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We demonstrate the self-propulsion of a volatile drop on the surface of a bath of an immiscible liq-
uid. Evaporative heat pumping is converted into directed motion through thermo-capillary stresses,
which arise from the coupling between surface-tension-driven flows and temperature advection. A
propulsive force arises from convection-sustained temperature gradients along the drop interface,
resulting in a warmer pool of liquid being advected by the hydrodynamic flow in the underlying
bath toward the back of the drop. The dependence of the drop speed on the activity source, i.e. the
evaporation flux, is derived with scaling arguments and captures the experimental data.

Drop evaporation is a key phenomenon in industrial and
healthcare applications such as inkjet printing, aerosol dy-
namics and disease transmission [1, 2]. Evaporation is also
involved in everyday life phenomena, as the levitation of
droplets above a cup of hot tea [3, 4], the Leidenfrost [5]
and the coffee-stain effects [6]. When evaporation is forced
by a hot substrate, drops may levitate [4, 5, 7] and even
self-propel on the asymmetric vapor layer separating them
from the substrate [8]. Drop self-propulsion may also occur
in liquid bulk due to surface-tension gradients located at
the drop’s interface and known as Marangoni gradients [9].
These gradients usually have solutal origin and are often de-
rived from theoretical postulates since they are difficult to
probe [10–14]. The free surface of a liquid bath is a suitable
platform for the self-propulsion of artificial bodies [15–19],
including drops [20–22], and enable direct probing of flows
[15, 23, 24] and concentration gradients [18]. Furthermore,
recent works demonstrated that when a liquid free surface
hosts a volatile immiscible liquid, evaporation is sponta-
neously converted into Marangoni gradients [25, 26].

In this Letter, we demonstrate that the evaporation of
a volatile drop floating on a liquid bath is converted into
drop propulsion. We benefit from the drop location at the
interface to experimentally characterize the surface temper-
ature field, and thus Marangoni gradients, hydrodynamic
flows and evaporation flux, which is the activity source.
This allows us to rationalize the coupling between ther-
mal transfers and hydrodynamic flows that govern self-
propulsion. Evaporative cooling engenders thermocapillary
stresses and propulsion is triggered by a thermocapillary
convective instability. Asymmetric stresses emerge on the
drop interface as a result of the nonlinear interplay between
Marangoni flow and temperature advection, which sponta-
neously breaks the symmetry of the drop temperature field.
Temperature gradients are convection-sustained and give
rise to a propulsive force via the permanent advection of
warmer liquid from the underlying bath toward the back of
the drop.

The experimental system consists of a drop of volatile

Figure 1. Self-propulsion behaviors of volatile drops on liquid
baths. First behavior: (a) the trajectory is erratic with l <∼ R
(top view) when the drop is in contact with air; (b) schematic
side view, not to scale. Second behavior: (c) the trajectory is
straighter with l � R (top view) when a film of liquid 2 covers
the drop; (d) schematic side view. (a) Drop of 90%v/v ethanol in
water. (c) Ethanol drop. (a,c) Silicone oil bath with η2 = 0.097
Pa.s.

liquid (liquid 1) floating on a bath of immiscible liquid (liq-
uid 2) (Fig. 1). We denote ρ1(ρ2), γ1(γ2) and η1(η2) the
density, surface tension and dynamic viscosity of liquid 1
(liquid 2), respectively. γ12 is the interfacial tension be-
tween liquid 1 and 2. We tested different liquid pairs and
drop sizes (Sec. I in [27]) and observed that all drops ini-
tially stay still for ∼ 1 minute, then spontaneously set into
motion with speed v ∼ 0.01 − 0.1 mm.s−1. As a result, it
may take several minutes to detect the drop displacement
with the naked eye. We focused on pancake-like drops with
R ∼ 1 cm and h ∼ 1 mm, where h is the drop thickness
(Fig. 1), the shape of which is due to the dominant effect
of gravity with respect to capillarity [28]. The bath depth
was fixed to H = 10 cm.
We identified two propulsion behaviors differing in the tra-
jectory’s features. In the first, the drop motion is erratic
with persistence length l <∼ R (Fig. 1(a)), where l defines
the typical distance over which the active particle loses
information about its initial orientation [29]. In the sec-
ond, the trajectory is straighter with l � R and the drop
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achieves a stationary speed after a transient acceleration
phase (Fig. 1(c)). The second behavior is observed when
a film of liquid 2 coats the drop. This film substantially
attenuates surface temperature fluctuations, which are re-
sponsible for the erratic motion in the first behavior (Sec.V
and Supplemental Movies 1, 2 in [27]). The presence of the
film thus makes the system more tractable both experimen-
tally and theoretically.

We focus on the second type of behavior and choose the
pair ethanol/silicone oil (liquid properties in Sec.I in [27]).
Thermal imaging and particle tracking velocimetry (PTV)
(Secs. III, IV in [27]) were used to characterize the system
temperature and velocity fields during the static (Fig. 2(a-
c)) and steady propulsion (Fig. 2(d-f)) phases for η2 = 0.097
Pa.s. Once the drop is deposited onto the bath, the silicone-
oil film develops on its surface within ∼ 100 ms and ethanol
pervaporates by diffusing through the film (Fig. 2(c)). The
drop cools down and displays axisymmetric flow and tem-
perature fields (Fig. 2(a,b)), with average radial tempera-
ture gradient (T++−T−−)/R > 0, where T++−T−− ' 5 K
(Fig. 2(b,c)). T++ and T−− denote the highest and low-
est temperature in the system throughout its dynamics.
Two inward flows develop close to the upper and lower in-
terfaces and an outward flow develops in the drop’s bulk
(Fig. 2(a,c)). Flow reversal occurs at the drop’s axis of sym-
metry (Oz). In the oil, the flow is inward near the drop’s
lower interface and deviates downward in the vicinity of
the drop’s axis of symmetry (Fig. 2(a,c)). These flows are
driven by interfacial stresses arising from the variation of
interfacial tension with temperature along the radial direc-
tion. These Marangoni stresses are denoted ∇(0)(γ12 + γ2)

and∇(0)γ12 for the upper and lower interfaces, respectively,
and are directed toward the drop’s center (Fig. 2(c)). The
index (0) refers to the flow generated by these stresses,
which remains the base flow throughout the drop dynam-
ics.
About one minute after drop deposition, thermal images
reveal a symmetry breaking of the temperature field. A
crescent-like cold patch with average temperature T−−

appears in the vicinity of the drop horizontal contour
(Fig. 2(e)). The angular extension of the patch, α, in-
creases with time up to a stationary value αmax (Fig. 3(c)).
PTV shows that the zone of flow reversal shifts accord-
ingly (Fig. 2(d,f)). Correspondingly, the drop starts mov-
ing in the direction opposite to the displacement of the
patch, along the average temperature gradient (x̂ direction
in Fig. 2(e,f)).

In order to rationalize the mechanics of self-propulsion,
we note that the Reynolds number comparing advection
to viscous transport of momentum in the bath is Re =
ρ2vR/η2 ∼ 10−2 with η2 =0.1 Pa.s. We thus use the Stokes
equation and describe the global flow during the stationary
propulsion (Fig. 2(d,f)) as the superposition of an order (0)
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Figure 2. Static symmetric (a-c) and propulsive asymmetric
(d-f) state of an ethanol drop on a bath of silicone oil. (a,d)
Streamlines resulting from 15 seconds of PTV (side view). (b,e)
Surface temperature field (top view), with T++ > T+ > T− >
T−−. (c,f) Side view schematics. White arrows indicate flows.
Blue and red arrows indicate Marangoni stresses associated to
base and perturbed flow, respectively. (e,f) Dashed lines delimit
the control volume used for the force balance. (a,d) R = 4.0 mm.
(b,e) R = 8.0 mm. η2 = 0.097 Pa.s.

symmetric flow and an order (1) perturbation flow. The
order (1) flow is associated to the average temperature dif-
ference ∆T = T++−T+ ' 1 K between the fore and the aft
of the drop. ∆T induces Marangoni stresses at the upper
and lower interfaces that drag liquid from the fore to the
aft, and are responsible for the displacement of the region
of flow reversal (Fig. 2(f)).
We develop our model in the laboratory frame of refer-
ence. In order to derive a scaling law for the drop sta-
tionary speed, we consider the x-component of the forces
experienced by a cylindrical control volume of radius R and
thickness h containing the drop (Fig. 2(e,f)). These forces
arise as a result of the perturbative flow outside the drop,
which is the sum of two flows (Fig. 2(f)).
The first flow is the Stokes flow associated with the
motion of a viscous disc in a quiescent fluid without
Marangoni effect [30, 31]. This yields the Stokes viscous
drag FSt ∼ −η2Rvs < 0 [32], with constant prefactor as
(h/R), (η1/η2) � 1 [30, 31, 33]. We denote uSt > 0 the
characteristic velocity of the Stokes flow in the x̂ direction
close to the lower interface in liquid 2 (Fig. 2(f)).
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The second flow is due to the Marangoni stresses at the in-
terface of a drop that is at rest with respect to the bath. We
denote ∇(1)γ2 and ∇(1)γ12 the gradients at the upper and
lower interfaces, respectively, which generate two forces. A
first force is the result of the inhomogeneous, radial and out-
wardly pulling tension γ2[T (θ)] due to azimuthal tempera-
ture variations. It applies to the closed contour C (Fig. 2(e))
and reads

Fcam =

∮
C
γ2 · x̂ dl =

∫
S
∇(1)γ2 · x̂ dS ∼ −

|dγ/dT |∆T
R

πR2,

(1)
where S is the area of the upper side of the control vol-
ume (Fig. 2(e)). Here and in the following we assume
|dγ/dT | ∼ |dγ2/dT | ∼ |dγ12/dT | [34] (Sec.I [27]). Fcam is
the thermal analog of the force that drives camphor boats
towards zones with lower surfactant concentration [35], but
here Fcam < 0 opposes the drop motion.
A second force results from the Marangoni stress ∇(1)γ12 at
the drop’s lower interface, which induces a viscous stress re-
sponse in the underlying bath that is oriented in the drop’s
direction of motion. The drop gains traction from the bath
in order to propel. We denote u(1)

M < 0 the characteristic
velocity of the perturbed flow in the x̂ direction close to the
lower interface in liquid 2 (Fig. 2(f)). This flow produces
a strain rate ∼ |u(1)

M |/R [36] and the resulting force on the
lower side of the control volume reads

Fprop ∼ η2
|u(1)

M |
R
· πR2. (2)

The problem is thus reduced to computing u
(1)
M . In our

experiments, viscous stress inside the drop is negligible with
respect to its counterpart in the outer liquid, η1/h� η2/R.
Therefore, the continuity of stresses at the lower interface
yields u(1)

M ∼ −|dγ/dx|R/η2 ∼ −|dγ/dT |∆T/η2 (Sec.VI in
[27]). Substituting this expression in (2) we obtain Fprop ∼
|dγ/dT |∆TR > 0. Fprop has the same scaling as Fcam, but
opposite direction. Since the drop is moving in the direction
of Fprop, we may write Fprop + Fcam ∼ |dγ/dT |∆TR > 0.
A scaling for the stationary speed is derived by balancing
this expression with FSt, which yields

vs ∼
∣∣∣∣ dγdT

∣∣∣∣ ∆T

η2
. (3)

In order to derive a scaling for ∆T , we analyze how evap-
oration energy is converted into liquid motion. We simul-
taneously measured the drop speed v(t), the angular exten-
sion of the cold patch α(t) and the evaporation flux J(t)
for drop volume V = 0.4 ml and η2 = 0.097 Pa.s (Fig. 3).
The drop is deposited on the bath at t = 0 s and starts
moving at t = 74 s. After a transient regime of accelera-
tion, the drop achieves a stationary speed vs. We measure
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Figure 3. Time evolution of drop speed, evaporation flux and
temperature field. (a) (∗) Experimental drop speed v(t), with
vs the stationary speed. The solid line (-) results from (5) com-
bined with the evaporation flux J(t) in (b). (b) Experimental
evaporation flux J(t) (−) and angular extension α(t) (+) of the
cold patch. Js is the stationary evaporation flux and αmax is
the maximum angle. jdiff

air is the diffusive evaporation flux of an
ethanol disk with radius R. (c) Temporal evolution of the sur-
face temperature field (Supplemental Movie 1 [27]). The dashed
line delimits the upper side of the control volume in the transient
regime. R = 8.0 mm, η2 = 0.097 Pa.s.

J(t) = −dV (t)/dt/A(t), where A(t) = πR2(t) is the area
and V (t) = hA(t) is the drop volume (Sec.II [27]). v(t),
α(t) and J(t) exhibit similar time scales of evolution toward
the stationary regime, which suggests that v(t) is correlated
to α(t) and J(t).
We focus on the stationary regime and calculate how vs
scales with the thermal evaporation flux, ρ1LvJs, where
Lv is the latent heat of evaporation of ethanol. We per-
form a thermal flux balance to relate ∆T to the heat flux
of evaporation. u

(1)
b = u

(1)
M + uSt < 0 is the characteris-

tic velocity of the perturbed flow in the x̂ direction. Heat
transport in the bath is governed by two processes, con-
vection and diffusion, the relative importance of which is
quantified by a thermal Péclet number for each component
of the flow, Pe(0) = Ru

(0)
b /Dth and Pe(1) = Ru

(1)
b /Dth.

Dth = λ2/ρ2Cp is the thermal diffusion coefficient, with Cp

and λ2 the thermal capacity and conductivity of silicone
oil. For R ≈ 8 mm and measured velocities u(0)

b ≈ 0.13



4

mm.s−1 and u
(1)
b ≈ 0.05 mm.s−1 for η2 = 0.097 Pa.s, we

obtain Pe(0) ≈ 9 and Pe(1) ≈ 4, which suggest that con-
vection is dominant. The temperature difference ∆T is sus-
tained by the cooling of fluid particles that move backward
in the vicinity of the drop’s upper interface, driven by the
thermal evaporative flux ρ1LvJs. This temperature differ-
ence induces thermal convection in the underlying bath,
ρ2Cp∆T |u(1)

b |, from the fore towards the aft of the drop.
The heat flux balance reads

ρ2 Cp ∆T |u(1)
b | = c ρ1Lv Js, (4)

where c represents the fraction of thermal evaporation flux
that is converted into the convective heat flux of the per-
turbed flow. By substituting u

(1)
b ≈ 0.05 mm.s−1, Js =

1.2 × 10−6 m.s−1 and ∆T ' 1 K from experiments in (4),
we found c = 0.08, which suggests that the evaporation flux
is not modified by the drop propulsion at leading order.
Furthermore, we note that uSt ∼ vs for Stokes flow past a
viscous body in the limit η1/η2 � 1 [32]. Since u(1)

M and vs
have the same scaling (cf.(3)) then u(1)

b ∼ −|dγ/dT |∆T/η2.
We thus obtain ∆T ∼ [η2ρ1LvJs/ρ2Cp|dγ/dT |]1/2, that
combined with (3) yields the scaling of the drop sta-
tionary speed with the stationary evaporation flux vs ∼
[ρ1|dγ/dT |LvJs/ρ2η2Cp]

1/2
.

We now focus on the transient regime, characterized by
an increasing angular extension α(t) of the cold crescent
over the typical time τ ∼ 100 s (Fig. 3(b,c)). Since τ is
much larger than the time scale of viscous diffusion of mo-
mentum in the bath, τv = ρ2R

2/η2 ∼ 1 s, we consider
the velocity field in the bath as quasi-stationary. Conse-
quently, the scaling of vs can be extended to the transient
regime by considering a geometrical factor g[α(t)] that takes
into account the time evolution of the cold crescent-like
patch (Fig. 3(c)). During the transient regime, ∇(1)γ2 and
∇(1)γ12 apply to the area Str(α) = 2g(α)R2 at the upper
and lower side, respectively, of a time-varying control vol-
ume with g(α) = α/2 + cos(α/2) sin(α/2). Str is a fraction
of the total drop surface πR2 and its contour is represented
in Fig. 3(c). A force balance on the time-varying control
volume gives

v(t) = βg(α)

[
ρ1 |dγ/dT | Lv J(t)

ρ2 η2 Cp

]1/2

. (5)

Using the experimental J(t) in Fig. 3(b) this expression
yields a reasonable fit to the experimental speed with β =
0.087 (red line in Fig. 3(a)). For α = αmax we recover the
stationary regime.

We now elucidate the nature of the activity source, i.e.
the evaporation flux J . Drop evaporation is limited by va-
por transport in air. The measured evaporation flux ex-
ceeds the diffusive flux of evaporation of an ethanol disk

(a) (b)
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Figure 4. Relation between drop speed vs and evaporation flux
Js in the stationary regime. (a) vs vs. bath viscosity η2. Lines
represent the scaling in (6) combined with the fits in the inset.
Inset: lines represent fits of aη2+b. R = 4.0mm: (?), continuous
lines and (a, b) = (4.1 × 10−7 m.s−1, 9.2 × 10−8 m.Pa). R =
8.0 mm: (o), dashed lines and (a, b) = (3.3 × 10−7 m.s−1, 7.1 ×
10−8 m.Pa). (b) Side view schematic. White arrows indicate
flows.

with radius R, jdiff
air = 4D1ρsat/πRρ1 [37], where ρsat is

the saturation vapor density and D1 is the diffusion co-
efficient of ethanol in air (Fig. 3(b)). This suggests that
both diffusion and convection are involved in the evapo-
ration process (Fig. 4(b)). The magnitude of the evap-
orative flux is determined by the order (0) flows associ-
ated to the temperature difference T++ − T−− ' 5 K,
which differs by no more than 1 K across bath viscosi-
ties. Convection in the air is driven by the drop upper
interfacial flow, the speed of which can be tuned by vary-
ing the bath viscosity η2. We measured the variation of
Js and vs with η2 for drops with radii R = 4.0 mm and
R = 8.0 mm (Fig. 4). η2Js is an affine function of η2 (in-
set Fig. 4(a)), thus Js = a + b/η2. We identify a as the
diffusive term and b/η2 as the convective term. Their de-
coupling is typical for mass or heat transfer from a body im-
mersed in a flow with low Re and Pe up to O(1) [38]. The
order of magnitude of the fitting parameter a (Fig. 4(a))
is captured by jair

diff = {6.4 × 10−7 ; 3.2 × 10−7} m.s−1 for
R = {4.0 ; 8.0} mm. The term b/η2 results from a non-
trivial coupling between the inner and outer flow through
Marangoni stresses at the drop interface (Sec.VII [27]). The
dependence on 1/η2 is a signature of the dominant effect of
outer shear stress over inner drop recirculation on the in-
terfacial velocity for η2 � η1. The combination of the fit
Js = a + b/η2 with (5) with fixed β = 0.087 and g(αmax)
yields

vs = β g(αmax)

[
ρ1 |dγ/dT | Lv (a+ b/η2)

ρ2 η2 Cp

]1/2

, (6)

which captures the dependence of the stationary speed on
bath viscosity (Fig. 4(a)). This result demonstrates that
both diffusion and convection are involved in the drop ac-
tivity. Furthermore, equation (6) captures the experimental
data for both radii. The dependence of drop speed on ra-
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dius is contained in the evaporative flux Js, which decreases
with R. This is discussed in detail in Supplemental Mate-
rial along with the dependence of self-propulsion on bath
depth (Secs. VIII, IX in [27]).

We investigated the spontaneous motion of a volatile
drop on a liquid bath. This system allows direct probing
of the physical origin of surface-tension gradients, which
is quite unique in the context of active drops [11–13] and
has allowed us to rationalize the propulsion mechanism. A
propulsive force results from Marangoni stresses that arise
at the drop’s lower interface from convection-sustained tem-
perature gradients. The direction of motion is opposite to
the interfacial tension gradients and thus to a Marangoni
surfer [17, 35, 39]. Since the drop develops tangential
stresses in order to propel, it can be considered a two-
dimensional squirmer [40–42]. A recent work has shown
that the combination of evaporation-induced wetting tran-
sition and Marangoni stresses of solutal origin triggers the
spontaneous emulsification of a volatile drop on the surface
of a liquid bath [26]. Spontaneous emulsification and self-
propulsion are the two essential ingredients for the design
of interfacial active emulsions [42].

B.R. and G.P. thank the program CNRS Momentum for
its support. The authors thank Isabelle Cantat and Adrien
Bussonnière for useful discussions.
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