

independently control the two CP beams.   
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Fig. 2. Simulated reflection spectra and the corresponding eigenvalues and eigenstates. (A) 

Spectral dependence of the reflection matrix coefficients (in the circular basis). A singularity point, 

where 𝑟+− = 0, is observed at 𝜆 = 600 nm. (B) Amplitude and phase of the reflection matrix 

eigenvalues. The two eigenvalues degenerate at 𝜆 = 600 nm. (C) Simulated ellipticity angle of 5 

the two eigenstates, which overlap and degenerate as RCP at 𝜆 = 600 nm. (D) Position of the 

eigenstates on the Poincaré sphere as a function of wavelength, which degenerate at 𝜆 = 600 nm. 

All the evidences prove that an EP is obtained at 𝜆 = 600 nm. 
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Fig. 3. Simulation results of the metasurface in the parameter space 𝑹 = (𝑳𝟏, 𝑳𝟑) . (A) 

Simulated amplitude and (B) phase of two eigenvalues at 𝜆 = 600 nm . A self-intersecting 

Riemann surface profile is observed. The EP is highlighted as black dot, where two eigenvalues 

degenerate at (𝐿1, 𝐿3) = (52 nm, 119 nm) . (C) Simulated ET phase of 𝑟+−
0  and (D) nearly 5 

constant phase of 𝑟−+
0 . (E) Four meta-atom designs are selected such that the ET phase interval is 

90º, highlighted as triangles in C and D. The inset figures are four corresponding structure designs. 

(F) Simulated PB phase of 𝑟+−
𝜃  and (G) 𝑟−+

𝜃 , where the presented phase has been subtracted by the 

original phase of 𝑟±∓
0  without rotation to display PB phase only. (H) Seven rotated structures are 

presented with rotation angle from 0º to 180º stepped by 30º, highlighted as dots in F and G. (See 10 

more details in Supplementary fig. S11 and S14). 
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Fig. 4. Experimental results of the topological metasurface. (A) Fabricated nanostructures for 

the ET phase meta-deflector. (B) Measured far field power patterns for RCP (red solid curves) and 

LCP (blue dot curves) incidence on ET phase meta-deflector. The phase gradient between adjacent 5 

meta-atoms is designed as 90°. The first order of the CP converted beam 𝑟+− is deflected from 34° 
to ~ 44° when the wavelength 𝜆 varies from 500 nm to ~ 675 nm, while the other CP converted 

beam of 𝑟−+ is undeflected (at the zero order of 8º). (C) Measured efficiency of the deflector (red 

dots) and measured power ratio of |𝑟+−|/|𝑟−+| at the deflected angle (blue stars). (D) Fabricated 

nanostructures for an ET phase meta-hologram designed by encoding the holographic phase profile 10 



 

11 

 

into the deflector. (E) A holographic image of “C” for 𝑟+− is displayed at the angle of 30º, (F) but 

no image appears for 𝑟−+. (G) Fabricated nanostructures for an ET+PB phase meta-deflector. (H) 

Measured far field power patterns with RCP (red curve) and LCP (blue curve) incidence on ET+PB 

phase meta-deflector. The phase gradient between adjacent meta-atoms is designed as 60° and 90° 
respectively for 𝑟+− and 𝑟−+. (I) Poincaré sphere representation of the measured polarization of 5 

𝑟+− (red dot) and 𝑟−+ (blue dot) at the first deflected order. (J) Fabricated nanostructures for an 

ET+PB phase meta-hologram. (K) Holographic images of “B” for 𝑟+− and (L) “A” for 𝑟−+ are 

displayed at the designed angle of 40° and −20°, respectively. All the curves in B and H are 

normalized with the zero order as unity. The operating wavelength in E, F, H, K and L is 𝜆 =
600 nm. The incident angles of the deflectors and holograms are 8° and 0°, respectively. The scale 10 

bar in A, D, G, and J corresponds to 500 nm. 
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Materials and Methods 

The fabrication processes and the measurement setup are shown in Fig. S1 and S2, respectively. 

 

Fig. S1. Plasmonic metasurface fabrication process. (A) Cleaning and dicing a silicon wafer 

into a 2 × 2 cm samples. (B) E-beam evaporation of 150 nm ground Al layer. (C) PECVD 5 

deposition of 40 nm SiO2 spacer layer. (D) Spin-coat and softback 220 nm PMMA-A4 e-beam 

resist. (E) 100keV e-beam lithography exposure of shape-corrected structure using BEAMER-

GenISys software. (F) Cold-development using MBIK/IPA 1:3 for 2 minutes, followed by O2-

plasma descumming process for 10 seconds. (G) E-beam evaporation of 30 nm Al device layer, 

and (H) lift-off process using room-temperature acetone solvent followed by 10-seconds 10 

sonication bath. 
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Fig. S2. Optical setup for the measurement of the meta-hologram. A laser beam at visible 

range propagates through a linear polarizer and quarter wavelength, so that a circular polarized 

light is obtained. Then the laser beam passes through a lens to weakly focus on the meta-hologram. 

The reflected holographic images are projected onto a projector with a hole in the center for the 5 

incident light passing through. LP: linear polarizer; QWP: quarter wave plate. 
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Supplementary Note 1: Phase accumulation by encircling a singularity point. 

Consider an arbitrary complex number as a function of parameter R, 

𝑓(𝑹) = 𝑅𝑒[𝑓(𝑹)] + 𝑖 𝐼𝑚[𝑓(𝑹)] (S1) 

where 𝑅𝑒[𝑓(𝑹)] and 𝐼𝑚[𝑓(𝑹)] represent the real and imaginary part of 𝑓(𝑹), respectively, 𝑖2 =

−1. The phase of complex number 𝑓(𝑹) can be described as 5 

𝜙[𝑓(𝑹)] = ∠𝑓(𝑹) = atan
𝐼𝑚[𝑓(𝑹)]

𝑅𝑒[𝑓(𝑹)]
(S2) 

When the parameter 𝑹 varies continuously from point 𝑷𝟏 to 𝑷𝟐, the accumulated phase Φ 

along the path 𝑷𝟏 → 𝑷𝟐 in the complex plane (𝑅𝑒[𝑓(𝑹)], 𝐼𝑚[𝑓(𝑹)]) as shown in fig. S3A is given 

by 

Φ = ∫ 𝑑𝜙
𝜙[𝑓(𝑷𝟐)]

𝜙[𝑓(𝑷𝟏)]

(S3) 10 

For any closed path l, if the origin is within the enclosed path 𝑙1 as shown in fig. S3B, the 

winding number (28) of path 𝑙1 around the origin 𝑤 =
1

2𝜋
∮𝑑𝜙 = 1. Therefore, the accumulated 

phase along the path 𝑙1 is 

Φ = ∮𝑑𝜙 = 2𝜋 (S4) 

However, if the origin is outside the enclosed path 𝑙2 as shown in fig. S3C, the winding 15 

number is 0. Therefore, the accumulated phase along the path 𝑙2 is 

Φ = ∮𝑑𝜙 ≠ 2𝜋 (S5) 

Assume that for a parameter space of 𝑹, the complex number 𝑓(𝑹) vanishes at the parameter 

of 𝑷𝒔, i.e., 𝑓(𝑷𝒔) = 𝑅𝑒[𝑓(𝑷𝒔)] + 𝑖 𝐼𝑚[𝑓(𝑷𝒔)] = 0. We will refer to such point of 𝑷𝒔 (𝑓(𝑷𝒔) =

0) as singularity point (𝑷𝒔) in this paper. For clarification, in the following text the variable 𝑹 is 20 

defined in a two-dimensional parameter space (𝑹𝟏, 𝑹𝟐), the complex number 𝑓(𝑹) is defined in 

the two-dimensional complex plane of (𝑅𝑒[𝑓(𝑹)], 𝐼𝑚[𝑓(𝑹)]). When the parameter 𝑹 is varied 

along a closed path in the parameter space of (𝑹𝟏, 𝑹𝟐) as shown in fig. S4A and crosses the 

singularity point 𝑷𝒔, the complex number 𝑓(𝑹) will pass through the origin in the complex plane 

(𝑅𝑒[𝑓(𝑹)], 𝐼𝑚[𝑓(𝑹)]). Therefore, at least 𝜋 phase can be accumulated as shown in fig. S4B.  25 
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Assume that at the vicinity of the singularity point 𝑷𝒔, the parameter 𝑹 deviates from the 

previous path and encircles the singularity point 𝑷𝒔, as shown in fig. S4C. The complex number 

𝑓(𝑹) will no longer pass through the origin in the complex plane of (𝑅𝑒[𝑓(𝑹)], 𝐼𝑚[𝑓(𝑹)]). There 

are two possibilities for the evolution of the function 𝑓(𝑹), as shown in fig. S4D. Either it will 

encircle the origin, as shown by the red solid path (combined with the blue path), so that a full 2𝜋 5 

phase can be accumulated, or the origin will be outside of the closed path as shown by the red dash 

path (combined with blue path), such that the accumulated phase is not 2𝜋.  

 

 

 10 

 

 

Fig. S3. Phase accumulation along a closed path in any parameter space R. (A) 𝑅𝑒[𝑓(𝑹)] and 

𝐼𝑚[𝑓(𝑹)]  represent the real and imaginary part of function 𝑓(𝑹) , which are related to the 

parameter R. The phase of 𝑓(𝑹) is represented by 𝜙. The phase accumulation along the path 𝑷𝟏 →15 

𝑷𝟐 is Φ. (B) When the singularity point of 𝑓(𝑷𝒔) = 0, i.e., the origin of the complex plane, is 

within the enclosed path 𝑙1, a full 2𝜋 phase is accumulated along the path. (C) When the singularity 

point of 𝑓(𝑷𝒔) = 0, i.e., the origin of the complex plane, is outside of the enclosed path 𝑙2, the 

accumulated phase along the path is no longer 2𝜋. The winding number of paths 𝑙1 and 𝑙2 along 

the origin is 1 and 0, respectively. 20 
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Fig. S4. Phase accumulation along a closed path in a two-dimensional parameter space 𝑹 =

(𝑹𝟏, 𝑹𝟐). (A) The singularity point 𝑓(𝑷𝒔) = 0 exists at the parameter of 𝑷𝒔 = (𝑹𝟏
𝒔 , 𝑹𝟐

𝒔). The blue 

closed path 𝑙3 crosses the singularity point. (B) The corresponding function 𝑓(𝑹) = 𝑅𝑒[𝑓(𝑹)] +

𝑖 𝐼𝑚[𝑓(𝑹)] crosses the origin in the complex plane. (C) At the vicinity of the singularity point, the 5 

parameter (𝑹𝟏, 𝑹𝟐) deviates from the singularity point as shown in the red curve and encircles the 

singularity point by combining red and blue path 𝑙4. (D) Two possibilities of evolution of the 

function 𝑓(𝑹) can be observed. The origin in the complex plane can be either within (red solid 

path) or out of (red dash path) the closed path of 𝑓(𝑹). For the red solid path together with blue 

path, a full 2𝜋 phase can be realized. For the red dash path together with the blue path, the phase 10 

accumulation is no longer 2𝜋.  
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Supplementary Note 2: Robustness of the 2π phase accumulation: topological protection. 

Here we consider the case of a closed path of 𝑹 = (𝑹𝟏, 𝑹𝟐) that encircles the singularity point 

𝑷𝒔 = (𝑹𝟏
𝒔 , 𝑹𝟐

𝒔), which implies that the closed path of 𝑓(𝑹) in the complex plane encircles the 

origin, as shown in the blue closed path of fig. S5A and S5B. The accumulated phase of 𝑓(𝑹) 

when encircling the singularity point 𝑷𝒔 is 2π according to Eq. S4 as discussed in Note 1. Assume 5 

that the blue closed path is changed continuously to the red closed path without crossing the 

singularity point 𝑷𝒔 as shown in fig. S5A. If the origin jumps outside of the function 𝑓(𝑹) as 

shown in fig. S5D, then there must exist an intermediate yellow path in parameter space (𝑹𝟏, 𝑹𝟐) 

that imposes 𝑓(𝑹) to pass through the origin, as shown in fig. S5C. In this case, there must exist 

an additional singularity point of 𝑷𝒔′, as shown by the yellow dot in fig. S5A, such that 𝑓(𝑷𝒔′) =10 

𝑅𝑒[𝑓(𝑷𝒔′)] + 𝑖 𝐼𝑚[𝑓(𝑷𝒔′)] = 0, as shown by the yellow dot in fig. S5C. Therefore, there must 

exist at least two singularity points 𝑷𝒔,𝒔′ such that the winding number of function 𝑓(𝑹) along the 

origin changes from 1 to 0 (from blue state in fig. S5B to red state in fig. S5D). In other words, a 

robust 2π phase accumulation is topologically protected by this singularity point unless the 

topology is broken by introducing another singularity point. In conclusion, if the following two 15 

conditions are satisfied a 2π phase accumulation is guaranteed for any closed path that encircles 

the singularity at point 𝑷𝒔 in parameter space: (1) there exists only one singularity point 𝑷𝒔 such 

that 𝑓(𝑷𝒔) = 0, (2) there exists one enclosed path that encircles the singularity point 𝑷𝒔 such that 

the origin is within the path of 𝑓(𝑹) in the complex plane. 

  20 
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Fig. S5. Topology protection of 2π phase. (A) Three closed paths in the parameter space 𝑹 =

(𝑹𝟏, 𝑹𝟐) . The singularity point exists at the parameter of 𝑷𝒔 = (𝑹𝟏
𝒔 , 𝑹𝟐

𝒔) . The parameter is 

continuously changed from blue to yellow, and then to red path. All the three paths are encircling 

the singularity point of 𝑷𝒔. The corresponding path of 𝑓(𝑹) in the complex plane is shown in (B) 5 

blue, (C) yellow and (D) red paths. Assume the blue path of 𝑓(𝑹) is encircling the origin, i.e., a 

full 2π phase is accumulated along the closed path. When the path of 𝑓(𝑹) is changed from (B) to 

(D), there must exist an intermediate path as shown in (C), such that the function 𝑓(𝑹) passes 

through the origin. In other words, there must exist another singularity point of 𝑷𝒔′ = (𝑹𝟏
𝒔′, 𝑹𝟐

𝒔′) 

in the yellow path in (A). Therefore, the full 2π phase is topologically protected by 𝑹𝒔 . By 10 

introducing another singularity point, the topology protection of 2π phase is broken. 
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Supplementary Note 3: General mathematic study of a planar chiral non-Hermitian 

matrix. 

In this paper we only consider the metasurface with planar chiral anisotropic properties in the 

reflection regime, i.e.,  

{
𝑟𝑥𝑥 ≠ 𝑟𝑦𝑦
𝑟𝑥𝑦 = 𝑟𝑦𝑥

(S6) 5 

where 𝑟𝑗𝑘 is the reflection from k polarized input light to j polarized output light. 𝑟𝑥𝑥 ≠ 𝑟𝑦𝑦 due to 

the anisotropy, and 𝑟𝑥𝑦 = 𝑟𝑦𝑥 due to the reciprocity. The reflection matrix can be described as, 

�̂�(𝑹) = (
𝑟𝑥𝑥(𝑹) 𝑟𝑥𝑦(𝑹)

𝑟𝑦𝑥(𝑹) 𝑟𝑦𝑦(𝑹)
) = (

𝑎(𝑹) + 𝑖𝑏(𝑹) 𝑐(𝑹) + 𝑖𝑑(𝑹)

𝑐(𝑹) + 𝑖𝑑(𝑹) 𝑒(𝑹) + 𝑖𝑓(𝑹)
) (S7) 

where a, b, c, d, e, f are arbitrary real values that are related to arbitrary system parameter R. For 

simplicity, in some of the following discussions, we ignore the notation of (𝑹). Assume the 10 

eigenvalues and eigenstates of the matrix �̂� is 𝜆1,2 and |𝑛1,2⟩, i.e., 

�̂�|𝑛1,2⟩ = 𝜆1,2|𝑛1,2⟩ (S8) 

The eigenvalues can be derived as, 

𝜆1,2 =
(𝑎 + 𝑖𝑏) + (𝑒 + 𝑖𝑓) ± √[(𝑎 + 𝑖𝑏) − (𝑒 + 𝑖𝑓)]2 + 4(𝑐 + 𝑖𝑑)2

2
(S9) 

At the exceptional point of 𝑷𝑒 , the eigenvalues degenerate, i.e., the square root of 𝜆1,2 15 

vanishes as, 

√[(𝑎(𝑷𝑒) + 𝑖𝑏(𝑷𝑒)) − (𝑒(𝑷𝑒) + 𝑖𝑓(𝑷𝑒))]
2
+ 4(𝑐(𝑷𝑒) + 𝑖𝑑(𝑷𝑒))

2
 

= √[(𝑎 + 𝑖𝑏) − (𝑒 + 𝑖𝑓) − 2𝑖(𝑐 + 𝑖𝑑)][(𝑎 + 𝑖𝑏) − (𝑒 + 𝑖𝑓) + 2𝑖(𝑐 + 𝑖𝑑)]  

= √[(𝑎 − 𝑒 + 2𝑑) + 𝑖(𝑏 − 𝑓 − 2𝑐)][(𝑎 − 𝑒 − 2𝑑) + 𝑖(𝑏 − 𝑓 + 2𝑐)]  

= 0                                                                                                                                     (S10) 20 

We then get 

{
𝑎(𝑷𝑒) − 𝑒(𝑷𝑒) + 2𝑑(𝑷𝑒) = 0
𝑏(𝑷𝑒) − 𝑓(𝑷𝑒) − 2𝑐(𝑷𝑒) = 0

(S11) 

or 
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{
𝑎(𝑷𝑒

′
) − 𝑒(𝑷𝑒

′
) − 2𝑑(𝑷𝑒

′
) = 0

𝑏(𝑷𝑒
′
) − 𝑓(𝑷𝑒

′
) + 2𝑐(𝑷𝑒

′
) = 0

(S12) 

If the reflection matrix �̂�(𝑹) is Hermitian, i.e., 𝑏(𝑹) = 𝑑(𝑹) = 𝑓(𝑹) = 0, Eq. S11 and S12 

coalesce as 𝑎(𝑷𝑒) = 𝑒(𝑷𝑒), and 𝑐(𝑷𝑒) = 0. The eigenstates are |𝑛1⟩ = (
1
0
), |𝑛1⟩ = (

0
1
), which 

correspond to linearly-polarized orthogonal eigenstates. 

However, if the reflection matrix �̂�(𝑹) is non-Hermitian, i.e., one of the imaginary parts 5 

𝑏, 𝑑, 𝑓 does not vanish, Eq. S11 and S12 give rise to two different cases. Consider the case of Eq. 

S11, i.e., (𝑎 − 𝑒 + 2𝑑) + 𝑖(𝑏 − 𝑓 − 2𝑐) = 0. According to Eq. S7-9 and S11, the degenerate 

eigenstates can be calculated as 

|𝑛1⟩ = |𝑛2⟩ = |−⟩ = (
1
−𝑖
) (S13) 

which correspond to right circular polarization (|−⟩), i.e., �̂�(𝑷𝑒)|−⟩ = 𝜆1,2(𝑷
𝑒)|−⟩. That means 10 

that when the incident light is pure RCP, the output light is also pure RCP, i.e., the CP conversion 

channel from RCP to LCP is blocked as, 

𝑟+−(𝑷
𝑒) = 0 (S14) 

where the subscript + and – represent LCP and RCP, respectively.  

Since in the main text we will focus on experiments based on circularly-polarized beams, we will 15 

rewrite the matrix �̂� in a circular polarization basis, 

�̂� = (
𝑟++ 𝑟+−
𝑟−+ 𝑟−−

) =
1

2
(
𝑟𝑥𝑥 + 𝑟𝑦𝑦 + 𝑖(𝑟𝑥𝑦 − 𝑟𝑦𝑥) 𝑟𝑥𝑥 − 𝑟𝑦𝑦 − 𝑖(𝑟𝑥𝑦 + 𝑟𝑦𝑥)

𝑟𝑥𝑥 − 𝑟𝑦𝑦 + 𝑖(𝑟𝑥𝑦 + 𝑟𝑦𝑥) 𝑟𝑥𝑥 + 𝑟𝑦𝑦 − 𝑖(𝑟𝑥𝑦 − 𝑟𝑦𝑥)
) (S15) 

If the reflection matrix �̂�(𝑹)  is Hermitian, 𝑟+− = 𝑎 − 𝑒 − 𝑖2𝑐 , and 𝑟−+ = 𝑎 − 𝑒 + 𝑖2𝑐 , the 

amplitude of 𝑟+−  always equals to 𝑟−+  (see fig. S6A). However, for Non-Hermitian reflection 

matrix �̂�(𝑹) , 𝑟+− =
1

2
(𝑎 − 𝑒 + 2𝑑) +

𝑖

2
(𝑏 − 𝑓 − 2𝑐) , and 𝑟−+ =

1

2
(𝑎 − 𝑒 − 2𝑑) +

𝑖

2
(𝑏 − 𝑓 +20 

2𝑐), we get unequal reflection for the two circular polarizations, i.e., |𝑟+−| ≠ |𝑟−+| (see fig. S6C). 

Consider the circular polarization conversion term 𝑟+− and note that it is related to the system 

parameter R as,  

 𝑟+−(𝑹) = 𝑟𝑥𝑥(𝑹) − 𝑟𝑦𝑦(𝑹) − 𝑖 (𝑟𝑥𝑦(𝑹) + 𝑟𝑦𝑥(𝑹)) 

=
1

2
((𝑎(𝑹) − 𝑒(𝑹) + 2𝑑(𝑹)) + 𝑖(𝑏(𝑹) − 𝑓(𝑹) − 2𝑐(𝑹))) 25 

= 𝑅𝑒[𝑟+−(𝑹)] + 𝑖 𝐼𝑚[𝑟+−(𝑹)]                                                                    (S16) 
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According to Eq. S11, we get that at the exceptional point 𝑷𝑒,  

{
𝑅𝑒[𝑟+−(𝑷

𝑒)] = 𝑎(𝑷𝑒) − 𝑒(𝑷𝑒) + 2𝑑(𝑷𝑒) = 0

𝐼𝑚[𝑟+−(𝑷
𝑒)] = 𝑏(𝑷𝑒) − 𝑓(𝑷𝑒) − 2𝑐(𝑷𝑒) = 0

(S17) 

which is consistent with the analysis of Eq. S14. Therefore, the exceptional point 𝑷𝑒  is a 

singularity point (𝑷𝑠 as discussed in Note 1-2) for 𝑟+−(𝑹). 

Similarly, if we consider the case of Eq. S12, the eigenstates degenerate as LCP (|+⟩) at the 5 

exceptional point 𝑷𝑒′, 

|𝑛1⟩ = |𝑛2⟩ = |+⟩ = (
1
𝑖
) (S18) 

We have, 

𝑟−+(𝑷
𝑒′) = 0 (S19) 

Therefore, the exceptional point 𝑷𝑒′ is a singularity point (𝑷𝑠 as discussed in Note 1-2) for 𝑟−+(𝑹).10 
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Fig. S6. Comparison of lossless and lossy 2D chiral metasurfaces. (A) Simulated reflective CP 

conversion and (B) the corresponding eigenstates with perfect electrical conductor (PEC) 

structure. The amplitude of the two converted CP beams is the same. The two eigenstates are 

always linear polarized (on the equator of the Poincaré sphere). (C) Simulated reflective CP 5 

conversion and (D) the corresponding eigenstates with Al structure. The amplitude of the two 

converted CP beams becomes different. The two eigenstates become elliptical polarized with the 

same handedness (on the top sphere cap of the Poincaré sphere). The dimension of the structure in 

this case is L1 = 50 nm, L2 = 140 nm, L3 = 100 nm, P = 300 nm, w = 40 nm, g = 50 nm, h = 25 nm, 

h1 = 40 nm, h2 = 150 nm. See more details of the discussion in Supplementary Note 3. 10 
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Fig. S7. Simulated surface current distribution at the exceptional point with (A) RCP and 

(B) LCP incidence. The two horizontal rods have bonding and anti-bonding current distribution 

under the two CP beam incidences. Changing the geometrical parameters of the meta-structure 

leads to destructive interference condition between the polarization converted from RCP to LCP 5 

and the unconverted fields of the reflected LCP, resulting in a zero reflection of 𝑟+−, but leaving a 

non-zero reflection of 𝑟−+ due to the different response of the surface current. 
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Supplementary Note 4: Coupled-mode theory. 

The metasurface consists of a “느” shape nanostructure stacked with an L shape rod and a 

straight rod in each meta-atom (see Fig. 1A in the main text). The structure can be modeled using 

coupled-mode theory inspired from the references of (19-20). The effective dipole moment of the 

structure is 𝑝𝑥,𝑦 = 𝑝𝑥,𝑦𝑒
𝑖𝜔𝑡, which couples strongly to an incident radiation field 𝐸𝑖 = �̃�𝑖𝑒

𝑖𝜔𝑡 with 5 

a radiative coupling strength 𝑔𝑗. The resonant frequency and damping coefficient are 𝜔0 and 𝛾, 

respectively. Assume the incident radiation is close to the resonance (𝛿 = 𝜔 − 𝜔0 ≈ 0) and 

damping is small (𝛾 ≪ 𝜔0), the dipole moments of the nanostructure in the coupled system are 

related to the incident electric fields through the polarizability matrix as, 

[(
𝛿𝑥 + 𝑖𝛾𝑥 0

0 𝛿𝑦 + 𝑖𝛾𝑦
) + (

𝐺𝑥𝑥 𝐺𝑥𝑦
𝐺𝑦𝑥 𝐺𝑦𝑦

)] (
𝑝𝑥
𝑝𝑦
) = (

𝑔𝑥𝐸𝑖𝑥
𝑔𝑦𝐸𝑖𝑦

) (S20) 10 

where the coupling term 𝐺𝑗𝑘 is a summation of the j-oriented radiation fields formed by the k-

oriented dipole moments, which satisfies the following condition 𝐺𝑥𝑥 = 𝐺𝑦𝑦  due to the square 

lattice and 𝐺𝑥𝑦 = 𝐺𝑦𝑥 due to the reciprocity. Therefore, the dipole moments can be retrieved as 

(
𝑝𝑥
𝑝𝑦
) = (

𝛿𝑥 + 𝑖𝛾𝑥 + 𝐺𝑥𝑥 𝐺𝑥𝑦
𝐺𝑥𝑦 𝛿𝑦 + 𝑖𝛾𝑦 + 𝐺𝑥𝑥

)

−1

(
𝑔𝑥𝐸𝑖𝑥
𝑔𝑦𝐸𝑖𝑦

)

=
1

det 𝐴
(
𝛿𝑦 + 𝑖𝛾𝑦 + 𝐺𝑥𝑥 −𝐺𝑥𝑦

−𝐺𝑥𝑦 𝛿𝑥 + 𝑖𝛾𝑥 + 𝐺𝑥𝑥
) (
𝑔𝑥𝐸𝑖𝑥
𝑔𝑦𝐸𝑖𝑦

) (S21)

 

where det 𝐴 is the determinant of matrix 𝐴 = (
𝛿𝑥 + 𝑖𝛾𝑥 + 𝐺𝑥𝑥 𝐺𝑥𝑦

𝐺𝑥𝑦 𝛿𝑦 + 𝑖𝛾𝑦 + 𝐺𝑥𝑥
). The reflective 15 

field can be obtained by superposing the incident field reflected back from the ground mirror and 

the field radiated in the forward direction due to the oscillating dipoles, given by 

𝑖𝜔𝜂0

2𝑎2
(𝑔𝑥𝑝𝑥, 𝑔𝑦𝑝𝑦), where 𝜂0 = √𝜇0/휀0 is the free space impedance and a is the lattice constant. 

Therefore, the reflective field is, 

(
𝐸𝑜𝑥
𝐸𝑜𝑦

) = �̂� (
𝐸𝑖𝑥
𝐸𝑖𝑦
)

= 𝑄 (
𝑔𝑥
2(𝛿𝑦 + 𝑖𝛾𝑦 + 𝐺𝑥𝑥) −𝑔𝑥𝑔𝑦𝐺𝑥𝑦

−𝑔𝑥𝑔𝑦𝐺𝑥𝑦 𝑔𝑦
2(𝛿𝑥 + 𝑖𝛾𝑥 + 𝐺𝑥𝑥)

) (
𝐸𝑖𝑥
𝐸𝑖𝑦
) − (

𝐸𝑖𝑥
𝐸𝑖𝑦
) (S22)

 20 

where 𝐸𝑜𝑥,𝑦  indicates the output field in x- and y- polarization, 𝑄 =
𝑖𝜔𝜂0

2𝑎2
1

det𝐴
. Therefore, the 

reflection matrix is 
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�̂� = 𝑄 (
𝑔𝑥
2(𝛿𝑦 + 𝑖𝛾𝑦 + 𝐺𝑥𝑥) −𝑔𝑥𝑔𝑦𝐺𝑥𝑦

−𝑔𝑥𝑔𝑦𝐺𝑥𝑦 𝑔𝑦
2(𝛿𝑥 + 𝑖𝛾𝑥 + 𝐺𝑥𝑥)

) − 𝐼

= (
𝑎 + 𝑖𝑏 𝑐 + 𝑖𝑑
𝑐 + 𝑖𝑑 𝑒 + 𝑖𝑓

) (S23)

 

where  

{
  
 

  
 
𝑎 = 𝑄𝑔𝑥

2(𝛿𝑦 + 𝐺𝑥𝑥) − 1 = 𝑄𝑔𝑥
2(𝜔 − 𝜔𝑦 + 𝐺𝑥𝑥) − 1

𝑏 = 𝑔𝑥
2𝛾𝑦

𝑐 = −𝑔𝑥𝑔𝑦𝐺𝑥𝑦
𝑑 = 0

𝑒 = 𝑄𝑔𝑦
2(𝛿𝑥 + 𝐺𝑥𝑥) − 1 = 𝑄𝑔𝑦

2(𝜔 − 𝜔𝑥 + 𝐺𝑥𝑥) − 1

𝑓 = 𝑔𝑦
2𝛾𝑥

(S24) 

According to Eq. S16, S23 and S24, we can get the real and imaginary part of the polarization 

converted part 𝑟+−(𝑹) as 5 

{
𝑅𝑒[𝑟+−] =

𝑄

2
(𝑔𝑥

2(𝜔 − 𝜔𝑦 + 𝐺𝑥𝑥) − 𝑔𝑦
2(𝜔 − 𝜔𝑥 + 𝐺𝑥𝑥))

𝐼𝑚[𝑟+−] =
1

2
(𝑔𝑥

2𝛾𝑦 − 𝑔𝑦
2𝛾𝑥 + 2𝑔𝑥𝑔𝑦𝐺𝑥𝑦)

(S25) 

If there is only one resonance in either x or y polarization, let’s say in x polarization, i.e., 𝜔𝑥 ≈

𝜔 , 𝜔𝑦 ≈ 0 , the real part of 𝑟+−(𝑹) becomes 𝑅𝑒[𝑟+−] ≈
𝑄

2
(𝑔𝑥

2(𝜔 + 𝐺𝑥𝑥) − 𝑔𝑦
2𝐺𝑥𝑥) =

𝑄

2
𝑔𝑥
2𝜔 +

𝑄

2
𝐺𝑥𝑥(𝑔𝑥

2 − 𝑔𝑦
2) ≈

𝑄

2
𝑔𝑥
2𝜔 > 0. Therefore, the maximum phase of 𝑟+−(𝑹) is 𝜋 as shown in fig. 

S8A. However, if there are two resonances in both x and y polarization, i.e., 𝜔𝑥 ≈ 𝜔, 𝜔𝑦 ≈ 𝜔, the 10 

real part of 𝑟+−(𝑹) around the resonance frequency becomes 𝑅𝑒[𝑟+−] ≈
1

2
𝑄𝐺𝑥𝑥(𝑔𝑥

2 − 𝑔𝑦
2), which 

can be either positive or negative by rationally controlling 𝑔𝑥 and 𝑔𝑦. As a result, a full 2𝜋 phase 

can be obtained as shown in fig. S8B. 

Figure S9 shows the simulated results of the reflection spectrum with linear polarized 

incidence. When 𝐿1 is fixed as 𝐿1 = 70 nm and the length of 𝐿3 is controlled from 90 nm to 150 15 

nm as shown in fig. S9A, the resonance dips in the y-polarization (𝑟𝑦𝑦) keep constant as shown in 

the dash line because the effective length of the nanostructure in y-direction keeps constant. 

However, since the effective length of the nanostructure in x-direction in increasing, the resonance 

dips of 𝑟𝑥𝑥  red shift as shown in the solid line. It can be seen that there is a cross of the two 

resonances in x- and y- polarization, so that the coupling of the two polarization enables a full 2𝜋 20 

phase change of 𝑟+−(𝑹) as discussed before. Likewise, if 𝐿3  is fixed as 𝐿3 = 100 nm and the 
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length of 𝐿1 is controlled from 50 nm to 80 nm, a resonance dip crossing is also observed as shown 

in fig. S9B. Therefore, by controlling 𝐿1 and 𝐿3, it is able to realize a full 2𝜋 phase change of 

𝑟+−(𝑹).  

The simulated results of real and imaginary part of 𝑟+−(𝑹) in the parameter space covered by 

𝐿1 ∈ [48 nm, 58 nm] and 𝐿3 ∈ [112 nm, 122 nm] are shown in fig. S10. The yellow and blue 5 

areas represent the positive and negative sign of 𝑟+−. An exceptional point is obtained as indicated 

in the red star, where the eigenstates degenerate as RCP (|−⟩), such that 𝑟+− = 0. At the vicinity 

of the exceptional point, when 𝐿1 increases, the resonance frequency 𝜔𝑦 decreases while 𝜔𝑥 keeps 

constant around 𝜔 as shown in fig. S9B, so that the real part of 𝑟+−: 𝑅𝑒[𝑟+−] =
1

2
(𝑄𝑔𝑥

2(𝜔 − 𝜔𝑦 +

𝐺𝑥𝑥) − 𝑄𝑔𝑦
2(𝜔 − 𝜔𝑥 + 𝐺𝑥𝑥)) ≈

1

2
𝑄𝑔𝑥

2(𝜔 − 𝜔𝑦)  increases, resulting in a positive value of 10 

𝑅𝑒[𝑟+−] with larger 𝐿1 as shown in fig. S10A, and vice-versa. When 𝐿3 increases, 𝑔𝑥, 𝐺𝑥𝑦 and 𝛾𝑥 

are increasing, the imaginary part of 𝑟+− : 𝐼𝑚[𝑟+−] =
1

2
(𝑔𝑥

2𝛾𝑦 − 𝑔𝑦
2𝛾𝑥 + 2𝑔𝑥𝑔𝑦𝐺𝑥𝑦)  increases. 

Because the power index of the first term (𝑔𝑥
2) and third term (𝑔𝑥𝐺𝑥𝑦) is twice compared to the 

second term (𝛾𝑥 ), such that the increasing of 𝑔𝑥
2𝛾𝑦 + 2𝑔𝑥𝑔𝑦𝐺𝑥𝑦  is more dramatic than the 

decreasing of 𝑔𝑦
2𝛾𝑥. Thus, a positive value of 𝐼𝑚[𝑟+−] is obtained with larger 𝐿3 as shown in fig. 15 

S10B, and vice-versa. Therefore, a full 2𝜋 phase of 𝑟+− is obtained by encircling the EP in the 

parameter space of (𝐿1, 𝐿3)  at the vicinity of EP. As discussed in Note 2, such 2𝜋  phase is 

topologically protected with arbitrary closed path that is encircling the EP, even if we extend the 

parameter space of (𝐿1, 𝐿3) to 𝐿1 ∈ (0 nm, 100 nm), 𝐿3 ∈ (50 nm, 250 nm) as shown in Fig. 1B 

and 3C in the main text and fig. S11, as long as there is only one EP in the interested parameter 20 

space. 
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Fig. S8. Phase accumulation of 𝒓+− from coupled-mode theory. (A) When there is only one 

resonance in x-polarization (𝜔𝑥 ≈ 𝜔, 𝜔𝑦 ≈ 0), the maximum phase accumulation of 𝑟+− is 𝜋. (B) 

Together with the other resonance in y-polarization (𝜔𝑥 ≈ 𝜔, 𝜔𝑦 ≈ 𝜔), a full 2𝜋 phase can be 

achieved.  5 
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Fig. S9. Simulated results of the reflection spectrum with linear polarization incidence. Solid 

and dot lines represent 𝑟𝑥𝑥 and 𝑟𝑦𝑦, respectively. (A) Simulated results with 𝐿1 fixed as 70 nm and 

𝐿3 is changed from 90 nm to 150 nm. The effective length of the meta-atom in the y-direction is 

fixed, such that the resonance dips of 𝑟𝑦𝑦 keep constant. While the effective length of the meta-5 

atom in the x-direction is increasing, resulting in a red shift of the resonance dips of 𝑟𝑥𝑥 . (B) 

Simulated results with 𝐿3 fixed as 100 nm and 𝐿1 is changed from 50 nm to 80 nm. The effective 

length of the meta-atom in the x-direction is fixed, such that the resonance dips of 𝑟𝑥𝑥  keep 

constant. While the effective length of the meta-atom in the y-direction is increasing, resulting in 

a red shift of the resonance dips of 𝑟𝑦𝑦. It can be observed that the two resonance dips in x- and y- 10 

directions have a cross as shown in the two dash lines. Therefore, by changing 𝐿1 and 𝐿3, it is 

possible to couple the two resonances in x- and y- directions to obtain a full 2𝜋 phase of 𝑟+−. 
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Fig. S10. Simulated results of 𝒓+− in the parameter space covered by 𝑳𝟏 ∈ [𝟒𝟖 𝐧𝐦, 𝟓𝟖 𝐧𝐦] 

and 𝑳𝟑 ∈ [𝟏𝟏𝟐 𝐧𝐦, 𝟏𝟐𝟐 𝐧𝐦]. The yellow and blue colors represent the positive and negative sign 

of 𝑟+−, respectively. The red dots represent the exceptional point, where both real and imaginary 

parts of 𝑟+− vanish. (A) Real and (B) imaginary part of 𝑟+−. At the vicinity of the EP (𝑅𝑒[𝑟+−] =5 

𝐼𝑚[𝑟+−] = 0), for the real part of 𝑟+−, when 𝐿1 increases, the resonance frequency 𝜔𝑦 decreases, 

so that 𝑅𝑒[𝑟+−]  increases, resulting in a positive value of 𝑅𝑒[𝑟+−] , and vice-versa. For the 

imaginary part of 𝑟+−, when 𝐿3 increases, both 𝑔𝑥 and 𝐺𝑥𝑦 increases, so that 𝐼𝑚[𝑟+−] increases, 

resulting in a positive value of 𝐼𝑚[𝑟+−], and vice-versa. Therefore, a full  2𝜋 phase of 𝑟+− is 

obtained by encircling the EP.  10 
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Fig. S11. Simulated reflection map of topological metasurface at the wavelength of 600 nm. 

(A) Amplitude and (B) phase of 𝑟+−. (C) Amplitude and (D) phase of 𝑟−+ in the parameter space 

covered by 𝐿1 ∈ [0, 100 nm]  and 𝐿3 ∈ [50 nm, 250 nm] . The EP occurs at the parameter of 5 

(𝐿1, 𝐿3) = (52 nm, 119 nm) as highlighted in red stars, where the amplitude of  𝑟+− vanishes and 

a vortex phase profile of 𝜑[𝑟+−] is observed. A full 2𝜋 phase accumulation can be obtained by 

encircling the EP. The corresponding 3D surf maps of 𝑟±∓ are shown in Fig. 1B-1C in the main 

text. Figure S11B and S11D are the same with Fig. 3C and 3D in the main text. The four triangles 

represent four metasurface design with an ET phase interval of 90º. The amplitude and phase 10 

values of these four designs are shown in Fig. 3G in the main text. 
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Fig. S12. Eigenstates of reflection matrix at the wavelength of 600 nm. (A) Azimuth and (B) 

ellipticity angle of the first eigenstate. (C) Azimuth and (D) ellipticity angle of the second 

eigenstate in the parameter space covered by 𝐿1 ∈ [0, 100 nm] and 𝐿3 ∈ [50 nm, 250 nm]. The 

red stars represent the EPs where both eigenstates coalesce as RCP. 5 
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Fig. S13. Exceptional point trajectory as a function of wavelength in the parameter space of 

(𝑳𝟏, 𝑳𝟐). (A) Amplitude and (B) phase of 𝑟+−. The red lines represent the trajectory of the EP. 
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Supplementary Note 5: Combination with Pancharatnam-Berry (PB) phase by rotating the 

metasurface. 

Assume the metasurface is rotated with an angle of θ relative to the reference coordinate 

system {x, y} (see Fig. 1D in the main text), the reflection matrix in the circular-polarization 

representation can be expressed as, 5 

�̂�𝜃(𝑹) = (
𝑟++
𝜃 (𝑹) 𝑟+−

𝜃 (𝑹)

𝑟−+
𝜃 (𝑹) 𝑟−−

𝜃 (𝑹)
) = 𝑀(−𝜃)�̂�(𝑹)𝑀(𝜃) (S26) 

By employing the Pauli matrices notation {𝜎1, 𝜎2, 𝜎3} and the identity matrix 𝐼 (29), the 2×

2 rotation matrix M is equal to 𝑒𝑖𝜃𝜎3, which can be expanded by Taylor series as 𝑀(𝜃) = cos 𝜃 𝐼 +

𝑖 sin 𝜃 𝜎3. Therefore, the reflection matrix can be described as following, 

�̂�𝜃(𝑹) =
1

2
(𝑟𝑥𝑥 + 𝑟𝑦𝑦)𝐼 +

𝑖

2
(𝑟𝑥𝑦 − 𝑟𝑦𝑥)𝜎3 10 

+
1

2
(𝑟𝑥𝑥 − 𝑟𝑦𝑦)(𝑒

−𝑖2𝜃𝜎+ + 𝑒
𝑖2𝜃𝜎−) +

𝑖

2
(𝑟𝑥𝑦 + 𝑟𝑦𝑥)(−𝑒

−𝑖2𝜃𝜎+ + 𝑒
𝑖2𝜃𝜎−) (S27) 

where two spin-flip operators 𝜎± =
𝜎1±𝑖𝜎2

2
 satisfy 𝜎±|±⟩ = 0 and 𝜎±|∓⟩ = |±⟩, with |±⟩ denoting 

LCP and RCP, respectively. When the metasurface is illuminated with RCP (|−⟩), the reflection 

is 

𝑟𝜃(𝑹) = �̂�𝜃(𝑹)|−⟩ =
1

2
(𝑟𝑥𝑥 + 𝑟𝑦𝑦)𝐼|−⟩ +

𝑖

2
(𝑟𝑥𝑦 − 𝑟𝑦𝑥)𝜎3|−⟩  15 

+
1

2
(𝑟𝑥𝑥 − 𝑟𝑦𝑦)𝑒

−𝑖2𝜃|+⟩ −
𝑖

2
(𝑟𝑥𝑦 + 𝑟𝑦𝑥)𝑒

−𝑖2𝜃|+⟩                         (S28) 

where the first two terms represent the CP unconverted part and the last two terms represent the 

CP converted part, i.e.,  

𝑟+−
𝜃 (𝑹) =

(𝑟𝑥𝑥 − 𝑟𝑦𝑦) − 𝑖(𝑟𝑥𝑦 + 𝑟𝑦𝑥)

2
𝑒−𝑖2𝜃 = 𝑟+−

0 (𝑹)𝑒−𝑖2𝜃 (S29) 

where 𝑟+−
0 (𝑹)  represents the original ET phase without rotation as shown in Eq. S15. 20 

Therefore, a geometric phase of −2𝜃 is applied into 𝑟+− when the metasurface is rotated with an 

angle of 𝜃. Similarly, when the metasurface is illuminated with LCP (|+⟩), the CP converted part 

can be expressed as, 

𝑟−+
𝜃 (𝑹) =

(𝑟𝑥𝑥 − 𝑟𝑦𝑦) + 𝑖(𝑟𝑥𝑦 + 𝑟𝑦𝑥)

2
𝑒𝑖2𝜃 = 𝑟−+

0 (𝑹)𝑒𝑖2𝜃 (S30) 

Thus, an opposite geometric phase of 2𝜃 is applied into 𝑟−+. 25 

In conclusion, the reflective CP conversion is, 
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𝑟±∓
𝜃 (𝑹) = 𝑟±∓

0 (𝑹)𝑒∓𝑖2𝜃 = |𝑟±∓
0 (𝑹)|𝑒𝑖𝜑[𝑟±∓

0 (𝑹)]𝑒∓𝑖2𝜃 (S31) 

where |𝑥| and 𝜑[𝑥] represent the amplitude and phase of complex value 𝑥. Therefore, the overall 

phase of the CP conversion term with rotation angle of 𝜃 is the combination of the original ET 

phase without rotation and a geometric phase as, 

𝜑[𝑟±∓
𝜃 (𝑹)] = 𝜑[𝑟±∓

0 (𝑹)] ∓ 2𝜃 (S32) 5 

The simulated reflection 3D surf maps of the rotated metasurface with (𝐿1, 𝐿2) fixed at (80 nm, 95 

nm) when the rotation angle of the meta-atom is changed from 0 to 2𝜋 are shown in Fig. 1E and 

1F in the main text. The corresponding 2D color maps are shown in fig. S14. The simulated PB 

phase is also presented in Fig. 3F and 3G in the main text. An opposite of PB phase of ∓2𝜃 is 

shown in 𝑟±∓.  10 

In the real metasurface design, assuming the desired phase profile for 𝑟±∓
𝜃  is 𝜑𝑑[𝑟±∓

𝜃 ], we can 

derive the necessary ET phase of 𝑟+−
0  and the necessary rotation angles corresponding to the 

additional PB phase, as given by Eq. S32 (where we have taken into account that 𝜑[𝑟−+
0 ] = 0), 

{

𝜑[𝑟+−
0 ] = 𝜑𝑑[𝑟+−

𝜃 ] + 𝜑𝑑[𝑟−+
𝜃 ]

𝜃 =
𝜑𝑑[𝑟−+

𝜃 ]

2

        (S33) 

 15 
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Fig. S14. Simulated reflection color maps of rotated metasurface at the wavelength of 600 

nm with (𝑳𝟏, 𝑳𝟐) fixed at (80 nm, 95 nm) when the rotation angle of the meta-atom is changed 

from 0 to 𝟐𝝅. (A) Amplitude and (B) phase of 𝑟+−. (C) Amplitude and (D) phase of 𝑟−+ with 5 

rotation angle of 𝜃 ranging from 0 to 2𝜋. The represented phase of 𝑟±∓
𝜃  in B and D has been 

subtracted by the phase of 𝑟±∓
0  with zero rotation angle, such that a pure PB phase can be observed. 

An opposite topology of vortex phase profile can be seen, which is intrinsically different from the 

topological phase by encircling the EP as shown in fig. S11. The corresponding 3D surf maps of 

𝑟±∓
𝜃  are shown in Fig. 1E-1F in the main text. Figure S14B and S14D are the same with Fig. 3E 10 

and 3F in the main text. The seven dots represent seven rotation angles from 0º to 180º with a step 

of 30º. The amplitude and phase values of these seven designs are shown in Fig. 3H in the main 

text. 


