

Quantifying Nitrous Acid Formation Mechanisms Using Measured Vertical Profiles During the CalNex 2010 Campaign and 1D Column Modeling

Katie Tuite, Jennie L Thomas, Patrick Veres, James Roberts, Philip Stevens, Stephen Griffith, Sebastien Dusanter, James Flynn, Shaddy Ahmed, Louisa

Emmons, et al.

► To cite this version:

Katie Tuite, Jennie L Thomas, Patrick Veres, James Roberts, Philip Stevens, et al.. Quantifying Nitrous Acid Formation Mechanisms Using Measured Vertical Profiles During the CalNex 2010 Campaign and 1D Column Modeling. Journal of Geophysical Research: Atmospheres, 2021, 126 (13), pp.e2021JD034689. 10.1029/2021JD034689. hal-03357646

HAL Id: hal-03357646 https://hal.science/hal-03357646v1

Submitted on 19 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Quantifying nitrous acid formation mechanisms using
2	measured vertical profiles during the CalNex 2010
3	campaign and 1D column modeling
4	Katie Tuite ¹ , Jennie L. Thomas ² , Patrick R. Veres ³ , James M. Roberts ³ ,
5	Philip S. Stevens ⁴ , Stephen M. Griffith ⁸ , Sebastien Dusanter ⁹ , James H.
6	Flynn ⁵ , Shaddy Ahmed ² , Louisa Emmons ⁶ , Si-Wan Kim ⁷ , Rebecca
7	Washenfelder ³ , Cora Young ¹⁰ , Catalina Tsai ¹¹ , Olga Pikelnava ¹¹ , Jochen
	Stutz ¹
8	Stutz
9	¹ Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles,
10	CA, USA
11	$^2 \mathrm{Institut}$ des Géosciences de l'Environnement, Univ Grenoble Alpes, CNRS, IRD, Grenoble INP,
12	Grenoble, France
13	$^3\mathrm{Earth}$ Systems Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO,
14	USA
15	⁴ School of Public and Environmental Affairs and Department of Chemistry, Indiana University,
16	Bloomington, IN, USA
17	⁵ Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
18	$^{6}\mathrm{Atmospheric}$ Chemistry Observations and Modeling Lab, National Center for Atmospheric Research,
19	Boulder, CO, USA
20	$^7\mathrm{Department}$ of Atmospheric Sciences, Yonsei University, Seoul, Korea
21	$^{8}\mathrm{Department}$ of Atmospheric Sciences, National Central University, Taoyuan, Taiwan
22	⁹ Département Sciences de l'Atmosphére et Génie de l'Environnement, IMT Lille Douai, Univ Lille, Lille,
23	France
24	¹⁰ Department of Chemistry, York University, Ontario, Canada
25	$^{11}\mathrm{South}$ Coast Air Quality Management District, Diamond Bar, CA USA

26 Key Points:

Measured vertical profiles of HONO near Los Angeles in May 2010 suggest a het erogeneous HONO source at the ground.

 $Corresponding \ author: \ Jochen \ Stutz, \ \texttt{jochen@atmos.ucla.edu}$

 $Corresponding \ author: \ Jennie \ Thomas, \ \texttt{jennie.thomas} \\ \texttt{Curiesponding} \ \texttt{curiesponder} \\ \texttt{curiesponder} \\$

- A new 1D chemistry and transport model that includes HONO formation on the
 ground reproduces the HONO concentration profiles.
- The main daytime HONO source is adsorbed nitric acid/ nitrate photolysis, followed by photo-enhanced NO₂ conversion.

33 Abstract

Nitrous acid (HONO) is an important radical precursor that can impact secondary 34 pollutant levels, especially in urban environments. Due to uncertainties in its heteroge-35 neous formation mechanisms, models often under predict HONO concentrations. A num-36 ber of heterogeneous sources at the ground have been proposed but there is no consen-37 sus about which play a significant role in the urban boundary layer. We present a new 38 one-dimensional chemistry and transport model which performs surface chemistry based 39 on molecular collisions and chemical conversion, allowing us to add detailed HONO for-40 mation chemistry at the ground. We conducted model runs for the 2010 CalNex cam-41 paign, finding good agreement with observations for key species such as O_3 , NO_x , and 42 HO_x . With the ground sources implemented, the model captures the diurnal and ver-43 tical profile of the HONO observations. Primary HO_x production from HONO photol-44 ysis is 2-3 times more important than O_3 or HCHO photolysis at mid-day, below 10 m. 45 The HONO concentration, and its contribution to HO_x , decreases quickly with altitude. 46 Heterogeneous chemistry at the ground provided a HONO source of 2.5×10^{11} molecules 47 $cm^{-2} s^{-1}$ during the day and 5x10¹⁰ molecules $cm^{-2} s^{-1}$ at night. The night time source 48 was dominated by NO_2 hydrolysis. During the day, photolysis of surface HNO_3 /nitrate 49 contributed 45-60% and photo-enhanced conversion of NO₂ contributed 20-45%. Sen-50 sitivity studies addressing the uncertainties in both photolytic mechanisms show that, 51 while the relative contribution of either source can vary, HNO₃/nitrate is required to pro-52 duce a surface HONO source that is strong enough to explain observations. 53

54 1 Introduction

Nitrous acid (HONO) chemistry in the polluted boundary layer has been an area of research for nearly five decades. It is well established that HONO photolysis (R1) is an important source of hydroxyl radicals (OH) throughout the day, contributing up to 55% of the primary OH formation (Alicke et al., 2002, 2003; Kleffmann et al., 2005; Kleffmann, 2007; Ren et al., 2003; Volkamer et al., 2010; Young et al., 2012; Elshorbany et al., 2009; Mao et al., 2010; Dusanter et al., 2009).

$$\text{HONO} + h\nu(\lambda < 400 \,\text{nm}) \rightarrow \text{OH} + \text{NO}$$
 (R1)

61

Although it has a large impact on the oxidative capacity of the atmosphere, HONO chemistry is often excluded from or simplified in 3D air quality models due to uncertainties in its formation mechanisms. This leads to an underestimation of HONO, which consequently impacts predicted concentrations of radicals and secondary pollutants like ozone (Czader et al., 2012; Elshorbany et al., 2012). Developing accurate HONO source representation is necessary to improve air quality modeling, which is increasingly important as air quality standards become more strict (Sarwar et al., 2008).

HONO chemistry includes homogeneous and heterogeneous reactions, biological processes in soil, and direct emission from combustion sources (Figure 1). The main gas phase reactions include loss via photolysis (R1) and reaction with OH (R2), and production through the NO + OH reaction (R3).

Figure 1. The cartoon on the left shows common HONO sources and sinks, with heterogeneous processes labeled M1-M5 in red. On the right is an example model grid schematic showing the interaction between gas phase chemistry, surface chemistry, vertical mixing, and aerosol uptake.

$$HONO + OH \rightarrow NO_2 + H_2O$$
 (R2)

$$OH + NO \xrightarrow{M} HONO$$
 (R3)

74

73

Measured diurnal profiles show that HONO concentrations accumulate throughout the night and drop off in the early morning once photolysis becomes active. Nocturnal surface levels can reach up to several ppb in urban regions (Kleffmann et al., 2006; Stutz et al., 2010; Wong et al., 2011), while daytime levels have been reported up to a few hundred ppt (Kleffmann et al., 2005; Acker et al., 2006; Zhou et al., 2007; Wong et al., 2012). A strong HONO source is required to maintain these levels, particularly during the day when the HONO lifetime is only 10-20 minutes.

Pseudo-steady state (PSS) calculations and models show that HONO levels are greatly 82 underestimated when only homogeneous chemistry (R1 - R3) is considered (Zhou et al., 83 2002; Kleffmann et al., 2005; Kleffmann, 2007; Tsai et al., 2018; Sarwar et al., 2008; Li 84 et al., 2011; Czader et al., 2012). HONO is directly emitted by anthropogenic combus-85 tion processes, but this is less than 1% of NO_x emissions (Kirchstetter et al., 1996; Kurten-86 bach et al., 2001; Neuman et al., 2016; Kramer et al., 2019) and cannot explain atmo-87 spheric levels by itself. Measured vertical profiles show HONO concentrations are great-88 est near the ground (Kleffmann et al., 2003; Villena et al., 2011; Wong et al., 2011, 2012; 89 VandenBoer et al., 2013), indicating that a surface source is likely. Multiple heteroge-90 neous formation mechanisms have therefore been proposed to explain this missing HONO 91 source. 92

93

98

1.1 Heterogeneous HONO chemistry

Laboratory studies have found that HONO is produced from NO₂ conversion on humid surfaces (mechanism M1 in Figure 1), following a reaction mechanism (R4) which is first order with respect to both NO₂ and water vapor (Sakamaki et al., 1983; Svensson et al., 1987; Pitts et al., 1984; Jenkin et al., 1988; Lammel & Cape, 1996).

$$2 \operatorname{NO}_2 + \operatorname{H}_2 O \xrightarrow{\operatorname{surface}} \operatorname{HONO} + \operatorname{HNO}_3$$
 (R4)

There is significant evidence that this reaction is the main source of nocturnal HONO and allows for an accurate description of HONO and HONO/NO₂ ratios at night (Alicke et al., 2003; Kleffmann et al., 2003; Wong et al., 2011; VandenBoer et al., 2013). While R4 occurs during the day as well, it does not produce HONO at the rate needed to sustain daytime levels and many studies have shown evidence that a photolytic source is required (Alicke et al., 2002; Kleffmann et al., 2005; Acker et al., 2006; Wong et al., 2012).

105	Photo-enhanced heterogeneous conversion of NO_2 to HONO (M2 in Figure 1) has
106	been found to occur on a variety of surfaces, including soot (Ammann et al., 1998; Aubin
107	& Abbatt, 2007; Khalizov et al., 2010; Monge et al., 2010), humic acid (Stemmler et al.,
108	2006, 2007; Bartels-Rausch et al., 2010), and organic films (Gutzwiller et al., 2002; George
109	et al., 2005; Brigante et al., 2008). A mechanism proposed by Stemmler et al. (2006) sug-
110	gests HONO formation from NO_2 conversion on humic acid surfaces is first order in NO_2
111	and linearly dependent on irradiance and surface area (SA).

126

$P_{HONO} \propto SA \times [NO_2] \times irradiance \tag{1}$

¹¹³ Wong et al. (2013) included a sunlight dependent NO₂ to HONO reactive uptake ¹¹⁴ coefficient (γ) in their 1D model study and found good agreement between modeled and ¹¹⁵ observed HONO levels during the 2009 SHARP field campaign in Texas. Without this ¹¹⁶ parameterization, daytime HONO levels were underestimated by at least 50%. Other stud-¹¹⁷ ies also suggest this conversion provides a major daytime source, showing that HONO ¹¹⁸ correlates with NO₂ levels and/or NO₂ photolysis rates (Vogel et al., 2003; Laufs et al., ¹¹⁹ 2017; Tsai et al., 2018).

Another daytime HONO source is the photolysis of surface adsorbed HNO₃/nitrate (M3 in Figure 1), which proceeds at a rate 1-4 orders of magnitude faster than gas phase or aqueous HNO₃ photolysis (Zhou et al., 2002, 2003; Ramazan et al., 2004; Baergen & Donaldson, 2013, 2016; Ye et al., 2016, 2019). R5 - R8 describes the mechanism proposed by Zhou et al. (2002). NO₂ in R7 is the dominant product over R6 in the actinic region of solar radiation.

- $HNO_{3(ads)} + h\nu \to [HNO_3]^*_{(ads)}$ (R5)
- $[HNO_3]^*_{(ads)} \rightarrow HONO_{(ads)} + O(^3P)_{(ads)}$ (R6)

$$[HNO_3]^*_{(ads)} \to NO_{2(ads)} + OH$$
(R7)

$$129 2 \operatorname{NO}_{2(\mathrm{ads})} + \operatorname{H}_2 O_{(\mathrm{ads})} \to \operatorname{HONO}_{(\mathrm{ads})} + \operatorname{HNO}_{3(\mathrm{ads})}$$
(R8)

The HONO produced in R6 and R8 can desorb from the surface into the gas phase. This mechanism has been shown to be important in low NO_x forested environments (Zhou et al., 2011; Zhang et al., 2012). Although photo-enhanced conversion of NO_2 is often thought to be the dominant HONO formation pathway in high NO_x areas, HNO_3 pho-

tolysis has also been confirmed as a significant source in the urban regions near Philadel-

¹³⁵ phia (Sarwar et al., 2008) and Houston (Karamchandani et al., 2014). Enhanced pho-

tolysis has been shown to occur on glass (Zhou et al., 2002; Ye et al., 2019), building ma-

terials (Ye et al., 2016), and urban grime (Baergen & Donaldson, 2013, 2016), indicat-

¹³⁸ ing that this mechanism likely plays a role in urban HONO production.

Both of these proposed photolytic mechanisms can occur on aerosols in addition to the ground. Due to the much smaller surface area available on aerosols and deactivation of reactive sites during aging, the aerosol source is thought to be minor in comparison in typical settings (Kalberer et al., 1999; Kleffmann et al., 2003; Vogel et al., 2003; Stemmler et al., 2007).

A recent HONO source proposed by VandenBoer et al. (2015) is the displacement of surface nitrite by strong atmospheric acids like HCl and HNO₃ (M4 in Figure 1). Throughout the night, the primary HONO sink is deposition to the surface, where it can react with carbonate material to form nitrite.

$$MCO_{3(s)} + 2 HONO_{(g)} \rightarrow MNO_2 + CO_2 + H_2O$$
(R9)

VandenBoer et al. (2013) suggests that this nocturnally deposited HONO may form a surface reservoir that can be released the following day. Laboratory studies find that HCl and HNO₃ can displace surface nitrite with an efficiency of 1-20%. Using the mean value of 9%, VandenBoer et al. (2015) showed that this mechanism contributed up to 23% of the total noontime HONO flux in Bakersfield, California during the CalNex campaign.

Biological processes in soil provide another potential atmospheric HONO source (M5 in Figure 1) (Su et al., 2011; Oswald et al., 2013; Maljanen et al., 2013; Scharko et al., 2015; Meusel et al., 2018). Nitrification and denitrification produce nitrite, which undergoes acid-base reactions and partitioning between air and the aqueous phase in soil.

¹⁵⁸
$$\operatorname{NO}_2^{-}_{(\mathrm{aq})} + \operatorname{H}^+_{(\mathrm{aq})} \to \operatorname{HONO}_{(\mathrm{aq})} \to \operatorname{HONO}_{(\mathrm{g})}$$
 (R10)

R10 depends on the pH and NO_2^- concentration of the soil. Oswald et al. (2013) performed laboratory studies to compare emissions of HONO and NO from soils from a variety of ecosystems. They found that HONO can account for up to 50% of the total reactive nitrogen released from soil, especially in arid and arable soils with water content
 below 20% water holding capacity.

164

1.2 Linking surface chemistry to atmospheric measurements

A challenge in studying the link between chemical transformations on the ground 165 and the chemistry in the overlying atmosphere is the role of vertical transport to and 166 from the surface. This was illustrated by 1D modeling studies by Geyer and Stutz (2004a, 167 2004b), who showed that concentrations change on the scale of one meter or less near 168 the surface. Similar conclusions were derived by nighttime and daytime HONO model-169 ing studies (Wong et al., 2011, 2013; Tsai et al., 2018), which all showed a strong con-170 centration gradient near the surface. Another challenge for modeling studies of atmo-171 spheric HONO is the poorly known surface (ground) formation chemistry. To address 172 this issue, flexibility in the model setup and the ability to perform sensitivity studies are 173 essential. 174

One-dimensional chemistry and transport models are an ideal tool to study poorly 175 constrained surface chemistry. A number of 1D models have provided valuable insight 176 into similar atmospheric systems, such as the interaction of snow with the atmosphere 177 (Cao et al., 2014, 2016; Thomas et al., 2011, 2012; Toyota et al., 2014; Wang et al., 2020), 178 forest canopies (Boy et al., 2011), and the marine boundary layer (von Glasow et al., 2002a, 179 2002b). However, only few studies have addressed the surface chemistry of HONO (Wong 180 et al., 2011, 2013; Karamchandani et al., 2014; Tsai et al., 2018). To investigate this spe-181 cific surface-atmosphere chemical system, we present a newly developed 1D model, the 182 Platform for Atmospheric Chemistry and vertical Transport in one dimension (PACT-183 1D). PACT-1D is based on the success of our previous modeling (Wong et al., 2011, 2013; 184 Tsai et al., 2018), and includes improved capability to perform mechanistic and sensi-185 tivity studies of these systems. 186

In this paper we analyze observed vertical concentration profiles of HONO, NO₂, and other compounds during the 2010 CalNex field experiment (Section 2) using PACT-1D (Section 3). We use PACT-1D to test if HONO surface formation can reproduce the observations, and explore the contribution of the mechanisms (Section 4).

-8-

¹⁹¹ 2 Measurements

The 2010 CalNex experiment took place in Pasadena, CA from mid-May to mid-June, 2010 (Ryerson et al., 2013). The ground-site was located on the California Institute of Technology (Caltech) campus with in-situ measurements collected near the surface at altitudes between 3 and 10 m and remote sensing observations on top of Caltech's library at ~35 m agl. All CalNex observations are publicly available at www.esrl.noaa.gov/csd/projects/calnex/.

In this study we focus on observations relevant for understanding the formation of HONO and its impact on atmospheric chemistry. We use HONO data from two instruments: UCLA's long-path Differential Optical Absorption Spectroscopy instrument (LP-DOAS) and NOAA's Chemical Mass Spectrometer (CIMS). NOAA's CIMS sampled air at 3 m agl, while the LP-DOAS probed air between 33-556 m agl in four different altitude intervals. All other in-situ measurements used here were sampled at 10 m agl on top of a scaffolding tower.

We concentrate on a four day period, May 26 - May 30, 2010, during which a variety of conditions were encountered, including cloudy days and the highest ozone levels of the experiment. This period also has the best coverage of all instruments, in particular the LP-DOAS instrument.

209

2.1 LP-DOAS

The setup of the LP-DOAS during CalNex, as well as the data retrieval techniques, 210 have been described previously (Wong et al., 2011, 2012; Tsai et al., 2014), therefore we 211 will only briefly describe them here. Figure 2 shows a schematic of the site setup. The 212 LP-DOAS consists of a main telescope/spectrometer unit, which was located on top of 213 Millikan Library on the Caltech campus at 33 m altitude. Four arrays of retroreflectors 214 were mounted on a nearby mountain at different distances and altitudes. We refer to these 215 retroreflectors and the associated air samples by their relative altitudes: lower (78 m), 216 middle (121 m), high (255 m), highest (556 m). The instrument was aimed at the four 217 reflectors using a cycle of measurements with a repeat interval of 15 - 30 min, depend-218 ing on visibility. The light received back was measured in the 300-380 nm range with a 219 spectral resolution of 0.6 nm. Trace gas path-averaged concentrations were retrieved us-220 ing established DOAS techniques as described in Platt and Stutz (2008). Average de-221

-9-

- tection limits for NO₂ and HONO on a single absorption path were 0.16 ppb and 0.06
- ppb, respectively. It should also be pointed out that the LP-DOAS, which was located
- around 550 m southeast of the other instruments, averaged over $\tilde{5}$ -7 km absorption light
- 225 paths.

Figure 2. Sketch of the LP-DOAS field setup during the CalNex 2010 experiment

The LP-DOAS measured continuously throughout CalNex, however, low visibil-226 ity and low clouds blocked the light beams at some times. Low clouds were especially 227 common during the night and often only the lowest light path data was available. The 228 dates chosen for this modeling study had good coverage along all light paths. Vertical 229 profiles from LP-DOAS measurements were constructed following the method described 230 in Tsai et al. (2014). Briefly, the path-averaged mixing ratios were first linearly inter-231 polated onto the time grid of the lowest light path and then converted to height interval-232 average mixing ratios. These averages are reported at the midpoint of each height in-233 terval (55.5, 99.5, 188, and 405.5 m). 234

2.2 NI-PT-CIMS

235

A negative-ion proton-transfer chemical ionization mass spectrometer (NI-PT-CIMS) 236 using acetate ions provided HONO and HNO₃ observations at 1-minute resolution dur-237 ing CalNex and has been described previously (Roberts et al., 2010; Veres et al., 2011). 238 Briefly, ambient air was sampled through a 1.5 m PTFE inlet heated from a point ap-239 proximately 3 m agl. Acidic molecules are ionized via proton abstraction reactions with 240 acetate ions (CH_3COO^-) and detected, as the conjugate anion, using a quadrupole mass 241 spectrometer. Instrument backgrounds using a sodium carbonate denuder were performed 242 every 190 min for 30 min. 243

HONO calibrations were performed in-field approximately every two days using us-244 ing a portable source described elsewhere (Roberts et al., 2010). Measurement of HONO 245 by the NI-PT-CIMS required correction for NO₂. Correction factors were determined 246 through laboratory additions of NO_2 as a function of relative humidity with NO_2 quan-247 tified by CRDS. Detection limits for HONO were 10 ppt, with an uncertainty of 30% + 248 20 ppt for 1-min measurements. Nitric acid calibrations were performed during post-field 249 laboratory work using a permeation source calibrated using UV optical absorption (Neuman 250 et al., 2003). HNO₃ was measured with a detection limit of 15 ppt, with a stated un-251 certainty of 30% + 30 ppt for 1-min measurements. 252

253

2.3 Other measurements

We use a number of other observations from CalNex in our analysis and model evaluation. Table 1 lists these parameters, the respective instruments, and literature references of the CalNex results.

3 The Platform for Atmospheric Chemistry and vertical Transport in one dimension (PACT-1D)

259 **3.1** M

3.1 Model description

In this study we describe and use a new vertical column model, the Platform for Atmospheric Chemistry and vertical Transport in one dimension (PACT-1D). The new model is similar to past vertical column models used to study the interactions between chemical processing and vertical transport processes, where chemistry is calculated online and dynamics and physics are provided as input (Geyer & Stutz, 2004a). PACT-

Species / Param-	Instrument	Operator	Reference
eter			
O ₃	UV-absorption	Univ. Houston	
		(UH)	
NO / NO_2	Chemiuminescence	Univ. Houston	(Pollack et al.,
	with photolytic	(UH)	2010)
	converter		
NO ₂	Cavity Ring-Down	NOAA	(Washenfelder et
	Spectroscopy		al., 2011)
	(CRDS)		
OH / HO_2	Laser Induced	Indiana Univ.	(Dusanter et al.,
	Fluorescence (LIF-		2009; Griffith et al.,
	FAGE)		2016)
VOC	GC-MS	NOAA	(Gilman et al.,
			2010; Borbon et al.,
			2013)
Actinic Flux	Spectroradiometer	Univ. Houston	(Shetter & Müller,
		(UH)	1999)
Aerosol Number	TSI SMPS	CU Boulder	(Hayes et al., 2013)
Ditribution			
HONO, HNO_3	CIMS	NOAA	(Veres et al., 2008)

 Table 1. Overview of CalNex measurements used in this study

²⁶⁵ 1D solves both 1D transport and chemical kinetics resulting in the time evolution (t) of ²⁶⁶ a chemical species (i) at altitude (z). The continuity equation for the change in concen-²⁶⁷ tration C for the 1D chemical system is given by Eqn 2.

$$\frac{dC_{(i,t,z)}}{dt} = P_{(i,t,z)} - L_{(i,t,z)} + F_{(i,t,z)} + E_{(i,t,z)}$$
(2)

 P_{269} P and L represent chemical production and loss, F refers to the flux in/out of the box due to vertical mixing, including loss to the ground (deposition), and E is the rate of

268

emissions. We treat each process including chemistry, vertical mixing, and emissions as
separable using operator splitting.

Emissions are provided as input and are time and height dependent. Chemical production and loss are described using the Regional Atmospheric Chemistry Mechanism version 2 (RACM2) (Goliff et al., 2013), implemented with the Kinetics Pre-Processor (Sandu & Sander, 2006). Photolysis rates are provided as input. In addition to the RACM2 gas phase chemistry, we include non-reactive uptake of gases to aerosols and heterogeneous surface reactions on aerosols. For heterogeneous chemistry, the aerosol surface area (S) is prescribed in each model level (z) at a given time (t) according to

286

295

$$S_{(z,t)} = 4\pi r_{(z,t)}^2 N_{(z,t)}$$
(3)

where r and N represent the radius and number concentration of a mono-disperse aerosol that best represents the surface area available for reactions. Aerosol physical properties (N and r) are given as model input. Therefore, no aerosol physics is calculated online within the model. Irreversible uptake to and heterogenous reactions on aerosols are treated with the rate constant (k_T) given by

$$k_T = \frac{1}{4}\nu S\gamma J \tag{4}$$

where ν is the mean molecular speed, S is the aerosol surface area, and γ represents the probability of irreversible uptake or interfacial reaction. The flux of molecules to the aerosol surface in the transition regime, J, is calculated according to Fuchs and Sutugin (1971). This corrects the rate of diffusion for gas molecules towards an aerosol surface when the particle size is similar to the mean free path in air, the so called *transition regime*.

Vertical mixing and loss to the the ground are solved together in the vertical mixing term, given as $F_{(i,t,z)}$ in Eqn. 2. We treat vertical mixing and surface loss (i.e. deposition) for each species according to

$$\frac{\partial}{\partial t}\phi_{(i,t,z)} = \frac{1}{\rho_{(i,t,z)}}\frac{\partial}{\partial z}\left(\rho_{(i,t,z)}K_{D(i,t,z)}\frac{\partial}{\partial z}\phi_{(i,t,z)}\right) + R_{(1,t)}$$
(5)

where ϕ_i is the species concentration in mixing ratio units, ρ is the air density, and Rrepresents loss to the ground in the lowest model level. $K_{D(i,t,z)}$ is the sum of eddy diffusivity $(K_{(t,z)})$ plus molecular diffusion $(D_{(i,t,z)})$. To treat vertical mixing and loss to the ground, we discretize the model levels below 1 meter using a log scale grid such that the lowest model level is appropriate for treatment of a laminar molecular diffusive layer in direct contact with the Earth's surface. $K_{(t,z)}$ decreases in a log profile towards the surface to a molecular diffusion coefficient in the lowest model level.

A unique feature of the model is that uptake and chemistry on the ground (R) are calculated using molecular collisions on the ground and applying an uptake probability (α) or reactive uptake coefficient (γ). We then solve Eqn. 5 numerically using the Crank-Nicolson method (Brasseur & Jacob, 2017), which is numerically stable for a variety of non-uniform grids and time steps.

³⁰⁸ Upon solving Eqn. 5, we calculate the deposition rate for each time step. This method ³⁰⁹ allows for molecular level interaction with the surface, resulting in deposition without ³¹⁰ the need to prescribe a deposition velocity. We include interactive surface chemistry, which ³¹¹ can lead to release of species from the ground into the gas phase. More details are pro-³¹² vided in the Section 3.3.

313

3.2 Model setup for CalNex campaign

PACT-1D was initialized using both model data (from WRF-Chem, MOZART, MEGAN, and CAMS) and observational data from the CalNex 2010 campaign (Table 1). The 24hour period from May 26, 2010 18:00 through May 27, 2010 17:00 was used as model spin up. The model subdivides the lowest 5000 m of the atmosphere into 26 grid cells, with model grid box upper boundaries at: 1×10^{-3} , 0.01, 0.1, 1, 3, 6, 10, 20, 33, 50, 78, 90, 110, 121, 150, 175, 255, 300, 556, 750, 1000, 1500, 2000, 3000, 4000, and 5000 m. A 20 second chemical time step was used for each model run.

Time varying profiles of temperature, relative humidity, and pressure were extracted 321 from a WRF-Chem model run for CalNex (Kim et al., 2016), which provided values above 322 [~]180 m. These were interpolated onto the 1D vertical grid and measured meteorolog-323 ical data was used to create a profile to the surface. Below 180 m, temperature was cal-324 culated based on 10 m measurements of wind speed and temperature, the measured bound-325 ary layer height, and atmospheric stability parameters. Relative humidity was given a 326 constant value equal to the measurements at 10 m and pressure was calculated using the 327 surface pressure and scale height. We take eddy diffusion coefficients (Kz) from WRF-328 Chem as well (Kim et al., 2016). These values start at ~50 m and a log interpolation was 329

-14-

implemented to parameterize Kz values to the ground. The vertical mixing considered
 boundary layer height variation over the three day period, which is explicitly calculated
 via the planetary boundary layer (PBL) parameterization used within WRF-Chem.

Aerosol number concentration profiles were initialized using data from the TSI Scan-333 ning Mobility Particle Sizer (SMPS) instrument. Within the boundary layer, the num-334 ber concentration was set equal to the measurements at 10 m and then decreased expo-335 nentially to one fifth of this value in the top layer of the model. The aerosol radius was 336 assumed to be constant at 150 nm, following the study by Tsai et al. (2014). Photoly-337 sis rates were initialized using the Tropospheric Ultraviolet-Visible (TUV) radiation model 338 (v5.0) which was run for our test date and location. To account for clouds, measured NO₂ 339 photolysis rates were used to scale the TUV values for all species. 340

Input anthropogenic emissions are based on the U.S. Environmental Protection Agency 341 (EPA) National Emission Inventory (NEI) and the Fuel-based Inventory for motor Ve-342 hicle Emission (FIVE), which have been processed for use in WRF-Chem (Kim et al., 343 2016). Biogenic emissions are from the MEGAN model for May 2010. Anthropogenic 344 NO_x emissions were emitted between 0.1-1 m and VOC emissions were emitted between 345 0.1-10 m. The emissions were scaled so that model concentrations matched those observed 346 by the LP-DOAS and in-situ observations, using realistic emission injection altitudes for 347 different emission source types. In some cases, the emissions are scaled by up to 50% in 348 order to reproduce realistic VOC and NO_x concentrations, as well as NO_2 concentration 349 profiles. Emissions scaling is needed to reproduce observations due to the fine model ver-350 tical resolution, which employs a much higher resolution grid vertically than typical 3D 351 chemical transport models. 3D models quickly dilute these emissions into larger volumes 352 of air resulting in lower concentrations of species that are directly emitted which impacts 353 ozone chemistry and other non-linear atmospheric chemical cycling. In addition, the WRF-354 Chem emissions are general values for either weekday or weekend and have large uncer-355 tainties when modeling specific dates and events at high time resolution. This period in-356 cludes the weekend (Saturday 5/29 and Sunday 5/30) before a major holiday (Memo-357 rial day). 358

Soil NO emissions are taken from the Copernicus Atmospheric Monitoring Service (CAMS) global and regional emissions dataset, which considers surface type, for May 2012 near Pasadena, CA (Simpson et al., 2014; Granier et al., 2019). Anthrogpogenic

-15-

HONO emissions were included using an emission ratio of $HONO/NO_x = 0.003$ (Kurtenbach et al., 2001). A range of 0.003-0.008 is reported in literature (Kirchstetter et al., 1996; Kurtenbach et al., 2001; Neuman et al., 2016; Kramer et al., 2019) and due to the lower number of diesel engine vehicles in the United States compared to Europe where many of these studies were conducted, we chose a value at the lower end of this range.

To better simulate the urban atmosphere, chlorine chemistry and parameterized nitrate aerosol chemistry were added to the RACM2 mechanism. Aerosol nitrate is formed through uptake of HNO₃ and N₂O₅, with aerosol uptake coefficients of 0.1 and 0.02, respectively. Partitioning between gas phase HNO₃ and aerosol nitrate is based on the study by Guo et al. (2017), who found a campaign average partitioning ratio, $\epsilon(NO_3^-)$, of 39% for PM1 during CalNex.

$$\epsilon(NO_3^-) = \frac{NO_3^-}{HNO_3 + NO_3^-} \tag{6}$$

Similar to photolysis of HNO₃ on the ground, nitrate in aerosol can also photolyze to give HONO. This is added to the mechanism with a rate 45 times that of gas phase nitric acid (Zhou et al., 2003; Karamchandani et al., 2014).

377

3.3 Interactive treatment of surface chemistry

The proposed HONO formation mechanisms occur at the ground, therefore we im-378 plemented detailed surface heterogeneous chemistry within PACT-1D. Deposition is cal-379 culated from the number of molecular collisions with the ground and an uptake coeffi-380 cient, allowing for molecular level chemical conversions and surface emissions. The quan-381 tity of species available for reactions on the ground was initialized using a model spin-382 up of four days to achieve near steady state conditions. The HONO formation mecha-383 nisms described in Section 1.1 were added to PACT-1D with model implementation de-384 scribed below. 385

386

$3.3.1 NO_2$ hydrolysis

³⁸⁷ Conversion of NO₂ to HONO on the ground is implemented into the model using ³⁸⁸ reaction R4. NO₂ deposition is tracked and for every two molecules deposited, one HONO ³⁸⁹ molecule is released from the surface and one HNO₃ molecule is added to the surface stor-³⁹⁰ age term. The ground NO₂ uptake coefficient ($\gamma_{NO_2,dark}$) is set at 1x10⁻⁵ (Trick, 2004).

3.3.2 Photo-enhanced NO_2 conversion

391

397

404

407

The photo-enhanced conversion of NO_2 to HONO is included using the parameterization by Wong et al. (2013). In Wong et al. (2012) and Wong et al. (2013), daytime HONO concentrations in Houston, Texas correlated with solar irradiance and they determined that the reactive uptake coefficient for NO_2 could be parameterized with a cubic dependence on the NO_2 photolysis rate (Eqn. 7).

$$\gamma_{\rm NO_2, photo} = 6x10^{-5} \frac{J_{\rm NO_2}^3}{J_{\rm NO_2, noon}^3} \tag{7}$$

³⁹⁸ 6×10^{-5} is the maximum reactive uptake coefficient. The average noontime photolysis ³⁹⁹ rate for NO₂ ($J_{NO2,noon}$) during the four days that we focused on (May 26-30 2010) is ⁴⁰⁰ $7 \times 10^{-3} \text{ s}^{-1}$. This photo-enhanced NO₂ uptake occurs in addition to dark uptake, giv-⁴⁰¹ ing an effective NO₂ deposition rate (ν_{d,NO_2}) according to the following equation, where ⁴⁰² ν is the mean molecular speed. ν_{d,NO_2} drives NO₂ deposition in the model.

$$v_{d,\text{NO}_2} = \frac{1}{4} v \gamma_{\text{NO}_2,dark} + \frac{1}{4} v \gamma_{\text{NO}_2,photo}$$
(8)

3.3.3 Surface nitric acid/nitrate photolysis

Following the modeling study of Sarwar et al. (2008), we parameterize photolysis of surface adsorbed HNO₃ using the following reaction.

$$HNO_{3(ads)} + h\nu \rightarrow 0.5 HONO_{(ads)} + 0.5 NO_{2(ads)}$$
(R11)

Surface HNO₃ is initialized in the model and it's concentration is updated considering 408 deposition and surface chemistry. HONO and NO_2 produced in R11 are released into 409 the lowest model layer via desorption. HNO_3 deposition to the ground is calculated us-410 ing an uptake coefficient of 0.1. The photolysis rate constant of this reaction $(J_{\text{HNO}_3, surf})$ 411 is set to 45 times that of gas-phase HNO_3 (Zhou et al., 2003; Karamchandani et al., 2014), 412 giving noon time values of 2.0x10 $^{-5}~{\rm s}^{-1}$ on May 27 and 2.5x10 $^{-5}~{\rm s}^{-1}$ on May 28 and 413 29. These rate constants are in accordance with the value of $2.5 \times 10^{-5} \text{ s}^{-1}$ reported by 414 Zhou et al. (2003), and are also used for aerosol nitrate photolysis. The scaling factor 415 of 45 is also consistent with that used by Fu et al. (2019) and Liu et al. (2021), who cal-416 culate $J_{\text{HNO}_3,surf}$ with the following equation. 417

$$J_{\rm HNO_3, surf} = \frac{3.4x10^{-5}}{7x10^{-7}} J_{\rm HNO_3} \tag{9}$$

⁴¹⁹ $3.4x10^{-5}$ is the median $J_{\text{HNO}_3,surf}$ reported by Ye et al. (2016) and $7x10^{-7}$ is the av-⁴²⁰ erage noontime $J_{\text{HNO}_3,qas}$.

421

3.3.4 HONO uptake, nocturnal storage, acid displacement

Uptake to the ground is an important loss for atmospheric HONO, especially at 422 night. Once deposited, it forms surface nitrite through R9 and a similar reaction occurs 423 with HNO₄. According to VandenBoer et al. (2015), this nitrite can be recycled back 424 to gaseous HONO when displaced by a strong acid. In the model we assume that all HONO 425 and HNO_4 deposited to the ground is converted to nitrite. Every HNO_3 molecule de-426 posited then results in a HONO molecule emitted to the lowest model layer. The uptake 427 coefficients for HONO, HNO₄, and HNO₃ are 1×10^{-4} , 0.01, and 0.1, respectively. To en-428 sure there is a sufficient amount of nitrite present to be displaced, it's concentration is 429 tracked and if it falls below a monolayer (1×10^{13} molec cm⁻²), the HONO source is scaled 430 by $\frac{[NO_2^-]}{1x10^{13}}$. 431

432

3.3.5 Biogenic emissions

Oswald et al. (2013) determined that HONO can contribute up to 50% of reactive nitrogen released from soil, comparable to soil NO emissions. Soil NO emissions are included in the model as input. We assume that NO and HONO make up the majority of reactive nitrogen and therefore set HONO emissions equal to NO as an upper limit.

437

4 Results and discussion

We use PACT-1D to simulate HONO levels during the CalNex campaign and analyze the importance of ground sources. An overview of each model run is provided in Table 2 and each is discussed below.

441

4.1 Model run without HONO surface chemistry (NoSurf run)

A model run (NoSurf) was first performed to investigate HONO concentrations without ground surface chemistry. In this run, HONO was impacted by gas phase chemistry,

-18-

Model Run	Description
NoSurf	HONO chemistry on the ground not included
Base	HONO chemistry on the ground included
Sens1	$\gamma_{\mathrm{NO}_2,max}$ decreased by 50%, $J_{\mathrm{HNO}_3,surf}$ increased by 25%
Sens2	$\gamma_{\mathrm{NO}_2,max}$ increased by 2x, $J_{\mathrm{HNO}_3,surf}$ decreased by 20%
Sens3	$\gamma_{\mathrm{NO}_2,max}$ decreased by 90%, $J_{\mathrm{HNO}_3,surf}$ increased by 60%
Sens4	$\gamma_{\rm NO_2,max}$ increased by 5x, $J_{\rm HNO_3,surf}$ decreased to gas phase $J_{\rm HNO_3}$

 Table 2.
 Overview of PACT-1D model runs

direct emissions, deposition to the ground with an uptake coefficient of 1×10^{-4} , uptake 444 on aerosol surfaces with an uptake coefficient of 1×10^{-3} , and formation from aerosol ni-445 trate photolysis. HONO levels at 3 m were compared to the CIMS measurements (Fig-446 ure 3, bottom right). Modeled HONO, shown in orange, remained around 0.1 ppb or lower 447 during daytime periods. May 28 and 29 showed an early morning peak between 0.15-448 0.3 ppb. Daytime and nighttime concentrations for all three days were significantly lower 449 than observations, indicating that gas phase formation, direct emissions, and aerosol ni-450 trate photolysis cannot completely explain HONO levels and that an additional source 451 is required. 452

453

4.2 Model results with interactive surface chemistry (Base run)

When heterogeneous HONO formation sources at the ground were implemented 454 in PACT-1D (Base run), the model matched observations much better (Figure 3). The 455 model captures the general trend and values of major species including NO_x , HO_x , and 456 O₃. Due to lack of horizontal advection in PACT-1D, however, there are some discrep-457 ancies related to changes in air mass, for example near midnight on May 30. The model 458 also misses some of the afternoon NO_x peaks, which are due to advection of polluted air 459 from downtown Los Angeles. These dates correspond to the start of the Memorial Day 460 holiday weekend as well, making traffic emissions more difficult to estimate. 461

The overprediction of OH and underprediction of HO₂ in PACT-1D is consistent with results from Griffith et al. (2016) and is likely due to missing radical processes in the RACM2 mechanism. Griffith et al. (2016) suggests that reactivity between OH and

Figure 3. Overview plot showing NoSurf (orange) and Base (blue) model results compared to observations from May 27, 2010 18:00 through May 30, 2010 18:00. Measurement details are included in Table 1. HO_2^* is $HO_2 + 0.3RO_2$, following Griffith et al. (2016).

saturated hydrocarbons and OH and aldehydes is under predicted in the mechanism which
leads to an over prediction of OH and under prediction of HO₂. Similar results were reported by Wolfe et al. (2016), who found that production of HO₂ from reactions of OH
with HCHO, CO and other hydrocarbons was too slow in the RACM2 mechanism to accurately capture OH and HO₂ observations.

The diurnal HONO trend is captured in the Base run, showing mixing ratios in-470 creasing over night, followed by a sharp decrease in the early morning. Concentrations 471 are substantially higher compared to the NoSurf run, with daytime values ranging be-472 tween 0.1-0.5 ppb and night time values increasing to 1.2-1.6 ppb. Modeled HONO does 473 not capture the early morning peaks around 6:00-7:00 on May 29 and 30. This and the 474 delayed decrease in HONO during the morning of May 30 indicate that the morning mix-475 ing may not be completely accurate in the model. A delay in morning boundary layer 476 growth can prevent HONO formed overnight from mixing away from the surface. The 477

-20-

quick changes in observed O_3 , NO_2 , and NO also indicate that there are air mass changes 478 that the model cannot capture. Overall, these results show very good agreement between 479 model and observations and show that a heterogeneous HONO surface source is neces-480 sary to simulate realistic atmospheric HONO levels. The mechanisms implemented here 481 appropriately describe this heterogeneous source during CalNex. 482

483

4.3 HONO vertical profiles

Since HONO photolyzes quickly during transport away from the ground where it 484 is formed, vertical profiles must be considered to understand HONO's sources and its 485 total impact to air quality in the boundary layer. Observed profiles were constructed by 486 vertically interpolating between the NOAA CIMS measurements at 3 m and the LP-487 DOAS measurements at 55.5 m, 99.5 m, 188 m, and 405.5 m. The CIMS and LP-DOAS 488 instruments showed excellent agreement in another field experiment (UBWOS 2012). We 489 are therefore confident that the two datasets can be combined to construct vertical con-490 centration profiles of HONO. Figure 4 shows the observed profile compared to PACT-491 1D for the entire 3 day period and Figure 5 shows select hours between May 27 18:00 492 and May 28 17:00. 493

In the observed profile, the highest HONO concentrations are typically at the sur-494 face, which is consistent with vertical profiles measured in other field campaigns (Kleffmann 495 et al., 2003; Villena et al., 2011; Wong et al., 2011, 2012; Young et al., 2012; Vanden-496 Boer et al., 2013; Tsai et al., 2018). The quick decay in HONO with altitude in the low-497 est 100 m, especially during the day, emphasizes the importance of vertical profile mea-498 surements and modeling. HONO's role in boundary layer chemistry can easily be over 499 or under estimated if measurements at a single altitude are used. In particular, this can 500 have a significant impact on OH production rates, which will be discussed in the follow-501 ing section. Similar to other studies, we conclude that these profiles provide evidence for 502 a ground source of HONO. The underestimation of HONO in the NoSurf run (Figure 503 5, right), shows that direct emissions cannot be the primary ground source. Accurately 504 implementing the heterogeneous HONO surface sources allowed us to better model HONO 505 both near the surface and at higher altitudes. 506

507

The underestimation of HONO in the NoSurf run (Figure 5, right), which includes heterogeneous HONO formation from aerosol nitrate only, also shows that aerosol sources 508

-21-

May 28 00:00 12:00 May 29 00:00 12:00 May 30 00:00 12:00

Figure 4. Comparison of HONO vertical concentration profiles between observations (top) and model (bottom), from May 27 18:00 to May 30 17:00. The observed profile is constructed from LP-DOAS data and NOAA CIMS data.

509	of HONO are less significant than ground sources. The aerosol source shows a diurnal
510	trend, peaking in the early afternoon and decreasing to zero at night. In the Base run,
511	the source peaks near 7 x 10 5 molec $\rm cm^{-3}s^{-1}$ on May 28, 9 x 10 5 on May 29, and 8 x 10 5
512	on May 30, within the LP-DOAS altitude range (50-400 m). Lower values on May 28 $$
513	are due to smaller photolysis rates and lower aerosol number concentrations that day.
514	Aerosol nitrate concentrations are under predicted compared to observations on this day
515	as well so the values reported by our model are likely too low. On May 29, modeled aerosol
516	nitrate concentrations are slightly higher than observed, indicating that the HONO aerosol
517	source may be slightly over predicted as well. The values we report are generally con-
518	sistent with other studies in urban areas, including Wong et al. (2013) who reports noon-
519	time values of 1.0-1.7 $x10^{6}$ molec cm ⁻³ s ⁻¹ in Houston, Texas. Our values are lower than
520	those reported in more polluted cities with larger available aerosol surface area. Liu et
521	al. (2021), for example, found approximately 1 ppb hr^{-1} (6.9x10 ⁶ molec cm ⁻³ s ⁻¹) of

Figure 5. Comparison of HONO vertical concentration profiles between observations and model from May 27 to 28. The left panel is the observed profile, the middle is the PACT-1D Base run including surface chemistry, and the right panel is the PACT-1D NoSurf run excluding surface chemistry. The observed profile is constructed from LP-DOAS data (top four data points) and NOAA CIMS data (lowest data point).

- HONO could be formed from aerosol sources at noon in Beijing in summer. The higher rates in Beijing are likely due to the higher aerosol loading in that study.
- Net vertical transport rates of HONO from below are more variable from day to 524 day but, in general, are greater than or about equal to HONO production from aerosol 525 nitrate. For most of the three day period, the primary source of HONO below 500 m 526 is upward transport from the surface (Figure 6). The large difference in surface area be-527 tween aerosols and the ground can explain the greater importance of ground sources and 528 is in agreement with other studies (Kalberer et al., 1999; Kleffmann et al., 2003; Vogel 529 et al., 2003; Stemmler et al., 2007). Compared to observations, daytime HONO levels 530 between 50-400 m in the Base run tend to be over predicted. This may indicate that 531 the sources aloft (formation on aerosols and transport from below) are too high. There 532 is uncertainty in the photolysis rate for the aerosol source in the model, and the verti-533

- cal transport from the ground. Consequently, it is currently unclear which process is re-
- ⁵³⁵ sponsible for the disagreement.

Figure 6. Noon time HONO budget for May 28 (left), 29 (middle), and 30 (right) from the Base run. Rates are reported in molec $cm^{-3}s^{-1}$ and include net photolysis (HONO photolysis minus formation from the OH+NO reaction), loss via the HONO+OH reaction, formation from aerosol nitrate photolysis, net vertical transport, and the HONO concentration change with time.

536

4.4 Primary HO_x production

To determine the importance of HONO to the radical budget, primary HOx pro-537 duction (P_{HOx}) was calculated for the Base run and measurements. We considered three 538 major primary HO_x production pathways, HONO photolysis, HCHO photolysis, and O_3 539 photolysis followed by reaction of $O(^{1}D)$ with $H_{2}O$. Since HONO levels change quickly 540 with altitude, as seen in the previous section, we again used vertical profiles to calcu-541 late P_{HOx} . In addition to HONO measurements, the LP-DOAS observed vertical pro-542 files of HCHO and O_3 . These were combined with the 3 m CIMS measurements of HONO, 543 and the University of Houston's (UH) 10 m O₃ measurements to construct concentra-544 tion profiles. 10m measurements of photolysis rates, temperature, and relative humid-545

-24-

 $_{546}$ ity (Table 1) were used to calculate P_{HOx} , assuming the values are constant over the al-

titude range considered here (0-450 m). Figure 7 shows vertical profiles of P_{HOx} from

observations (solid lines) and model (dashed lines). These values are averages from 10:00
am - 12:00 pm on May 28, 2010.

Figure 7. Primary HO_x production due to HONO (red), O_3 (blue), and HCHO (black). Observations are shown as dotted lines and model data from the Base run is shown as solid lines. Values are averaged between 10am-12pm on May 28, 2010.

In both PACT-1D and observations, the contribution to P_{HOx} from HCHO and O_3 remains relatively constant with height, with higher values for O_3 . PACT-1D underestimates P_{HOx} from HCHO compared to the observations, but captures the O_3 contribution well. Comparing HCHO LP-DOAS measurements to the model shows that PACT-1D under predicts HCHO levels at these altitudes, which leads to the under prediction of P_{HOx} (HCHO).

Both observations and PACT-1D show that HONO photolysis is dominant near the surface, contributing 2-3 times more than O_3 below 10 m. $P_{HOx}(HONO)$ decreases quickly moving away from the surface, following the trend seen in the HONO concentration profile. PACT-1D underestimates $P_{HOx}(HONO)$ compared to the observations at the surface by about 15% compared to observations, and over predicts at higher altitudes by 25-35%. The model also underestimates HONO concentrations at the surface and over predicts them aloft during this time period (Figure 5) which can explain this difference in $P_{HOx}(HONO)$. The discrepancy between model and observations, for both the concentration and $P_{HOx}(HONO)$, is likely due to the high sensitivity of HONO to the vertical mixing or an over prediction of the HONO aerosol source, as discussed above.

A study by Griffith et al. (2016) found that during the CalNex campaign, HONO 566 photolysis contributed 26% to the total radical production rate on weekends and hol-567 idays and 29% on weekdays. Using these average values, their $P_{HOx}(HONO)$ between 568 10:00 am and 12:00 pm ranged from about 5×10^{6} and 8×10^{6} molec cm⁻³ s⁻¹. They note 569 that these values are most appropriate for 10 m altitude where measurements were recorded, 570 and are consistent with the values we report here at low altitudes. HCHO photolysis con-571 tributed 9-10% to the total radical production, giving rates between 1.5×10^{6} and 3×10^{6} 572 molec $\rm cm^{-3} \, s^{-1}$. The observations reported here are in agreement with these values, but 573 again PACT-1D under predicts P_{HOx}(HCHO) due to the HCHO concentration being too 574 low. O₃ photolysis contributed 11-14%, with rates of 2×10^{6} -4.5 $\times 10^{6}$ molec cm⁻³ s⁻¹, match-575 ing our values well. 576

577

4.5 HONO source mechanisms

The HONO surface formation mechanisms added to PACT-1D in the Base run pro-578 vided an additional source of up to 2.5×10^{11} molecules cm⁻² s⁻¹ during the day and up 579 to 5×10^{10} molecules cm⁻² s⁻¹ during the night. Figure 8 shows the source rate for our 580 three day period, including the contributions from individual mechanisms. Values remained 581 relatively constant throughout each of the nights around 1×10^{10} to 5×10^{10} molecules cm⁻² s⁻¹ 582 and then increased quickly in the early morning as photolytic formation mechanisms be-583 come effective. Our values are higher than source rates reported by other field studies, 584 which include a forest canopy (Zhang et al., 2009; Zheng et al., 2011), an agricultural 585 site (Ren et al., 2011), and polluted rural site (Tsai et al., 2018). These studies report 586 average noontime fluxes between 1×10^{10} to 3×10^{10} molecules cm⁻² s⁻¹, measured at 10-587 20 m altitudes. Our surface flux is provided directly at the ground which likely explains 588 the higher values. Loss of HONO through photolysis or deposition back to the ground 589 decreases the amount that is transported to higher altitudes. We calculated the flux of 590

⁵⁹¹ HONO across 10 m in the model and found noontime values of $5x10^{10}$ molecules cm⁻² s⁻¹ ⁵⁹² for May 28 and 29 and $1.1x10^{11}$ molecules cm⁻² s⁻¹ for May 30. These are in better agree-⁵⁹³ ment with previous studies. Our urban site likely has a higher HONO source due to higher ⁵⁹⁴ NO₂ concentrations and deposition, and higher surface HNO₃ concentrations.

Figure 8. Contribution of individual mechanisms to the total HONO surface source in the Base run, from May 27, 2010 18:00 through May 30, 2010 17:00. The 10 m NO₂ photolysis rate for the 3 day period is shown in the lower panel.

595 596

597

598

599

The night time source was dominated by hydrolysis of NO₂, which is consistent with previous studies (Kleffmann et al., 2003; Wong et al., 2011; VandenBoer et al., 2013). Photolysis of surface HNO₃ dominated throughout the day, contributing 45-60% of the total source during mid-day. Photo-enhanced conversion of NO₂ was also significant, contributing 20-45% of the daytime source (Figure 8).

Previous studies have suggested that the photo-enhanced conversion of NO₂ is the dominant heterogeneous mechanism under high-NO_x urban conditions while the photolysis of surface HNO₃ is more important under low-NO_x conditions (Zhou et al., 2003; Elshorbany et al., 2012). We find the opposite during CalNex. Pusede et al. (2015) examined how HONO levels during the CalNex campaign changed compared to NO_x and

found daytime HONO production did not vary with weekday/weekend changes in NO₂. 605 They suggested therefore that NO_2 conversion is not the dominant HONO formation path-606 way. Although HNO_3 can also show a dependence on NO_x levels, its deposition and sub-607 sequent photolysis occur on a longer time scale which would not necessarily correlate with 608 atmospheric NO₂ levels. Baergen and Donaldson (2016) suggests that HNO₃ photoly-609 sis on urban grime and it's dependence on relative humidity would also cause a discrep-610 ancy between NO_2 and HONO production. Our results therefore support the findings 611 by Pusede et al. (2015). 612

It is currently unclear however, why these differ from the study performed by Wong 613 et al. (2013) in Houston, Texas. They found that photo-enhanced NO₂ conversion was 614 the dominant HONO source based on a clear correlation between HONO and NO_2 lev-615 els. It is possible that surface HNO_3/NO_3^- concentrations are higher in Los Angeles, 616 giving more importance to its photolytic source. The scarcity of significant rain events 617 in Southern California may cause a buildup of HNO_3 on surfaces, whereas the much more 618 frequent precipitation in Houston can lead to surface adsorbed species being washed away. 619 Guo et al. (2017) did find that particle nitrate and HNO₃ concentrations during CalNex 620 were higher than measurements from summertime campaigns in the southeast United 621 States. They suggest this is due to the higher NO_x versus SO_2 sources in southern Cal-622 ifornia. This leads to a higher NO_3^{-} to SO_4^{-2} ratio in particles, which raises the pH. 623 The higher pH then creates a positive feedback which forms more NO_3^- . Although Guo 624 et al. (2017) focused on particles, it is possible that similar chemistry is occurring at the 625 ground as well. Our results show that HNO_3 photolysis should be considered as an im-626 portant HONO source in certain urban areas and may be especially important in regions 627 with low precipitation and high NO_x emissions. 628

629

4.6 Source sensitivity to uptake coefficient and photolysis rate

⁶³⁰ We performed sensitivity tests to better understand how the daytime HONO sur-⁶³¹ face source is impacted by uncertainties in the mechanisms. The goal for these tests was ⁶³² to determine if the balance between the two major daytime mechanisms, the photo-enhanced ⁶³³ conversion of NO₂ and the photolysis of surface HNO₃, could be adjusted and still pro-⁶³⁴ vide a sufficient HONO source to match observations. We focused on uncertainties in ⁶³⁵ the maximum reactive uptake coefficient ($\gamma_{NO_2,max}$) and the photolysis rate enhance-⁶³⁶ ment of surface HNO₃ ($J_{HNO_3,surf}$) compared to the gas phase. Results from the sensitivity tests (Figure 9) are compared to the Base model run and a description of the changes
 made for each test are included in Table 2.

• Sens1 - To address the impact of uncertainties in $\gamma_{NO_2,max}$, its value was reduced by 50% in Sens1. A corresponding increase in $J_{HNO_3,surf}$ by 25% was then needed to maintain a surface source similar to the Base run. The noontime surface source increased from 1.6×10^{11} in the Base run to 1.9×10^{11} molecules cm⁻² s⁻¹ in Sens1. The contribution of photo-enhanced NO₂ conversion at noon decreased from 32%of the total source in the Base run to 26%. The contribution from surface HNO₃ photolysis increased from 60% in the Base to 65%.

• Sens2 - Doubling $\gamma_{\text{NO}_2,max}$ required reducing $J_{\text{HNO}_3,surf}$ by 20% to maintain a surface source consistent with the Base run. This run again led to good agreement with the Base run, with the total source decreasing slightly to 1.5×10^{-11} molecules cm⁻² s⁻¹. The contribution of photo-enhanced NO₂ conversion at noon increased to 39% and the contribution from surface HNO₃ photolysis decreased slightly to 58%.

• Sens3 - Reducing $\gamma_{NO_2,max}$ by 90% and increasing $J_{HNO_3,surf}$ by 60% caused the 3 m HONO concentration and the total HONO source to become slightly higher. The concentration is still within the margin of error of the HONO CIMS measurements.

• Sens4 - To test if the photo-enhanced NO₂ conversion could contribute the ma-656 jority of the ground HONO source, $\gamma_{NO_2,max}$ was increased by a factor of 5 and 657 $J_{\text{HNO}_3,surf}$ was set equal to $J_{\text{HNO}_3,q}$. This test clearly failed to produce a strong 658 enough source to describe HONO concentrations at 3 m. It is evident therefore 659 that surface HNO_3 photolysis is an essential contributor to the HONO source and 660 that it needs to proceed at a faster rate than gas phase HNO_3 photolysis. It is also 661 interesting that the photo-enhanced NO_2 source is lower here than in Sens2 at most 662 times throughout the day. Increasing $\gamma_{NO_2,max}$ between the Base run and Sens2 663 caused an increase in the source due to greater NO_2 uptake and conversion but 664 this trend obviously does not continue as $\gamma_{NO_2,max}$ is increased more. The NO₂ 665 concentration in the lowest model layer in Sens4 is less than half the concentra-666 tion in Sens2, indicating that the mechanism becomes transport limited. Although 667 NO_2 is converted at a greater rate, this is depleting NO_2 near the surface that can-668

-29-

not be replenished quickly enough from aloft, leading to an overall decrease in HONOproduction.

Since both photolytic mechanisms have similar dependencies, including irradiance 671 and NO_x concentrations, it can be difficult to determine which is more important for HONO 672 production. These sensitivity tests show that the contributions from each mechanism 673 are uncertain due to poorly constrained $\gamma_{NO_2,max}$ and $J_{HNO_3,surf}$. While it is possible 674 for surface HNO₃ photolysis to explain most of the HONO source, NO₂ conversion alone 675 cannot produce enough HONO in our case. Without additional laboratory studies that 676 demonstrate the specific importance of each of these two mechanisms, it is clear that both 677 can be considered important HONO sources in urban regions. 678

Figure 9. Results from sensitivity studies, showing 3 m HONO (top, black line) and the HONO ground source (bottom) for the afternoon of May 28. The Base run is shown in gray.

⁶⁷⁹ 5 Conclusion

HONO's impact on secondary pollutant formation makes it an important species
 in urban environments. Since it's heterogeneous formation mechanisms are poorly un derstood, we have developed a new one-dimensional chemistry and transport model, PACT-

1D, to perform mechanistic studies that can help constrain the HONO budget. In par-683 ticular, PACT-1D has the ability to do molecular level surface chemistry and emissions. 684 The model has been tested against observations from the CalNex field campaign, which 685 was performed in the urban region of Los Angeles. Multiple heterogeneous source mech-686 anisms at the ground were added to the model which helped better simulate atmospheric 687 HONO levels, both at the ground and throughout the boundary layer. We determined 688 that the daytime HONO source was dominated by HNO₃/nitrate photolysis at the ground, 689 followed by photo-enhanced conversion of NO_2 . At night, the major HONO source was 690 conversion of NO₂ on the ground. With these sources implemented we determined that 691 HONO photolysis is the dominant contributor to primary OH production near the sur-692 face. This contribution decreases quickly with altitude, showing a similar vertical pro-693 file to HONO concentrations. These results emphasize the importance of atmospheric 694 mixing when considering HONO's total impact to the boundary layer and help better 695 understand the HONO sources in urban environments. Tests were also performed to de-696 termine the sensitivity of the two major daytime HONO sources to uncertainties in their 697 mechanisms. While their relative contributions vary with the uncertainties, it's clear that 698 both HNO_3 /nitrate photolysis and photo-enhanced conversion of NO_2 should be con-699 sidered to simulate HONO in urban atmospheres. 700

701 Acknowledgments

This work was supported by the National Oceanic Atmospheric Administration's At-

⁷⁰³ mospheric Chemistry, Climate and Carbon Cycle program. The authors acknowledge Amélie

⁷⁰⁴ Klein and François Ravetta for their contributions to the PACT-1D model and Jessica

- ⁷⁰⁵ Gilman for the VOC measurements used in the analysis. We would also like to thank
- ⁷⁰⁶ Steve Brown (NOAA) for his valuable insights.
- The PACT-1D model code used in this study is available at http://doi.org/10.5281/zenodo.4776419. Output files for the base run used in this study are available at: https://doi.org/10.5281/zenodo.4776977. The CALNEX data set is available at https://www.esrl.noaa.gov/csd/projects/calnex/.

710

711 **References**

712	Acker, K., Febo, A., Trick, S., Perrino, C., Bruno, P., Wiesen, P., Allegrini, I.
713	(2006). Nitrous acid in the urban area of Rome. Atmospheric Environment,
714	40(17), 3123-3133.doi: 10.1016/j.atmosenv.2006.01.028
715	Alicke, B., Geyer, A., Hofzumhaus, A., Holland, F., Konrad, S., Patz, H., Platt,
716	U. (2003). OH formation by HONO photolysis during the BERLIOZ
717	experiment. Journal of Geophysical Research, 108(D4), 8247. doi:
718	10.1029/2001JD000579
719	Alicke, B., Platt, U., & Stutz, J. (2002). Impact of nitrous acid photolysis on
720	the total hydroxyl radical budget during the Limitation of Oxidant Produc-
721	tion/Pianura Padana Produzione di Ozono study in Milan. Journal of Geo-
722	physical Research, 107(D22), 8196. doi: 10.1029/2000JD000075
723	Ammann, M., Kalberer, M., Jost, D., Tobler, L., Rössler, E., Piguet, D., Bal-
724	tensperger, U. (1998). Heterogeneous production of nitrous acid on soot in
725	polluted air masses. Nature, $395(6698)$, 157–160. doi: 10.1038/25965
726	Aubin, D. G., & Abbatt, J. P. D. (2007). Interaction of NO_2 with hydrocarbon soot:
727	Focus on HONO yield, surface modification, and mechanism. Journal of Physi-
728	cal Chemistry. A, 111(28), 6263–6273. doi: 10.1021/jp068884h
729	Baergen, A. M., & Donaldson, D. J. (2013). Photochemical Renoxi fi cation of
730	Nitric Acid on Real Urban Grime. Environmental Science & Technology, 47,
731	815–820. doi: $10.1021/es3037862$
732	Baergen, A. M., & Donaldson, D. J. (2016). Formation of reactive nitrogen ox-
733	ides from urban grime photochemistry. Atmospheric Chemistry and Physics,
734	16, 6355–6363. doi: 10.5194/acp-16-6355-2016
735	Bartels-Rausch, T., Brigante, M., Elshorbany, Y. F., Ammann, M., D'Anna, B.,
736	George, C., Kleffmann, J. (2010). Humic acid in ice: Photo-enhanced
737	conversion of nitrogen dioxide into nitrous acid. Atmospheric Environment,
738	25(40), 5443-5450.doi: 10.1016/j.atmosenv.2009.12.025
739	Borbon, A., Gilman, J. B., Kuster, W. C., Grand, N., Chevaillier, S., Colomb, A.,
740	\ldots De Gouw, J. A. (2013). Emission ratios of anthropogenic volatile organic
741	compounds in northern mid-latitude megacities: Observations versus emis-
742	sion inventories in Los Angeles and Paris. Journal of Geophysical Research
743	Atmospheres, 118(4), 2041–2057. doi: 10.1002/jgrd.50059

-32-

744	Boy, M., Sogachev, A., Lauros, J., Zhou, L., Guenther, A., & Smolander, S. (2011).
745	SOSA - A new model to simulate the concentrations of organic vapours
746	and sulphuric acid inside the ABL - Part 1: Model description and ini-
747	tial evaluation. Atmospheric Chemistry and Physics, 11(1), 43–51. doi:
748	10.5194/acp-11-43-2011
749	Brasseur, G. P., & Jacob, D. J. (2017). Modeling of atmospheric chemistry. Cam-
750	bridge University Press. doi: $10.1017/9781316544754$
751	Brigante, M., Cazoir, D., D'Anna, B., George, C., & Donaldson, D. J. (2008).
752	Photoenhanced uptake of NO_2 by pyrene solid films. Journal of Physical
753	Chemistry. A, $112(39)$, 9503–9508. doi: 10.1021/jp802324g
754	Cao, L., Platt, U., & Gutheil, E. (2016). Role of the Boundary Layer in
755	the Occurrence and Termination of the Tropospheric Ozone Depletion
756	Events in Polar Spring. Atmospheric Environment, 132, 98–110. doi:
757	10.1016/j.atmosenv.2016.02.034
758	Cao, L., Sihler, H., Platt, U., & Gutheil, E. (2014). Numerical analysis of the chem-
759	ical kinetic mechanisms of ozone depletion and halogen release in the polar
760	troposphere. Atmospheric Chemistry and Physics, 14(7), 3771–3787. doi:
761	10.5194/acp-14-3771-2014
762	Czader, B. H., Rappenglück, B., Percell, P., Byun, D. W., Ngan, F., & Kim, S.
763	(2012). Modeling nitrous acid and its impact on ozone and hydroxyl radi-
764	cal during the Texas Air Quality Study 2006. Atmospheric Chemistry and
765	<i>Physics</i> , $12(15)$, 6939–6951. doi: 10.5194/acp-12-6939-2012
766	Dusanter, S., Vimal, D., Stevens, P. S., Volkamer, R., & Molina, L. T. (2009).
767	Measurements of OH and HO2 concentrations during the MCMA-2006 field $% \mathcal{M}$
768	campaign - Part 1: deployment of the indiana university laser-induced fluores-
769	cence instrument. Atmospheric Chemistry and Physics, $9(5)$, 1665–1685. doi:
770	10.5194/acp-9-1665-2009
771	Elshorbany, Y. F., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M., Villena, G.,
772	Kleffmann, J. (2009). Oxidation capacity of the city air of Santi-
773	ago, Chile. Atmospheric Chemistry and Physics, $9(3)$, 2257–2273. doi:
774	10.5194/acp-9-2257-2009
775	Elshorbany, Y. F., Steil, B., Brühl, C., & Lelieveld, J. (2012). Impact of HONO on
776	global atmospheric chemistry calculated with an empirical parameterization in

-33-

777	the EMAC model. Atmospheric Chemistry and Physics Discussions, 12(5),
778	12885–12934. doi: 10.5194/acpd-12-12885-2012
779	Fu, X., Wang, T., Zhang, L., Li, Q., Wang, Z., Xia, M., Han, R. (2019). The sig-
780	nificant contribution of HONO to secondary pollutants during a severe winter
781	pollution event in southern China. Atmospheric Chemistry and Physics, $19(1)$,
782	1–14. doi: 10.5194/acp-19-1-2019
783	Fuchs, N., & Sutugin, A. (1971). High-dispersed aerosols. In <i>Topics in current</i>
784	aerosol research. Elsevier.
785	George, C., Strekowski, R. S., Kleffmann, J., Stemmler, K., & Ammann, M. (2005).
786	Photoenhanced uptake of gaseous NO_2 on solid organic compounds: A pho-
787	to chemical source of HONO? Faraday Discussions, $130(2)$, 195–210. doi:
788	10.1039/b417888m
789	Geyer, A., & Stutz, J. (2004a). Vertical profiles of NO3, N2O5, O3, and NOx in
790	the nocturnal boundary layer: 2. Model studies on the altitude dependence of
791	composition and chemistry. Journal of Geophysical Research, $109(D12)$, 1–18.
792	doi: 10.1029/2003JD004211
793	Geyer, A., & Stutz, J. (2004b). The vertical structure of OH-HO2 -RO2 chemistry
794	in the nocturnal boundary layer: A one-dimensional model study. Journal of
795	Geophysical Research, $109(D16)$, 1–17. doi: 10.1029/2003JD004425
796	Gilman, J. B., Burkhart, J. F., Lerner, B. M., Williams, E. J., Kuster, W. C.,
797	Goldan, P. D., de Gouw, J. A. (2010). Ozone variability and halo-
798	gen oxidation within the Arctic and sub-Arctic springtime boundary
799	layer. Atmospheric Chemistry and Physics, $10(21)$, $10223-10236$. doi:
800	10.5194/acp-10-10223-2010
801	Goliff, W. S., Stockwell, W. R., & Lawson, C. V. (2013). The Regional Atmospheric
802	Chemistry Mechanism, Version 2. Atmospheric Environment, 68, 174–185. doi:
803	10.1016/j.atmosenv.2012.11.038
804	Granier, C., Darras, S., Denier Van Der Gon, H., Jana, D., Elguindi, N., Bo, G.,
805	Kuenen, J. (2019). The Copernicus Atmosphere Monitoring Service global and
806	regional emissions (April 2019 version). Data from ECCAD.
807	Griffith, S. M., Hansen, R., Dusanter, S., Michoud, V., Gilman, J., Kuster, W.,
808	Stevens, P. (2016). Measurements of hydroxyl and hydroperoxy radicals during
809	CalNex-LA: Model comparisons and radical budgets. Journal of Geophysical

810	Research: Atmospheres, 4211-4232.doi: 10.1002/2015JD024358
811	Guo, H., Liu, J., Froyd, K. D., Roberts, J. M., Veres, P. R., Hayes, P. L.,
812	Weber, R. J. (2017). Fine particle pH and gas-particle phase partition-
813	ing of inorganic species in Pasadena, California, during the 2010 CalNex $$
814	campaign. Atmospheric Chemistry and Physics, 17(9), 5703–5719. doi:
815	10.5194/acp-17-5703-2017
816	Gutzwiller, L., Arens, F., Baltensperger, U., Gaggeler, H., & Ammann, M. (2002).
817	Significance of semivolatile diesel exhaust organics for secondary HONO forma-
818	tion. Environ. Sci. Technol, $36(4)$, 677–682. doi: 10.1021/es015673b
819	Hayes, P. L., Ortega, A. M., Cubison, M. J., Froyd, K. D., Zhao, Y., Cliff, S. S.,
820	Jimenez, J. L. (2013). Organic aerosol composition and sources in Pasadena,
821	California, during the 2010 CalNex campaign. Journal of Geophysical Research
822	Atmospheres, 118(16), 9233–9257. doi: 10.1002/jgrd.50530
823	Jenkin, M., Cox, R., & Williams, D. (1988). Laboratory studies of the kinet-
824	ics of formation of nitrous acid from the thermal reaction of nitrogen diox-
825	ide and water vapour. Atmospheric Environment, $22(3)$, $487-498$. doi:
826	10.1016/0004- $6981(88)90194$ - 1
827	Kalberer, M., Ammann, M., Arens, F., G, H. W., & Baltensperger, U. (1999). Het-
828	
020	erogeneous formation of nitrous acid (HONO) on soot aerosol particles. , 104 ,
829	erogeneous formation of nitrous acid (HONO) on soot aerosol particles. , 104, 13825–13832.
829 830	 erogeneous formation of nitrous acid (HONO) on soot aerosol particles. , 104, 13825–13832. Karamchandani, P., Emery, C., Yarwood, G., Lefer, B., Stutz, J., Couzo, E., &
829 830 831	 erogeneous formation of nitrous acid (HONO) on soot aerosol particles. , 104, 13825–13832. Karamchandani, P., Emery, C., Yarwood, G., Lefer, B., Stutz, J., Couzo, E., & Vizuete, W. (2014). Implementation and refinement of a surface model for het-
829 830 831 832	 erogeneous formation of nitrous acid (HONO) on soot aerosol particles. , 104, 13825–13832. Karamchandani, P., Emery, C., Yarwood, G., Lefer, B., Stutz, J., Couzo, E., & Vizuete, W. (2014). Implementation and refinement of a surface model for heterogeneous HONO formation in a 3-D chemical transport model. Atmospheric
829 830 831 832 833	 erogeneous formation of nitrous acid (HONO) on soot aerosol particles. , 104, 13825–13832. Karamchandani, P., Emery, C., Yarwood, G., Lefer, B., Stutz, J., Couzo, E., & Vizuete, W. (2014). Implementation and refinement of a surface model for heterogeneous HONO formation in a 3-D chemical transport model. Atmospheric Environment, 112, 356–368. doi: 10.1016/j.atmosenv.2015.01.046
829 830 831 832 833 833	 erogeneous formation of nitrous acid (HONO) on soot aerosol particles. , 104, 13825–13832. Karamchandani, P., Emery, C., Yarwood, G., Lefer, B., Stutz, J., Couzo, E., & Vizuete, W. (2014). Implementation and refinement of a surface model for heterogeneous HONO formation in a 3-D chemical transport model. Atmospheric Environment, 112, 356–368. doi: 10.1016/j.atmosenv.2015.01.046 Khalizov, A. F., Cruz-Quinones, M., & Zhang, R. (2010). Heterogeneous reaction
829 830 831 832 833 834 835	 erogeneous formation of nitrous acid (HONO) on soot aerosol particles. , 104, 13825–13832. Karamchandani, P., Emery, C., Yarwood, G., Lefer, B., Stutz, J., Couzo, E., & Vizuete, W. (2014). Implementation and refinement of a surface model for heterogeneous HONO formation in a 3-D chemical transport model. Atmospheric Environment, 112, 356–368. doi: 10.1016/j.atmosenv.2015.01.046 Khalizov, A. F., Cruz-Quinones, M., & Zhang, R. (2010). Heterogeneous reaction of NO₂ on fresh and coated soot surfaces. Journal of Physical Chemistry A,
829 830 831 832 833 834 834 835 836	 erogeneous formation of nitrous acid (HONO) on soot aerosol particles. , 104, 13825–13832. Karamchandani, P., Emery, C., Yarwood, G., Lefer, B., Stutz, J., Couzo, E., & Vizuete, W. (2014). Implementation and refinement of a surface model for heterogeneous HONO formation in a 3-D chemical transport model. Atmospheric Environment, 112, 356–368. doi: 10.1016/j.atmosenv.2015.01.046 Khalizov, A. F., Cruz-Quinones, M., & Zhang, R. (2010). Heterogeneous reaction of NO₂ on fresh and coated soot surfaces. Journal of Physical Chemistry A, 114(28), 7516–7524. doi: 10.1021/jp1021938
829 830 831 832 833 834 835 836 837	 erogeneous formation of nitrous acid (HONO) on soot aerosol particles. , 104, 13825–13832. Karamchandani, P., Emery, C., Yarwood, G., Lefer, B., Stutz, J., Couzo, E., & Vizuete, W. (2014). Implementation and refinement of a surface model for heterogeneous HONO formation in a 3-D chemical transport model. Atmospheric Environment, 112, 356–368. doi: 10.1016/j.atmosenv.2015.01.046 Khalizov, A. F., Cruz-Quinones, M., & Zhang, R. (2010). Heterogeneous reaction of NO₂ on fresh and coated soot surfaces. Journal of Physical Chemistry A, 114(28), 7516–7524. doi: 10.1021/jp1021938 Kim, S., Mcdonald, B. C., Baidar, S., Brown, S. S., Dube, B., Ferrare, R. A.,
829 830 831 832 833 834 834 835 836 837 838	 erogeneous formation of nitrous acid (HONO) on soot aerosol particles. , 104, 13825–13832. Karamchandani, P., Emery, C., Yarwood, G., Lefer, B., Stutz, J., Couzo, E., & Vizuete, W. (2014). Implementation and refinement of a surface model for heterogeneous HONO formation in a 3-D chemical transport model. Atmospheric Environment, 112, 356–368. doi: 10.1016/j.atmosenv.2015.01.046 Khalizov, A. F., Cruz-Quinones, M., & Zhang, R. (2010). Heterogeneous reaction of NO₂ on fresh and coated soot surfaces. Journal of Physical Chemistry A, 114(28), 7516–7524. doi: 10.1021/jp1021938 Kim, S., Mcdonald, B. C., Baidar, S., Brown, S. S., Dube, B., Ferrare, R. A., Young, C. J. (2016). Modeling the weekly cycle of NOx and CO emissions
829 830 831 832 833 834 835 835 836 837 838 839	 erogeneous formation of nitrous acid (HONO) on soot aerosol particles. , 104, 13825–13832. Karamchandani, P., Emery, C., Yarwood, G., Lefer, B., Stutz, J., Couzo, E., & Vizuete, W. (2014). Implementation and refinement of a surface model for heterogeneous HONO formation in a 3-D chemical transport model. Atmospheric Environment, 112, 356–368. doi: 10.1016/j.atmosenv.2015.01.046 Khalizov, A. F., Cruz-Quinones, M., & Zhang, R. (2010). Heterogeneous reaction of NO₂ on fresh and coated soot surfaces. Journal of Physical Chemistry A, 114(28), 7516–7524. doi: 10.1021/jp1021938 Kim, S., Mcdonald, B. C., Baidar, S., Brown, S. S., Dube, B., Ferrare, R. A., Young, C. J. (2016). Modeling the weekly cycle of NOx and CO emissions and their impacts on O3 in the Los Angeles-South Coast Air Basin during the
829 830 831 832 833 834 835 835 836 837 838 839 839	 erogeneous formation of nitrous acid (HONO) on soot aerosol particles. , 104, 13825–13832. Karamchandani, P., Emery, C., Yarwood, G., Lefer, B., Stutz, J., Couzo, E., & Vizuete, W. (2014). Implementation and refinement of a surface model for heterogeneous HONO formation in a 3-D chemical transport model. Atmospheric Environment, 112, 356–368. doi: 10.1016/j.atmosenv.2015.01.046 Khalizov, A. F., Cruz-Quinones, M., & Zhang, R. (2010). Heterogeneous reaction of NO₂ on fresh and coated soot surfaces. Journal of Physical Chemistry A, 114(28), 7516–7524. doi: 10.1021/jp1021938 Kim, S., Mcdonald, B. C., Baidar, S., Brown, S. S., Dube, B., Ferrare, R. A., Young, C. J. (2016). Modeling the weekly cycle of NOx and CO emissions and their impacts on O3 in the Los Angeles-South Coast Air Basin during the CalNex 2010 field campaign. Journal of Geophysical Research : Atmospheres,
 829 830 831 832 833 834 835 836 837 838 839 840 841 	 erogeneous formation of nitrous acid (HONO) on soot aerosol particles. , 104, 13825–13832. Karamchandani, P., Emery, C., Yarwood, G., Lefer, B., Stutz, J., Couzo, E., & Vizuete, W. (2014). Implementation and refinement of a surface model for heterogeneous HONO formation in a 3-D chemical transport model. Atmospheric Environment, 112, 356–368. doi: 10.1016/j.atmosenv.2015.01.046 Khalizov, A. F., Cruz-Quinones, M., & Zhang, R. (2010). Heterogeneous reaction of NO₂ on fresh and coated soot surfaces. Journal of Physical Chemistry A, 114(28), 7516–7524. doi: 10.1021/jp1021938 Kim, S., Mcdonald, B. C., Baidar, S., Brown, S. S., Dube, B., Ferrare, R. A., Young, C. J. (2016). Modeling the weekly cycle of NOx and CO emissions and their impacts on O3 in the Los Angeles-South Coast Air Basin during the CalNex 2010 field campaign. Journal of Geophysical Research : Atmospheres, 1340–1360. doi: 10.1002/2015JD024292

843	trous acid in motor vehicle exhaust. Environmental Science and Technology,
844	30, 2843-2849. doi: 10.1021/es960135y
845	Kleffmann, J. (2007). Daytime sources of nitrous acid (HONO) in the at-
846	mospheric boundary layer. $ChemPhysChem, 8(8), 1137-1144.$ doi:
847	$10.1002/{ m cphc}.200700016$
848	Kleffmann, J., Gavriloaiei, T., Hofzumahaus, A., Holland, F., Koppmann, R., Rupp,
849	L., Wahner, A. (2005). Daytime formation of nitrous acid: A major source
850	of OH radicals in a forest. Geophysical Research Letters, 32, L05818. doi:
851	10.1029/2005 GL022524
852	Kleffmann, J., Kurtenbach, R., Lörzer, J., Wiesen, P., Kalthoff, N., Vogel, B., & Vo-
853	gel, H. (2003). Measured and simulated vertical profiles of nitrous acid - Part
854	I: Field measurements. Atmospheric Environment, 37(21), 2949–2955. doi:
855	10.1016/S1352-2310(03)00242-5
856	Kleffmann, J., Lörzer, J. C., Wiesen, P., Kern, C., Trick, S., Volkamer, R.,
857	Wirtz, K. (2006). Intercomparison of the DOAS and LOPAP techniques
858	for the detection of nitrous acid (HONO). Atmospheric Environment, $4\theta(20)$,
859	3640–3652. doi: 10.1016/j.atmosenv.2006.03.027
860	Kramer, L., Crilley, L., Adams, T., Ball, S., Pope, F., & Bloss, W. (2019). Ni-
861	trous acid (HONO) emissions under real-world driving conditions from vehicles
862	in a UK road tunnel. Atmospheric Chemistry and $Physics(2)$, 1–31. doi:
863	10.5194/acp-2019-1070
864	Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J., Lorzer, J., Spit-
865	tler, M., Platt, U. (2001) . Investigations of emissions and heterogeneous
866	formation of HONO in a road traffic tunnel. Atmospheric Environment, 35,
867	3385–3394. doi: 10.1016/S1352-2310(01)00138-8
868	Lammel, G., & Cape, J. (1996). Nitrous acid and nitrite in the atmosphere. Chem.
869	Soc. Rev., 25, 361–369. doi: 10.1039/CS9962500361
870	Laufs, S., Cazaunau, M., Stella, P., Kurtenbach, R., Cellier, P., Mellouki, A.,
871	Kleffmann, J. (2017). Diurnal fluxes of HONO above a crop ro-
872	tation. Atmospheric Chemistry and Physics, 17(11), 6907–6923. doi:
873	10.5194/acp-17-6907-2017
874	Li, Y., An, J., Min, M., Zhang, W., Wang, F., & Xie, P. (2011). Impacts of HONO
875	sources on the air quality in Beijing, Tianjin and Hebei Province of China. At -

876	$mospheric \ Environment, \ 45(27), \ 4735-4744.$ doi: 10.1016/j.atmosenv.2011.04
877	.086
878	Liu, J., Liu, Z., Ma, Z., Yang, S., Yao, D., Zhao, S., Wang, Y. (2021). Detailed
879	budget analysis of HONO in Beijing, China: Implication on atmosphere oxi-
880	dation capacity in polluted megacity. Atmospheric Environment, 244 (April
881	2020). doi: 10.1016/j.atmosenv.2020.117957
882	Maljanen, M., Yli-Pirilä, P., Hytönen, J., Joutsensaari, J., & Martikainen, P. J.
883	(2013). Acidic northern soils as sources of atmospheric nitrous acid
884	(HONO). Soil Biology and Biochemistry, 67(2), 94–97. doi: 10.1016/
885	j.soilbio.2013.08.013
886	Mao, J., Ren, X., Chen, S., Brune, W. H., Chen, Z., Martinez, M., Leuch-
887	ner, M. (2010). Atmospheric oxidation capacity in the summer of Hous-
888	ton 2006: Comparison with summer measurements in other metropolitan
889	studies. Atmospheric Environment, 44(33), 4107–4115. doi: 10.1016/
890	j.atmosenv.2009.01.013
891	Meusel, H., Tamm, A., Kuhn, U., Wu, D., Lena Leifke, A., Fiedler, S., Cheng, Y.
892	(2018). Emission of nitrous acid from soil and biological soil crusts represents
893	an important course of HONO in the remote streaghers in Commu
	an important source of monor in the remote atmosphere in Cyprus. Atmo-
894	spheric Chemistry and Physics, 18(2), 799–813. doi: 10.5194/acp-18-799-2018
894 895	 spheric Chemistry and Physics, 18(2), 799–813. doi: 10.5194/acp-18-799-2018 Monge, M. E., D'Anna, B., & George, C. (2010). Nitrogen dioxide removal and
894 895 896	 an important source of HONO in the remote atmosphere in Cyprus. Atmosphere Spheric Chemistry and Physics, 18(2), 799–813. doi: 10.5194/acp-18-799-2018 Monge, M. E., D'Anna, B., & George, C. (2010). Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces - an air quality remedia-
894 895 896 897	 an important source of HONO in the remote atmosphere in Cyprus. Atmosphere in Cyprus. Atmosphere Chemistry and Physics, 18(2), 799–813. doi: 10.5194/acp-18-799-2018 Monge, M. E., D'Anna, B., & George, C. (2010). Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces - an air quality remediation process? Physical Chemistry Chemical Physics, 12(31), 8991–8998. doi:
894 895 896 897 898	 an important source of HONO in the remote atmosphere in Cyprus. Atmosphere in Cyprus. Atmosphere Chemistry and Physics, 18(2), 799–813. doi: 10.5194/acp-18-799-2018 Monge, M. E., D'Anna, B., & George, C. (2010). Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces - an air quality remediation process? Physical Chemistry Chemical Physics, 12(31), 8991–8998. doi: 10.1039/b925785c
894 895 896 897 898 899	 an important source of HONO in the remote atmosphere in Cyprus. Atmosphere in Cyprus. Atmosphere Chemistry and Physics, 18(2), 799–813. doi: 10.5194/acp-18-799-2018 Monge, M. E., D'Anna, B., & George, C. (2010). Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces - an air quality remediation process? Physical Chemistry Chemical Physics, 12(31), 8991–8998. doi: 10.1039/b925785c Neuman, J. A., Ryerson, T. B., Huey, L. G., Jakoubek, R., Nowak, J. B., Simons,
894 895 896 897 898 899 900	 an important source of HONO in the remote atmosphere in Cyprus. Atmosphere in Cyprus. Atmosphere Chemistry and Physics, 18(2), 799–813. doi: 10.5194/acp-18-799-2018 Monge, M. E., D'Anna, B., & George, C. (2010). Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces - an air quality remediation process? Physical Chemistry Chemical Physics, 12(31), 8991–8998. doi: 10.1039/b925785c Neuman, J. A., Ryerson, T. B., Huey, L. G., Jakoubek, R., Nowak, J. B., Simons, C., & Fehsenfeld, F. C. (2003). Calibration and evaluation of nitric acid and
894 895 896 897 898 899 900 901	 an important source of HONO in the remote atmosphere in Cyprus. Atmospheric Chemistry and Physics, 18(2), 799-813. doi: 10.5194/acp-18-799-2018 Monge, M. E., D'Anna, B., & George, C. (2010). Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces - an air quality remediation process? Physical Chemistry Chemical Physics, 12(31), 8991-8998. doi: 10.1039/b925785c Neuman, J. A., Ryerson, T. B., Huey, L. G., Jakoubek, R., Nowak, J. B., Simons, C., & Fehsenfeld, F. C. (2003). Calibration and evaluation of nitric acid and ammonia permeation tubes by UV optical absorption. Environmental Science
894 895 896 897 898 899 900 901 902	 an important source of HONO in the remote atmosphere in Cyprus. Atmospheric Chemistry and Physics, 18(2), 799-813. doi: 10.5194/acp-18-799-2018 Monge, M. E., D'Anna, B., & George, C. (2010). Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces - an air quality remediation process? Physical Chemistry Chemical Physics, 12(31), 8991-8998. doi: 10.1039/b925785c Neuman, J. A., Ryerson, T. B., Huey, L. G., Jakoubek, R., Nowak, J. B., Simons, C., & Fehsenfeld, F. C. (2003). Calibration and evaluation of nitric acid and ammonia permeation tubes by UV optical absorption. Environmental Science and Technology, 37(13), 2975-2981. doi: 10.1021/es0264221
894 895 896 897 898 899 900 901 902 903	 an important source of HONO in the femote atmosphere in Cyprus. Atmospheric Chemistry and Physics, 18(2), 799–813. doi: 10.5194/acp-18-799-2018 Monge, M. E., D'Anna, B., & George, C. (2010). Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces - an air quality remediation process? Physical Chemistry Chemical Physics, 12(31), 8991–8998. doi: 10.1039/b925785c Neuman, J. A., Ryerson, T. B., Huey, L. G., Jakoubek, R., Nowak, J. B., Simons, C., & Fehsenfeld, F. C. (2003). Calibration and evaluation of nitric acid and ammonia permeation tubes by UV optical absorption. Environmental Science and Technology, 37(13), 2975–2981. doi: 10.1021/es0264221 Neuman, J. A., Trainer, M., Brown, S. S., Min, KE., Nowak, J. B., Parrish, D. D.,
894 895 896 897 898 899 900 901 901 902 903 904	 an important source of HONO in the femote atmosphere in Cyprus. Atmospheric Chemistry and Physics, 18(2), 799–813. doi: 10.5194/acp-18-799-2018 Monge, M. E., D'Anna, B., & George, C. (2010). Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces - an air quality remediation process? Physical Chemistry Chemical Physics, 12(31), 8991–8998. doi: 10.1039/b925785c Neuman, J. A., Ryerson, T. B., Huey, L. G., Jakoubek, R., Nowak, J. B., Simons, C., & Fehsenfeld, F. C. (2003). Calibration and evaluation of nitric acid and ammonia permeation tubes by UV optical absorption. Environmental Science and Technology, 37(13), 2975–2981. doi: 10.1021/es0264221 Neuman, J. A., Trainer, M., Brown, S. S., Min, KE., Nowak, J. B., Parrish, D. D., Veres, P. R. (2016). HONO emission and production determined from air-
894 895 896 897 898 899 900 901 901 902 903 904 905	 an important source of HONO in the femote atmosphere in Cyptus. Atmospheric Chemistry and Physics, 18(2), 799–813. doi: 10.5194/acp-18-799-2018 Monge, M. E., D'Anna, B., & George, C. (2010). Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces - an air quality remediation process? Physical Chemistry Chemical Physics, 12(31), 8991–8998. doi: 10.1039/b925785c Neuman, J. A., Ryerson, T. B., Huey, L. G., Jakoubek, R., Nowak, J. B., Simons, C., & Fehsenfeld, F. C. (2003). Calibration and evaluation of nitric acid and ammonia permeation tubes by UV optical absorption. Environmental Science and Technology, 37(13), 2975–2981. doi: 10.1021/es0264221 Neuman, J. A., Trainer, M., Brown, S. S., Min, KE., Nowak, J. B., Parrish, D. D., Veres, P. R. (2016). HONO emission and production determined from airborne measurements over the Southeast U.S. Journal of Geophysical Research,
894 895 896 897 898 899 900 901 901 902 903 904 905 906	 an important source of HONO in the femote annosphere in Cyprus. Atmospheric Chemistry and Physics, 18(2), 799-813. doi: 10.5194/acp-18-799-2018 Monge, M. E., D'Anna, B., & George, C. (2010). Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces - an air quality remediation process? Physical Chemistry Chemical Physics, 12(31), 8991-8998. doi: 10.1039/b925785c Neuman, J. A., Ryerson, T. B., Huey, L. G., Jakoubek, R., Nowak, J. B., Simons, C., & Fehsenfeld, F. C. (2003). Calibration and evaluation of nitric acid and ammonia permeation tubes by UV optical absorption. Environmental Science and Technology, 37(13), 2975-2981. doi: 10.1021/es0264221 Neuman, J. A., Trainer, M., Brown, S. S., Min, KE., Nowak, J. B., Parrish, D. D., Veres, P. R. (2016). HONO emission and production determined from airborne measurements over the Southeast U.S. Journal of Geophysical Research, 121(15), 9237-9250. doi: 10.1002/2016JD025197
 894 895 896 897 898 899 900 901 901 902 903 904 905 906 907 	 an infortant source of HONO in the femote atmosphere in Cyprus. Atmospheric Chemistry and Physics, 18(2), 799–813. doi: 10.5194/acp-18-799-2018 Monge, M. E., D'Anna, B., & George, C. (2010). Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces - an air quality remediation process? Physical Chemistry Chemical Physics, 12(31), 8991–8998. doi: 10.1039/b925785c Neuman, J. A., Ryerson, T. B., Huey, L. G., Jakoubek, R., Nowak, J. B., Simons, C., & Fehsenfeld, F. C. (2003). Calibration and evaluation of nitric acid and ammonia permeation tubes by UV optical absorption. Environmental Science and Technology, 37(13), 2975–2981. doi: 10.1021/es0264221 Neuman, J. A., Trainer, M., Brown, S. S., Min, KE., Nowak, J. B., Parrish, D. D., Veres, P. R. (2016). HONO emission and production determined from airborne measurements over the Southeast U.S. Journal of Geophysical Research, 121(15), 9237–9250. doi: 10.1002/2016JD025197 Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Trebs, I.

909	spheric reactive nitrogen. Science, $341(6151)$, $1233-1235$. doi: $10.1126/$
910	science.1242266
911	Pitts, J., Sanhueza, E., Atkinson, R., Carter, W., Winer, A., Harris, G. W., & Plum,
912	C. (1984). An investigation of the dark formation of nitrous acid in environ-
913	mental chambers. International Journal of Chemical Kinetics, 16, 919–939.
914	doi: 10.1002/kin.550160712
915	Platt, U., & Stutz, J. (2008). Differential Optical Absorption Spectroscopy. Berlin,
916	Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-540-75776-4
917	Pollack, I. B., Lerner, B. M., & Ryerson, T. B. (2010). Evaluation of ultraviolet
918	light-emitting diodes for detection of atmospheric NO2 by photolysis - Chemi-
919	luminescence. Journal of Atmospheric Chemistry, 65(2-3), 111–125. doi:
920	10.1007/s10874-011-9184-3
921	Pusede, S. E., VandenBoer, T. C., Murphy, J. G., Markovic, M. Z., Young, C. J.,
922	Veres, P. R., Cohen, R. C. (2015). An Atmospheric Constraint on the NO
923	2 Dependence of Daytime Near-Surface Nitrous Acid (HONO). Environmental
924	Science and Technology, $49(21)$, 12774–12781. doi: 10.1021/acs.est.5b02511
925	Ramazan, K. A., Syomin, D., & Finlayson-Pitts, B. J. (2004). The photochemi-
926	cal production of HONO during the heterogeneous hydrolysis of NO2. Physical
927	Chemistry Chemical Physics, $6(14),3836-3843.$ doi: 10.1039/b402195a
928	Ren, X., Harder, H., Martinez, M., & Lesher, R. (2003). HOx concentrations and
929	OH reactivity observations in New York City during PMTACS-NY2001. Atmo-
930	spheric Environment, 37(26), 3627–3637. doi: 10.1016/S1352-2310(03)00460
931	-6
932	Ren, X., Sanders, J. E., Rajendran, A., Weber, R. J., Goldstein, A. H., Pusede,
933	S. E., Cohen, R. C. (2011). A relaxed eddy accumulation system for mea-
934	suring vertical fluxes of nitrous acid. Atmospheric Measurement Techniques,
935	4(10), 2093–2103. doi: 10.5194/amt-4-2093-2011
936	Roberts, J. M., Veres, P., Warneke, C., Neuman, J. A., Washenfelder, R. A., Brown,
937	S. S., de Gouw, J. (2010). Measurement of HONO, HNCO, and other inor-
938	ganic acids by negative-ion proton-transfer chemical-ionization mass spectrom-
939	etry (NI-PT-CIMS): application to biomass burning emissions. Atmospheric
940	Measurement Techniques, $3(4)$, 981–990. doi: 10.5194/amt-3-981-2010
941	Ryerson, T. B., Andrews, A. E., Angevine, W. M., Bates, T. S., Brock, C. A.,

-38-

942	Cairns, B., Wofsy, S. C. (2013). The 2010 California Research at the Nexus
943	of Air Quality and Climate Change (CalNex) field study. Journal of Geophysi-
944	cal Research: Atmospheres, 118(11), 5830–5866. doi: 10.1002/jgrd.50331
945	Sakamaki, F., Hatakeyama, S., & Akimoto, H. (1983). Formation of nitrous acid and
946	nitric oxide in the heterogeneous dark reaction of nitrogen dioxide and water
947	vapor in a smog chamber. International Journal of Chemical Kinetics, 15,
948	1013–1029. doi: 10.1002/kin.550151006
949	Sandu, A., & Sander, R. (2006). Technical Note: Simulating Chemical Systems
950	in Fortran 90 and Matlab with the Kinetic PreProcessor KPP-2.1. $\ensuremath{Atmospheric}$
951	Chemistry and Physics, $6(1)$, 187–195. doi: https://doi.org/10.5194/acp-6-187
952	-2006
953	Sarwar, G., Roselle, S. J., Mathur, R., Appel, W., Dennis, R. L., & Vogel, B. (2008).
954	A comparison of CMAQ HONO predictions with observations from the North-
955	east Oxidant and Particle Study. Atmospheric Environment, 42(23), 5760–
956	5770. doi: 10.1016/j.atmosenv.2007.12.065
957	Scharko, N. K., Schütte, U. M. E., Berke, A. E., Banina, L., Peel, H. R., Donaldson,
958	M. a., Raff, J. D. (2015). Combined flux chamber and genomics approach
959	links nitrous acid emissions to ammonia oxidizing bacteria and archaea in
960	urban and agricultural soil. Environmental Science & Technology, $49(23)$,
961	13825–13834. doi: $10.1021/acs.est.5b00838$
962	Shetter, R. E., & Müller, M. (1999). Photolysis frequency measurements using ac-
963	tinic flux spectroradiometry during the PEM-Tropics mission: Instrumentation
964	description and some results. Journal of Geophysical Research: Atmospheres,
965	104(D5), 5647-5661. doi: 10.1029/98JD01381
966	Simpson, D., Andersson, C., Christensen, J. H., Engardt, M., Geels, C., Nyiri, A.,
967	Langner, J. (2014). Impacts of climate and emission changes on nitro-
968	gen deposition in Europe: A multi-model study. Atmospheric Chemistry and
969	<i>Physics</i> , $14(13)$, 6995–7017. doi: 10.5194/acp-14-6995-2014
970	Stemmler, K., Ammann, M., Donders, C., Kleffmann, J., & George, C. (2006). Pho-
971	to sensitized reduction of nitrogen dioxide on humic acid as a source of nitrous
972	acid. Nature, 440(7081), 195–198. doi: 10.1038/nature04603
973	Stemmler, K., Ndour, M., Elshorbany, Y., Kleffmann, J., D'Anna, B., George, C.,
974	Ammann, M. (2007). Light induced conversion of nitrogen dioxide into nitrous

975	acid on submicron humic acid aerosol. Atmospheric Chemistry and Physics,
976	7(16), 4237–4248. doi: 10.5194/acp-7-4237-2007
977	Stutz, J., Wong, K. W., Lawrence, L., Ziemba, L., Flynn, J. H., Rappenglück,
978	B., & Lefer, B. (2010). Nocturnal NO3 Radical Chemistry in Hous-
979	ton, TX. Atmospheric Environment, $44(33)$, 4099–4106. doi: 10.1016/
980	j.atmosenv.2009.03.004
981	Su, H., Cheng, Y., Oswald, R., Behrendt, T., Trebs, I., Meixner, F. X., Pöschl,
982	U. (2011). Soil nitrite as a source of atmospheric HONO and OH radicals.
983	Science, $333(6049)$, 1616–1618. doi: 10.1126/science.1207687
984	Svensson, R., Ljungström, E., & Lindqvist, O. (1987). Kinetics of the reaction be-
985	tween nitrogen dioxide and water vapour. Atmospheric Environment, 21(7),
986	1529–1539. doi: 10.1016/0004-6981(87)90315-5
987	Thomas, J. L., Dibb, J. E., Huey, L. G., Liao, J., Tanner, D., Lefer, B., Stutz,
988	J. (2012). Modeling chemistry in and above snow at Summit, Greenland –
989	Part 2: Impact of snowpack chemistry on the oxidation capacity of the bound-
990	ary layer. Atmospheric Chemistry and Physics, 12(14), 6537–6554. doi:
991	10.5194/acp-12-6537-2012
992	Thomas, J. L., Stutz, J., Lefer, B., Huey, L. G., Toyota, K., Dibb, J. E., & von
993	Glasow, R. (2011). Modeling chemistry in and above snow at Summit, Green-
994	land – Part 1: Model description and results. Atmospheric Chemistry and
995	Physics, $11(10)$, 4899–4914. doi: 10.5194/acp-11-4899-2011
996	Toyota, K., Dastoor, A. P., & Ryzhkov, A. (2014). Air-snowpack exchange of
997	bromine, ozone and mercury in the springtime Arctic simulated by the 1-D
998	model PHANTAS - Part 2: Mercury and its speciation. Atmospheric Chem-
999	istry and Physics, 14(8), 4135–4167. doi: 10.5194/acp-14-4135-2014
1000	Trick, S. (2004). Formation of Nitrous Acid on Urban Surfaces - a physical chemical
1001	perspective (Unpublished doctoral dissertation).
1002	Tsai, C., Spolaor, M., Fedele Colosimo, S., Pikelnaya, O., Cheung, R., Williams, E.,
1003	Stutz, J. (2018). Nitrous acid formation in a snow-free wintertime pol-
1004	luted rural area. Atmospheric Chemistry and Physics, 18(3), 1977–1996. doi:
1005	10.5194/acp-18-1977-2018
1006	Tsai, C., Wong, C., Hurlock, S., Pikelnaya, O., Mielke, L. H., Osthoff, H. D.,

1008	in the Los Angeles Basin. Journal of Geophysical Research, 119(22), 13004–
1009	13025. doi: 10.1002/2014JD022171
1010	VandenBoer, T. C., Brown, S. S., Murphy, J. G., Keene, W. C., Young, C. J.,
1011	Pszenny, A. A. P., Roberts, J. M. (2013). Understanding the role of
1012	the ground surface in HONO vertical structure: High resolution vertical pro-
1013	files during NACHTT-11. Journal of Geophysical Research: Atmospheres, 118,
1014	10155–10171. doi: 10.1002/jgrd.50721
1015	VandenBoer, T. C., Young, C. J., Talukdar, R. K., Markovic, M. Z., Brown, S. S.,
1016	Roberts, J. M., & Murphy, J. G. (2015). Nocturnal loss and daytime source
1017	of nitrous acid through reactive uptake and displacement. Nature $Geoscience$,
1018	8(1), 55-60. doi: 10.1038/ngeo2298
1019	Veres, P. R., Roberts, J. M., Cochran, A. K., Gilman, J. B., Kuster, W. C., Hol-
1020	loway, J. S., De Gouw, J. (2011) . Evidence of rapid production of organic
1021	acids in an urban air mass. $Geophysical Research Letters, 38(17), 1-5.$ doi:
1022	10.1029/2011GL048420
1023	Veres, P. R., Roberts, J. M., Warneke, C., Welsh-Bon, D., Zahniser, M., Herndon,
1024	S., de Gouw, J. (2008) . Development of negative-ion proton-transfer
1025	chemical-ionization mass spectrometry (NI-PT-CIMS) for the measurement
1026	of gas-phase organic acids in the atmosphere. International Journal of Mass
1027	Spectrometry, 274 (1-3), 48–55. doi: 10.1016/j.ijms.2008.04.032
1028	Villena, G., Wiesen, P., Cantrell, C. A., Flocke, F., Fried, A., Hall, S. R., Kleff-
1029	mann, J. (2011). Nitrous acid (HONO) during polar spring in Barrow, Alaska:
1030	A net source of OH radicals? Journal of Geophysical Research, 116, D00R07.
1031	doi: 10.1029/2011JD016643
1032	Vogel, B., Vogel, H., Kleffmann, J., & Kurtenbach, R. (2003). Measured and
1033	simulated vertical profiles of nitrous acid - Part II. Model simulations and indi-
1034	cations for a photolytic source. Atmospheric Environment, $37(21)$, $2957-2966$.
1035	doi: 10.1016/S1352-2310(03)00243-7
1036	Volkamer, R., Sheehy, P., Molina, L. T., & Molina, M. J. (2010). Oxidative capacity
1037	of the Mexico City atmosphere – Part 1: A radical source perspective. $Atmo-$
1038	spheric Chemistry and Physics, $10(14)$, 6969–6991. doi: $10.5194/acp-10-6969$
1039	-2010
1040	von Glasow, R., Sander, R., Bott, A., & Crutzen, P. J. (2002a). Modeling halogen

1041	chemistry in the marine boundary layer 1. Cloud-free MBL. Journal of Geo-
1042	physical Research, $107(D17)$, 4341. doi: $10.1029/2001JD000942$
1043	von Glasow, R., Sander, R., Bott, A., & Crutzen, P. P. J. (2002b). Modeling halo-
1044	gen chemistry in the marine boundary layer 2. Interactions with sulfur and the
1045	cloud-covered MBL. Journal of Geophysical Research, 107(D17), 4323. doi:
1046	10.1029/2001 JD000943
1047	Wang, S., McNamara, S. M., Kolesar, K. R., May, N. W., Fuentes, J. D., Cook,
1048	R. D., Pratt, K. A. (2020). Urban Snowpack ClNO2 Production and Fate:
1049	A One-Dimensional Modeling Study. $ACS Earth and Space Chemistry, 4(7),$
1050	1140–1148. doi: 10.1021/acsearth spacechem.0c00116 $$
1051	Washenfelder, R. A., Wagner, N. L., Dube, W. P., & Brown, S. S. (2011). Mea-
1052	surement of atmospheric ozone by cavity ring-down spectroscopy. Environmen-
1053	tal Science and Technology, $45(7)$, 2938–2944. doi: 10.1021/es103340u
1054	Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., & Liao, J. (2016). The
1055	framework for 0-D atmospheric modeling (F0AM) v3.1. Geoscientific Model
1056	Development, 9(9), 3309-3319. doi: 10.5194/gmd-9-3309-2016
1057	Wong, K., Oh, HJ., Lefer, B. L., Rappenglück, B., & Stutz, J. (2011). Vertical
1058	profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX. At -
1059	mospheric Chemistry and Physics, $11(8)$, $3595-3609$. doi: $10.5194/acp-11-3595$
1060	-2011
1061	Wong, K., Tsai, C., Lefer, B., Grossberg, N., & Stutz, J. (2013). Modeling of day-
1062	time HONO vertical gradients during SHARP 2009. Atmospheric Chemistry
1063	and Physics, 13(7), 3587–3601. doi: 10.5194/acp-13-3587-2013
1064	Wong, K., Tsai, C., Lefer, B., Haman, C., Grossberg, N., Brune, W., Stutz,
1065	J. (2012). Daytime HONO vertical gradients during SHARP 2009 in
1066	Houston, TX. Atmospheric Chemistry and Physics, 12(2). doi: 10.5194/
1067	acp-12-635-2012
1068	Ye, C., Gao, H., Zhang, N., & Zhou, X. (2016). Photolysis of nitric acid and ni-
1069	trate on natural and artificial surfaces. Environmental Science and Technology,
1070	50(7), 3530-3536. doi: $10.1021/acs.est.5b05032$
1071	Ye, C., Zhang, N., Gao, H., & Zhou, X. (2019). Matrix effect on surface-catalyzed
1072	photolysis of nitric acid. Scientific Reports (October 2018), 1–10. doi: 10.1038/
1073	s41598-018-37973-x

1074	Young, C. J., Washenfelder, R. A., Roberts, J. M., Mielke, L. H., Osthoff, H. D.,
1075	Tsai, C., Brown, S. S. (2012). Vertically resolved measurements of night-
1076	time radical reservoirs in Los Angeles and their contribution to the urban
1077	radical budget. Environmental Science & Technology, 46(20), 10965–10973.
1078	doi: $10.1021/es302206a$
1079	Zhang, N., Zhou, X., Bertman, S., Tang, D., Alaghmand, M., Shepson, P. B., &
1080	Carroll, M. a. (2012). Measurements of ambient HONO concentrations
1081	and vertical HONO flux above a northern Michigan forest canopy. At -
1082	mospheric Chemistry and Physics Discussions, 12(3), 7273–7304. doi:
1083	10.5194/acpd-12-7273-2012
1084	Zhang, N., Zhou, X., Shepson, P. B., Gao, H., Alaghmand, M., & Stirm, B. (2009).
1085	Aircraft measurement of HONO vertical profiles over a forested region. Geo-
1086	physical Research Letters, $36(15)$, L15820. doi: 10.1029/2009GL038999
1087	Zheng, W., Flocke, F. M., Tyndall, G. S., Swanson, A., Orlando, J. J., Roberts,
1088	J. M., Tanner, D. J. (2011). Characterization of a thermal decomposition
1089	chemical ionization mass spectrometer for the measurement of peroxy acyl ni-
1090	trates (PANs) in the atmosphere. Atmospheric Chemistry and Physics, $11(13)$,
1091	6529–6547. doi: 10.5194/acp-11-6529-2011
1092	Zhou, X., Civerolo, K., Dai, H., Huang, G., Schwab, J., & Demerjian, K. (2002).
1093	Summertime nitrous acid chemistry in the atmospheric boundary layer at a ru-
1094	ral site in New York State. Journal of Geophysical Research, 107(D21), 4590.
1095	doi: 10.1029/2001JD001539
1096	Zhou, X., Gao, H., He, Y., Huang, G., Bertman, S., Civerolo, K., & Schwab, J.
1097	(2003). Nitric acid photolysis on surfaces in low-NOx environments: Significant
1098	atmospheric implications. Geophysical Research Letters, $30(23)$, 2217. doi:
1099	10.1029/2003GL018620
1100	Zhou, X., Huang, G., Civerolo, K., Roychowdhury, U., & Demerjian, K. L. (2007).
1101	Summertime observations of HONO, HCHO, and O_3 at the summit of White-
1102	face Mountain, New York. Journal of Geophysical Research, 112, D08311. doi:
1103	10.1029/2006 JD007256
1104	Zhou, X., Zhang, N., TerAvest, M., Tang, D., Hou, J., Bertman, S., Stevens,
1105	P. S. (2011). Nitric acid photolysis on forest canopy surface as a source
1106	for tropospheric nitrous acid. Nature Geoscience, $4(6)$, 400–443. doi:

-43-

1107 10.1038/ngeo1164