
SUPPLEMENTARY MATERIAL
to
“Steady state of the KPZ equation in an interval and
Liouville quantum mechanics”

Guillaume Barraquand1 and Pierre Le Doussal1
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1. Edwards-Wilkinson limit

Consider the measure DX̃e−S[X̃] for the rescaled process, up to a normalization, given in Eq.(28) in the
Letter, and let us rewrite it in the equivalent form

S[X̃] =
∫ 1

0
dx̃

(
dX̃(x̃)
dx̃

)2

+ (ũ+ ṽ)√
L

log
(√

L

∫ 1

0
dx̃ e−2

√
LX̃(x̃)

)
+ 2ṽX̃(1), (1)

with X̃(0) = 0 and X̃(1) free. For L→ 0, S[X̃] can be expanded as

S[X̃] =
∫ 1

0
dx̃

(
dX̃(x̃)
dx̃

)2

+ (ũ+ ṽ)√
L

log
(

1− 2
√
L

∫ 1

0
dx̃ X̃(x̃) + 2L

∫ 1

0
dx̃X̃(x̃)2 + . . .

)
+2ṽX̃(1), (2)
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Fig. 1: Steady-state of the Edwards-Wilkinson equation on the interval [0, 1], depicted here for ũ = ṽ > 0. It is
given by a parabola plus a standard Brownian motion – see (6).

where we do not keep track of constant terms which are absorbed in the normalization. To the leading
order as L→ 0, we obtain

S[X̃] '
∫ 1

0
dx̃

(
dX̃(x̃)
dx̃

)2

− 2(ũ+ ṽ)
∫ 1

0
dx̃ X̃(x̃) + 2ṽX̃(1) (3)

which we can rewrite, using integration by parts (and up to an irrelevant constant)

S[X̃] '
∫ 1

0
dx̃

(
dX̃(x̃)
dx̃

− ũ+ (ũ+ ṽ)x̃
)2

(4)

This is a Gaussian measure and one can write the convergence in distribution

X̃(x) =⇒ ũx̃− 1
2(ũ+ ṽ)x̃2 + 1√

2
B̃(x̃) (5)

where B̃(x̃) is a standard one sided Brownian motion with B̃(0) = 0. The mean profile of X̃(x̃) is thus
quadratic with a curvature proportional to −(ũ + ṽ). Thus the (rescaled) stationary height field H̃
converges to a parabola plus a Brownian motion,

H̃(x̃) =⇒ ũx̃− 1
2(ũ+ ṽ)x̃2 + B(x̃) (6)

where B(x̃) is another standard Brownian motion, as stated in the Letter.

Remark: The fact that the RHS of (6) is stationary for the EW equation can be shown by a
direct calculation [2] : First, by substracting a parabola, one may reduce to the case u = v = 0. Then,
we observe that starting from Brownian initial data, the height is a Gaussian process. Finally, using
the explicit form of the Green’s function of the heat equation with Neumann boundary conditions, the
spatial covariance can be computed explicitly and shown to be that of a Brownian motion.

2. Observables of the process X

Let us define, for any process X(x) with 0 6 x 6 L,

ZL[X] =
∫ L

0
dxe−2X(x). (7)

By definition, the average of any observable O[X] over the process X(x), defined in Eq. (5) of the Letter,
can be written in the following path integral forms

E [O[X]] = 1
Zu,v,L

∫
X(0)=0

DXO[X]e−
∫ L

0
dx( dX(x)

dx )2
e−2vX(L)ZL[X]−(u+v), (8)

= ev
2L

Zu,v,L

∫
X(0)=0

DXO[X]e−
∫ L

0
dx( dX(x)

dx +v)2
ZL[X]−(u+v). (9)
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where Zu,v,L is the normalisation. Equivalently, as in Eq. (7) of the Letter, it can be written as averages
over the Brownian motion in two equivalent forms

E [O[X]] = 1
Zu,v,L

EB
[
O[B]e−2vB(L)ZL[B]−(u+v)

]
= ev

2L

Zu,v,L
EB−v

[
O[B−v]ZL[B−v]−(u+v)

]
, (10)

where EB denotes the average over the one-sided Brownian motion of diffusion constant 1/2 (with B(0) =
0), i.e. B(x) = 1√

2B(x) where B(x) is the standard one-sided Brownian motion, and EB−v the average
over the one-sided Brownian motion of diffusion constant 1/2 with a drift −v, i.e. B−v(x) = 1√

2B(x)−vx.
The normalization is thus equal to the following expectations.

Zu,v,L = EB
[
e−2vB(L)ZL[B]−(u+v)

]
= ev

2LEB−v
[
ZL[B−v]−(u+v)

]
(11)

It admits a simple expression in some cases, we will give examples below.
It is interesting to note that the moments of ZL[X] for the process X can be expressed from the

normalization as (here k can be any real number)

E
[
ZL[X]k

]
= Zu−k,v
Zu,v

. (12)

A related property is that if we denote QBL (Z) the PDF of the variable Z = ZL[B−v] for the Brownian
B−v with diffusion coefficient 1/2 and drift −v, then the PDF QL(Z) of Z = ZL[X] for the process X(x)
is simply

QL(Z) = Cu,v,LQ
B
L (Z)Z−(u+v), (13)

where Cu,v,L is a normalization. One simple application, discussed in the Letter, is for the case v < 0.
Then we know that Z = ZL[B−v] has a limit distribution as L → +∞ given by an inverse Gamma law
1/Γ(−2v, 1)

QB+∞(Z) = 1
Γ(−2v)

1
Z1−2v e

−1/Z . (14)

If u > v, we see that Z = ZL[X] will also have a limit distribution for L→ +∞ given by another inverse
Gamma law 1/Γ(u− v, 1)

Q+∞(Z) = 1
Γ(u− v)

1
Z1+u−v e

−1/Z . (15)

One-point distribution of total height difference. Consider here the height difference between
the two boundaries of the interval. From Eq. (4) in the Letter we have

H(L)−H(0) =
√
L√
2
G+X(L) (16)

where G is an independent unit Gaussian random variable. From (10) choosing O[X] = δ(X(L) − Y ),
the PDF PL(Y ) of the random variable Y = X(L) is given by

PL(Y ) = E [δ(X(L)− Y )] = 1
Zu,v,L

EB
[
δ(B(L)− Y )e−2vB(L)ZL[B]−(u+v)

]
(17)

= 1
Zu,v,L

e−2vY e
−Y 2

L

√
πL

EB
[
ZL[B]−(u+v)

∣∣∣B(L) = Y
]

(18)

where the expectation value is over a Brownian motion B(x) with diffusion coefficient 1/2 and B(0) = 0,
conditioned to B(L) = Y . We give some simple explicit examples below.

An interesting property, which is a consequence of the form of the measure (10), is that the cumulants
(respectively the moments) of the random variable X(L) (i.e. the cumulants/moments of PL(Y ) denoted
〈Y n〉cL and 〈Y n〉L respectively) can be obtained from the normalisation. Indeed setting u+ v = w fixed
and taking successive derivatives w.r.t. v one obtains

〈Y n〉cL =
[(
− 1

2∂v
)n logZw−v,v,L

]∣∣
w=u+v , (19)

〈Y n〉L =
[

1
Zw−v,v,L

(
− 1

2∂v
)nZw−v,v,L]∣∣∣∣

w=u+v
. (20)
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3. Some explicit formulas

In this section we use our main result, i.e. Eqs. (4) and (5) in the Letter, to obtain some simple explicit
formulas in special cases.

3.1 The Brownian case
The simplest case is u+ v = 0, in which case one finds Zu,v = ev

2L and

PL(Y ) = 1√
πL

e−
(Y+vL)2

L (21)

which leads to H(L) − H(0) =
√
L√
2G +

√
L√
2G
′ + uL =

√
LG′′ + uL, as expected (here G and G′ are

independent unit Gaussian variables, and G′′ another unit Gaussian variable). More generally the process
X(x) has the same law as B−v(x) = Bu(x).

3.2 Normalisation
There is one case where Zu,v,L is trivial. For u = 1/2 and v = 0 one has from [3, Prop. 5.7]

Zu,v,L = EB
[
ZL[B]−1/2

]
= L−1/2. (22)

For u+ v = −n, where n is a positive integer, it is possible to obtain explicit expressions. One has from
[4] (with µ = −2v, β = 2, σ = 1/2, −βF0 = 2v ) or from [3, Thm 5.2] (with µ = 2v),

Zu,v,L = ev
2L

n∑
k=0

eLk(k+2v)(−1)n−k
(
n

k

)
(2k + 2v) Γ(k + 2v)

Γ(n+ 1 + k + 2v) . (23)

For instance, for n = 1, we have by (11)

Zu,v,L = EB

[∫ L

0
dxe−2vB(L)−2B(x)

]
=
∫ L

0
dxe(1+2v)x+v2L = ev

2L

1 + 2v (e(1+2v)L − 1) (24)

where the average is over a Brownian motion B(x) with B(0) = 0 and diffusion coefficient 1/2. It is
consistent with (23) for n = 1.

3.3 PDF of the total height difference
Similarly a direct calculation of PL(Y ) is possible for u+ v = −n, using (18). To this aim let us define
a Brownian bridge B(x) such that B(L) = Y , in terms of the standard Brownian bridge B̃(x), as

B(x) = Y

L
x+ 1√

2
B̃(x), B̃(x) = W (x)− x

L
W (L), E[B̃(x1)B̃(x2)] = min(x1, x2)− x1x2

L
, (25)

where W (x) is a standard Brownian with W (0) = 0.

Case u+ v = −1. One has

EB

[∫ L

0
dxe−2B(x)

]
=
∫ L

0
dxe−2YL x+x(1− x

L ) = 1
2
√
πLe

(L−2Y )2
4L

(
erf
(
L− 2Y

2
√
L

)
+ erf

(
L+ 2Y

2
√
L

))
(26)

Inserting in (18) and using (24) we obtain

PL(Y ) = 1
2Zu,v

e−(1+2v)Y+L
4

(
erf
(
L− 2Y

2
√
L

)
+ erf

(
L+ 2Y

2
√
L

))
. (27)

One can check that (27) with (24) is normalized to unity
∫
R dY PL(Y ) = 1.
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On the transition line at the point u = v = −1/2, we obtain a symmetric distribution for Y = X(L)

PL(Y ) =
erf
(
L−2Y
2
√
L

)
+ erf

(
L+2Y
2
√
L

)
2L . (28)

It is easy to see that in the large L limit, PL(Y ) converges to the uniform distribution on the interval
[−L/2, L/2] with a boundary layer of size

√
L near the edges. As mentioned in the Letter, in the context

of the directed polymer, this is consistent with the prediction that the polymer is localized at either
boundary with probability 1/2. A possible scenario which would explain this limit distribution, is that
the process X(x) attains its minimum at a random location x∗ uniformly distributed between x = 0 and
x = L, and the process is approximately (as L goes to infinity) a straight line with slope u on [0, x∗] and
a straight line with slope −v on [x∗, 1]. It would be interesting to confirm this scenario by computing
multipoint distributions (see below).

Remark: For TASEP, described as a zero temperature polymer model, a similar scenario was dis-
covered in [5], thus confirming the universality of stationary measures at large scale.

To obtain more detailed information, let us compute the cumulants of X(L) for any v, on the line
u+ v = −1. Using the general formula (19) for w = u+ v = −1, we obtain

〈Y n〉cL =
(
− 1

2∂v
)n (

v2L+ log(e(1+2v)L − 1)− log(1 + 2v)
)

(29)

where in the last equation we used (24). One finds for the mean

〈Y 〉L = L

(
1

1− e(2v+1)L − v − 1
)

+ 1
2v + 1 (30)

The small L behavior is 〈Y 〉 = −(v + 1
2 )L + O(L2). At large L there are two cases (i) v > −1/2

and 〈Y 〉 ' uL (using u + v = −1) and (ii) v < −1/2 and 〈Y 〉 ' −vL. Around the symmetric point
v = u = −1/2 the mean vanishes as 〈Y 〉 = − 1

6L(6 + L)(v + 1
2 ) +O((v + 1

2 )2).
The variance is

〈Y 2〉cL = L2

2− 2 cosh((2v + 1)L) + L

2 + 1
(2v + 1)2 (31)

The small L behavior is 〈Y 2〉 = L
2 + O(L2). For v 6= −1/2 the large L behavior is simply 〈Y 2〉 ' L/2.

Exactly at v = −1/2, the variance goes to a constant of order L2, more precisely for any L around the
symmetric point one has 〈Y 2〉 = 1

12L(L+ 6)− 1
60L

4(v+ 1
2 )2 +O

(
(v + 1

2 )3). One sees from these results
that at large L and near the symmetric point, there is a diverging length scale Lv = 1/(v + 1

2 ), and a
scaling behavior with L/Lv (it will be studied in more details below). These results are consistent with
the observation that from (27), PL(Y ) at large L is approximately e−(1+2v)Y times a uniform distribution
on the interval [−L/2, L/2].

For u + v = −1 one can also easily obtain the one point PDF of X(x), denoted Px,L(Y ) for any
0 < x < L. By similar manipulations one finds

Px,L(Y ) = Px(Y )Zu,v,x
Zu,v,L

ev
2(L−x) + e−2Y e

− (Y+vx)2
x

√
πx

Zu,v,L−x
Zu,v,L

ev
2x, (32)

where Px(Y ) is obtained from PL(Y ) in (27) by substituting L → x, and Zu,v,L is given in (24). It is
then easy to compute its mean using the result (30) and one thus finds the mean profile as

E[X(x)] = 〈Y 〉x,L = 〈Y 〉x
Zu,v,x
Zu,v,L

ev
2(L−x) − (v + 1)xe2vx+xZu,v,L−x

Zu,v,L
ev

2x, (33)

= v(2v + 1)x+ e(2v+1)x − 1− (v + 1)(2v + 1)xe(2v+1)L

(2v + 1)
(
e(2v+1)L − 1

) . (34)
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At the symmetric point v = u = −1/2 the mean profile is parabolic, i.e. 〈Y 〉x,L = −x(L−x)
2L . This

is consistent with the scenario discussed above. Near the symmetric point, and for large L, there is a
critical regime with a diverging length scale Lv = 1/(v + 1

2 ) and the mean profile takes the scaling form

〈Y 〉x,L '
L

4

((
e2ṽx̃ − 1

)
(coth(ṽ)− 1)
ṽ

− 2x̃ coth(ṽ)
)
, x̃ = x

L
, ṽ = L

Lv
= L(v + 1

2). (35)

Remark: A similar diverging length scale near u = v < 0 was obtained in previous works on TASEP
[5,6], with the same power law dependence with respect to u− v.

Case u+ v = −n. This calculation can be extended to the case u+ v = −n for any positive integer
n, using that

EB(L)=Y

[(∫ L

0
dxe−2B(x)

)n]
=
∫ L

0
· · ·
∫ L

0
dx1 · · · dxne

−2YL
∑

i
xi+
∑

i,j
min(xi,xj)−

xixj
L (36)

although the algebra becomes rapidly tedious. Instead, one can use in [3, Prop. 5.3] and obtain and
obtain

PL(Y ) = 1
Zu,v,L

2n+1e−nY−2vY

n!(πL3)1/2

∫ +∞

|Y |
dr re−r

2/L(cosh(r)− cosh(Y ))n (37)

where Zu,v,L is given in (23). We can give a more explicit form for u+ v = −2

PL(Y ) = e
L
4 −2(v+1)Y

2Zu,v

(
e

3L
4

(
erf
(
L− Y√

L

)
+ erf

(
L+ Y√

L

))
− 2 coshY

(
erf
(
L− 2Y

2
√
L

)
+ erf

(
L+ 2Y

2
√
L

)))
, (38)

where the normalization is

Zu,v,L = ev
2L 2v + 3− 4(v + 1)e2Lv+L + (2v + 1)e4L(v+1)

2(v + 1)(2v + 1)(2v + 3) . (39)

Returning to arbitrary integer n, we see that at large L the integrand in (37) is dominated by large
r, where it behaves as e−r2/L+nr. Hence if |Y | < Ln/2 the saddle point at r = Ln/2 dominates and the
integral is of order eL/4n2 , i.e approximately independent of Y . Hence for u = v = −n/2 the result is
similar to the one obtained above for n = 1. The exponential factor e−nY−2vY = e(u−v)Y will deform
the distribution of Y for u− v 6= 0 which becomes peaked near Y = sgn(u− v)nL/2.

Case u + v = 1. Another case where simplifications occur is u + v = 1 where using [3, Prop. 5.9]
and (18) one finds

PL(Y ) = 1
Zu,v,L

e−
Y 2
L −2vY
√
πL

Y eY

L sinhY (40)

and Zu,v,L can be simply obtained from the normalization condition
∫
R dY PL(Y ) = 1.

Case u, v > 0. In that case, we use the Laplace transform, obtained for L = 1 in [7], and which
reads for general L and for −2v < c < 2u

E[e−cX(L)] = I(c)
I(0) , I(c) =

∫ +∞

0
dke−

k2
4 L
|Γ( c2 + v + ik

2 )|2|Γ(− c
2 + u+ ik

2 )|2

|Γ(2ik)|2 . (41)

For L→ +∞ without rescaling u, v > 0 one finds, by rescaling k → k/
√
L

E[e−cX(L)] −−−−−→
L→+∞

Γ( c2 + v)2Γ(− c
2 + u)2

Γ(v)2Γ(u)2 (42)
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Since a Gamma random variable γu of parameter u has moments E[γau] = Γ(u+a)
Γ(u) , we obtain the weak

convergence

X(L) =⇒ −1
2 log

(
γ

(1)
v γ

(2)
v

γ
(1)
u γ

(2)
u

)
, (43)

where the four Gamma random variables are independent. Let us recall that the total height difference
is H(L) − H(0) =

√
L
2G + X(L). Since X(L) is O(1) at large L it is subdominant in the variance of

H(L), but it controls the higher cumulants of the height difference. Note that X(L) = O(1) is consistent
with the rescaled process X̃(x̃) = 1√

L
X(Lx̃) being a Brownian excursion in the large L limit, as shown

in the Letter.

4. Some properties of the steady state of the KPZ fixed point on the interval

4.1 Multipoint probability for the rescaled process, Brownian motion with an absorbing
boundary, and quantum mechanics in presence of a hard wall

We have shown in the Letter that, in the limit L → +∞, upon rescaling the boundary parameters as
u = ũ/

√
L, v = ṽ/

√
L, and rescaling space as x̃ = x/L, the rescaled process X̃(x̃) = 1√

L
X(x̃), x̃ ∈ [0, 1]

has the following probability measure, which can be written in the two equivalent forms

e−ṽ
2

Z̃ũ,ṽ
DX̃e−

∫ 1

0
dx̃
(
dX̃(x̃)
dx̃ +ṽ

)2

e2(ũ+ṽ) minx̃ X̃(x̃) = 1
Z̃ũ,ṽ
DX̃e−

∫ 1

0
dx̃( dX̃(x̃)

dx̃ )2
e2(ũ+ṽ) minx̃ X̃(x̃)−2vX̃(1) (44)

with X̃(0) = 0 and where Z̃ũ,ṽ is a normalisation. Consider an observable O
[
X̃
]
. Its expectation is

given by

E
X̃

[
O[X̃]

]
= e−ṽ

2

Z̃ũ,ṽ

∫ 0

−∞
dbe2(ũ+ṽ)bEB−ṽ [O[B−ṽ]δ(minB−ṽ − b)] , (45)

= 1
Z̃ũ,ṽ

∫ 0

−∞
dbe2(ũ+ṽ)bEB

[
O[B]e−2ṽB(1)δ(minB − b)

]
, (46)

where the averages are over a Brownian motion of diffusion coefficient 1/2, respectively with drift −ṽ
and with zero drift, on the interval [0, 1]. We denote the minimum of the process B over [0, 1] by minB.

Let us consider ũ+ ṽ > 0 and perform an integration by part

E
X̃

[
O[X̃]

]
= e−ṽ

2

Z̃ũ,ṽ
2(ũ+ ṽ)

∫ 0

−∞
dbe2(ũ+ṽ)bEB−ṽ [O[B−ṽ]θ(minB−ṽ − b)] (47)

= 1
Z̃ũ,ṽ

2(ũ+ ṽ)
∫ 0

−∞
dbe2(ũ+ṽ)bEB

[
O[B]e−2ṽB(1)θ(minB − b)

]
(48)

For a Brownian motion it is easy to evaluate the multi-point probability joint with the probability
that the minimum is larger than b. Let us introduce the propagator of the Brownian motion in presence
of an absorbing wall at position U = b, which can be obtained from the image method

Gb(U,U ′, x−x′) = G(U−b, U ′−b, x−x′), G(U,U ′, x−x′) =

e− (U−U′)2

x−x′ − e−
(U+U′)2

x−x′√
π(x− x′)

 θ(U)θ(U ′) (49)

One has

Gb(U,U ′, x− x′) = EB
[
δ(B(x)− U)θ

(
min

x′<z<x
B(z)− b

)∣∣∣∣B(x′) = U ′
]
θ(U ′ − b). (50)

For the propagator with drift, it is similar.
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The evaluation of the multi-point probabilities can be performed equivalently using the quantum
mechanics of a particle in presence of a hard wall. Indeed one can also write

G(U,U ′, x− x′) =
∫ +∞

0
dkφk(U)φk(U ′)e−(x−x′) k2

4 , φk(U) =
√

2
π

sin(kU) θ(U) (51)

This is the Green’s function for the Hamiltonian given by Eq. (8) in the Letter, where the Liouville
potential V (U) = e2U is replaced by a hard wall potential, i.e. V (U) = +∞ for U < 0 and V (U) = 0
for U > 0, which has eigenfunctions φk. It is natural that the hard wall potential arises in the large L
limit, since the rescaling of the process X leads to U →

√
LU . The formula for this quantum mechanics

can be obtained by considering all LQM formula in the Letter in the regime of small k. One can check
that in this limit the LQM eigenfunctions ψk(U) given in Eq. (9) in the Letter become equal to the
eigenfunction φk(U) in (51) restricted to U > 0, upon rescaling k → k/

√
L and U →

√
LU .

Let us return to the computation of the multipoint distribution of the process X̃. For x̃0 = 0 < x̃1 <
· · · < x̃m < x̃m+1 = 1, b1, . . . , bm+1 ∈ R, b 6 0 and b0 = 0, we may write

e−ṽ
2
EB−ṽ [δ(B−ṽ(x̃1)− b1) . . . δ(B−ṽ(x̃m)− bm)δ(B−ṽ(1)− bm+1)θ(minB−ṽ − b)]

= EB
[
δ(B(x̃1)− b1) . . . δ(B(x̃m)− bm)δ(B(1)− bm+1)e−2ṽB(1)θ(B − b)

]
= e−2ṽbm+1

m∏
j=0

Gb(bj+1, bj , x̃j+1 − x̃j). (52)

From this result, one obtains using (48) the multipoint PDF of the rescaled process X̃ (for ũ+ ṽ > 0)

E
X̃

[
δ(X̃(x̃1)− X̃1) . . . δ(X̃(x̃m)− X̃m)δ(X̃(1)− X̃m+1)

]
= 1
Z̃ũ,ṽ

2(ũ+ ṽ)
∫ 0

−∞
dbe2(ũ+ṽ)be−2ṽX̃m+1

m∏
j=0

Gb(X̃j+1, X̃j , xj+1 − xj) (53)

This formula is suitable to calculate the Laplace transform in the form

E
X̃

[
e
−
∑m

j=1
s̃j(X̃(x̃j)−X̃(x̃j+1))

]
=
Ĵ
(
~̃s
)

Ĵ(0)
(54)

From similar manipulations as in the Letter (from (16) to (20)) but using the eigenfunctions for the hard
wall quantum mechanics (51), it is possible to express it as

Ĵ
(
~̃s
)

=
m+1∏
j=1

∫ +∞

0

dkjk
2
j

4π

m∏
j=1

(s̃j − s̃j+1)
((s̃j − s̃j+1)2 + (kj + kj+1)2)((s̃j − s̃j+1)2 + (kj − kj+1)2)

× 1
(2ũ− s1)2 + k2

1

1
4ṽ2 + k2

m+1
e
−
∑m+1

j=1

k2
j

4 (xj−xj−1)
, (55)

where 2ũ > s̃1 > · · · > s̃m+1. This formula coincides, up to an irrelevant global multiplicative con-
stant, with the formula (20) in the Letter, where one performs the rescaling sj → s̃j/

√
L, kj → k̃j/

√
L,

xj → Lx̃j , u→ ũ/
√
L, v → ṽ/

√
L.

Finally, note that for arbitrary ũ+ ṽ we can obtain the multipoint joint PDF of the rescaled process
X̃ in the form

E
X̃

[
δ(X̃(x̃1)− X̃1) . . . δ(X̃(x̃m)− X̃m)δ(X̃(1)− X̃m+1)

]
= 1
Z̃ũ,ṽ

∫ 0

−∞
dbe2(ũ+ṽ)be−2ṽX̃m+1(−∂b)

 m∏
j=0

Gb(X̃j+1, X̃j , x̃j+1 − x̃j)

 (56)
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4.2 Normalisation
It is easy to calculate the normalisation of the measure of the rescaled process (44) using known results
about the maximum of the Brownian motion. One finds

Z̃ũ,ṽ =
∫ 0

−∞
dy

∫ +∞

y

dY
4(Y − 2y)√

π
e−(2y−Y )2

e2(ũ+ṽ)y−2ṽY = ũeũ
2erfc(ũ)− ṽeṽ2erfc(ṽ)

ũ− ṽ
(57)

where we have used that the joint PDF of minB = y and B(1) = Y is 2p(−
√

2y,−
√

2Y ) where p is
given in (1.9) in [8]. It can also be obtained by Laplace inversion from [9, Chap. IV, item 32].

4.3 One point distribution of X̃(1)
The formula (53) with m = 0 gives for ũ+ ṽ > 0 the PDF of the random variable X̃(1) as

P (Y ) = E
X̃

[
δ(X̃(1)− Y )

]
= 1
Z̃ũ,ṽ

2(ũ+ ṽ)e−2ṽY
∫ 0

−∞
dbe2(ũ+ṽ)b 1√

π

(
e−Y

2
− e−(Y−2b)2

)
θ(Y − b) (58)

which leads to

P (Y ) = 2(ũ+ ṽ)
Z̃ũ,ṽ

e−2ṽY

(
e−Y

2

2
√
π(ũ+ ṽ) (θ(Y ) + θ(−Y )e2Y (ũ+ṽ))− 1

4e
1
4 (ũ+ṽ)(ũ+ṽ+4Y )erfc

(
ũ+ ṽ

2 + |Y |
))
(59)

Using the normalisation in (57), one checks that it is correctly normalized to unity
∫
R dY P (Y ) = 1.

Laplace transform. Alternatively, for ũ + ṽ > 0 we can use the Laplace transform, obtained for
L = 1 in [7], extended here to general L, and which leads, for the rescaled process in the limit L→ +∞
(as discussed in the previous section one needs to rescale k → k/

√
L) to the formula

E[e−c̃X̃(1)] = I(c̃)
I(0) , I(c̃) = F (2ṽ + c̃, 2ũ− c̃), F (a, b) =

∫ +∞

0
dke−

k2
4

k2

(k2 + a2)(k2 + b2) (60)

One has

F (a, b) = a2g(a)− b2g(b)
a2 − b2

, g(a) =
∫ +∞

0
dke−

k2
4

1
k2 + a2 =

πe
a2
4 erfc

(
a
2
)

2a (61)

This leads to the formula, for c ∈ (−2ṽ, 2ũ),

E
[
e−cX̃(1)

]
=
e

1
4 c(c−4ũ)(ṽ − ũ)

(
eũ

2(c− 2ũ)erfc
(
ũ− c

2
)

+ (c+ 2ṽ)erfc
(
c
2 + ṽ

)
ec(ũ+ṽ)+ṽ2

)
(c− ũ+ ṽ) (2eṽ2 ṽ erfc(ṽ)− 2eũ2 ũ erfc(ũ)) (62)

Expanding in c, this formula leads to expressions for the mean and variance of X̃(1). The Laplace
inversion of that formula is not a priori obvious. One can check however (through a tedious calculation)
that it is indeed the Laplace transform of P (Y ) in (59). This shows the consistency with the claims of
the previous section, and that the method using the Brownian representation of the measure is quite
efficient to obtain the PDF’s of the process.

4.4 Properties of the minimum of the rescaled process X̃
Let X̃m be the minimum of X̃(x̃) on the interval x̃ ∈ [0, 1] and let 0 6 x̃m 6 1 be the first point where
it is reached. Then the joint PDF of X̃m, x̃m and of the value Y = X̃(1) of the process at the boundary
is given by

P (X̃m, x̃m, Y ) = Cu,vP
B(X̃m, x̃m, Y )e2(ũ+ṽ)X̃m−2ṽY , (63)

where Cu,v is a normalization, and PB(X̃m, xm, Y ) is the corresponding joint PDF for the Brownian B
with diffusion coefficient 1/2 and zero drift. Using the main result of [8] we obtain

P (y, x, Y ) = 1
Zu,v

4|y|(Y − y)
πx3/2(1− x)3/2 e

− y
2
x −

(y−Y )2
1−x +2(ũ+ṽ)y−2ṽY θ(−y)θ(Y − y)θ(0 < x < 1) (64)
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Integration over x, the position of the minimum, using the identity below (1.9) in [8] leads to the joint
PDF of the minimum and the value at the boundary as

P (y, Y ) = 1
Zu,v

4(Y − 2y)√
π

e−(Y−2y)2+2(ũ+ṽ)y−2ṽY θ(−y)θ(Y − y) (65)

This PDF is correctly normalized to unity, from (57). Integrating over y we obtain once again (by a
different method) the result (59). However, with this method it appears to be valid for any ũ, ṽ.

5. Translation of the results of Hariya-Yor

Let us state the results of [1, 3] and translate them into our notations. In the Letter, we consider the
measure on continuous real-valued processes X(x) = X̂(x) − vx, defined on on [0, L], such that the
density of X̂ is

DX̂e−
∫ L

0
dx( dX̂dx )2

(∫ L

0
dxe−2X̂(x)+2vx

)−(u+v)

. (66)

Hariya and Yor [1] studied several probability measures on Brownian paths weighted by exponential
functionals of the Brownian motion. In particular, they study the measure on processes X(s) = B(s)+µs
defined on [0, t], denoted P(µ,m)

t in [1], defined by

DBe−
1
2

∫ t
0
ds( dB

ds )2
(∫ t

0
dse2B(s)+2µs

)−m
. (67)

where B denotes the standard Brownian motion, to distinguish it from B which we reserve for the
Brownian with diffusion coefficient 1/2, i.e. B = 1√

2B. In order to match the measures, we let x = 2s,
that is

X̂(x) = −B(s = x/2). (68)
Then our measure becomes

DBe−
1
2

∫ L/2

0
ds( dB

ds )2

(∫ L/2

0
dse2B(s)+4vs

)−(u+v)

. (69)

Hence we must identify
m = u+ v, µ = 2v, t = L/2. (70)

Haryia-Yor [1] define three regions (see Fig. 2), which exactly match the three regions of our phase
diagram:

R1 = {2m > µ, µ > 0} = {u > 0, v > 0} (71)
R2 = {m < µ, 2m < µ} = {u < v, u < 0} (72)
R3 = {m > µ, µ < 0} = {u > v, v < 0} (73)

They also defined the borders between these regions

L1 = {2m = µ, µ > 0} = {u = 0, v > 0}, (74)
L2 = {m = µ, µ < 0} = {u = v, v < 0}, (75)
L3 = {m > 0, µ = 0} = {u > 0, v = 0}, (76)

so that L1 is between R1 and R2, L2 is between R2 and R3, L3 is between R1 and R3.
Hariya and Yor proved [1, Theorem 1.3] (the statement can also be found in the review [3, Theorem

7.4]) that we have the following weak convergence of probability measures on continuous functions:

P(µ,m)
t ====⇒

t→+∞


W(0)

2γν=m−µ/2
=W(0)

2γν=u
if (u, v) ∈ L1 ∪R1 ∪ L3,

W(µ−2m) =W(−2u) if (u, v) ∈ L1 ∪R2 ∪ L2,

W(−µ)
2γν=m−µ

=W(−2v)
2γu−v if (u, v) ∈ L2 ∪R3 ∪ L3.

(77)
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L1

Fig. 2: The regions R1, R2, R3 and their borders L1, L2, L3 defined in [1].

In (77), γν is a Gamma random variable with parameter ν (and by convention, γ0 = 0), W(µ) denotes
the law of a Brownian motion with drift µ , and W(µ)

2γν denotes the law of the process

t 7→ Bt + µt− log
(

1 + 2γν
∫ t

0
e2Bs+2µsds

)
. (78)

Using (68) this implies that the process X(x) converges as L goes to infinity to the following, consistent
with Equations (34) and (35) in the Letter.

• When u, v > 0, X(x) weakly converges to

B(x) + log
(

1 + γu

∫ x

0
e−2B(z)dz

)
. (79)

• When u 6 0 and u 6 v, X(x) weakly converges to

B(x) + ux. (80)

• And, when v 6 0, u > v, X(x) weakly converges to

B(x) + vx+ log
(

1 + γu−v

∫ x

0
e−2B(z)−2vzdz

)
. (81)

In (79), (80) and (81), B(x) denotes a Brownian motion with diffusion coefficient 1/2, and γu and γu−v
denote independent Gamma distributed random variables with respective shape parameters u and u−v,
and scale parameter 1.

When u = −v > 0, the process in (81) becomes simply a Brownian motion with drift u = −v and
diffusion coefficient 1/2. This non-trivial identity can be found in [1, Eq. (1.8)], see also (97) below.

6. Review of the main arguments in [1]

Here we describe the derivation of the convergence result (77), that is [1, Theorem 1.3], using the notation
of the present paper.

6.1 Overall argument
Consider the process X(x) with 0 6 x 6 L. We are interested in taking L → +∞ and describing the
process X(z) for all z 6 x, where x is fixed as L→ +∞ . For this we can split the process in two parts:
X(z) for 0 6 z 6 x and X(z) for x < z 6 L. We will average over (i.e. integrate over) the second
part of the process, to obtain the measure for the first part. To characterize the measure, we consider
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a general bounded functional Fx[X] = F [{X(z)}06z6x] which depends only on the first part. One has,
from Equation (7) in the Letter

EX [Fx[X]] = 1
Zu,v,L

EB−v

Fx[B−v]
(

1∫ x
0 dze

−2B−v(z) +
∫ L
x
dze−2B−v(z)

)u+v
 (82)

where in the LHS the average is over the full process {X(z)}06z6L and in the RHS it is over a Brownian
motion with diffusion coefficient 1/2 and drift −v, denoted {B−v(z)}06z6L. In the denominator we
have splitted the integral into two pieces. Since the increments of the Brownian motion after time x are
independent of the value B−v(x), we have the equality in law (for a fixed x)∫ L

x

dze−2B−v(z) = e−2B−v(x)
∫ L

x

dze−2(B−v(z)−B−v(x)) (d)= e−2B−v(x)
∫ L−x

0
dze−2B̃−v(z) (83)

where B̃−v(z) is an independent Brownian motion with diffusion coefficient 1/2 and drift −v. Hence we
can rewrite

EX [Fx[X]] = E{B−v(z)}06z6x [Fx[B−v]Qx[B−v]] (84)

in terms of the weight

Qx[B−v] = ∆(a, ξ, L− x)
∆(0, 1, L) , a =

∫ x

0
dze−2B−v(z), ξ = e−2B−v(x) (85)

where we have defined

∆(a, ξ, L) = EB̃−v
[
(a+ ξZL)−(u+v)

]
, ZL =

∫ L

0
dze−2B̃−v(z) =

∫ L

0
dze−2B̃(z)+2vz, (86)

which depends only on the random variable ZL.

The variable ∆(a, ξ, L) has been much studied and by [1, Theorem 2.2], translated in our variables
using (68),(70), we have

lim
L→+∞

∆(a, ξ, L− x)
∆(0, 1, L) =


ev

2xξ−v × 1
Γ(u)

∫ +∞
0

ru−1e−r

(ar+ξ)u , u > 0, v > 0
e(v2−u2)xξ−(u+v), u 6 0, u 6 v

1
Γ(u−v)

∫ +∞
0

ru−v−1e−r

(ar+ξ)u+v , v 6 0, v < u

(87)

where the integrals arise as expectation values over independent Gamma variables, e.g. one has

Eγb
[

1
(γba+ ξ)c

]
= 1

Γ(b)

∫ +∞

0
dr

rb−1e−r

(ar + ξ)c (88)

where γb denotes the Gamma variable Γ(b, 1). For instance, for u > v, the limit in the third line is
easily understood since for v < 0 one knows that limL→+∞ ZL = Z∞, where 1/Z∞ is a Gamma variable
Γ(−2v, 1). For the other cases, see [1, Theorem 2.2].

6.2 Large L limits
Now we are able to take the large L limits of (84). The simplest case to analyze is u 6 0, u 6 v. Inserting
the limit in the second line of (87), with ξ = e−2B−v(x), into (84) one sees that the measure for X(z),
0 6 z 6 x is

DXe(v2−u2)xe
−
∫ x

0
dz
(
dX(z)
dz +v

)2
+2(u+v)X(x) = DXe−

∫ x
0
dz
(
dX(z)
dz −u

)2

(89)

with X(0) = 0, so X(z) is a Brownian with diffusion coefficient 1/2 and drift u, as stated in the Letter.
Note that the multiplication by the weight e2(u+v)X(x) has changed the drift from −v to u. This is a
general fact, which is a special case of the Cameron-Martin (CM) theorem.
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Consider now the limit in the first line in (87), that is when u > 0, v > 0. Inserting it into (84) and
using the CM theorem (from the first line to the second) yields

EX [Fx[X]] = E{B−v(z)}06z6x

[
Fx[B−v]ev

2x+2vB−v(x)Eγu

[
1

(γu
∫ x

0 dze
−2B−v(z) + e−2B−v(x))u

]]
(90)

= E{B(z)}06z6x

[
Fx[B]Eγu

[
1

(γu
∫ x

0 dze
−2B(z) + e−2B(x))u

]]
(91)

= E{Y (z)}06z6x [Fx[Y ]] (92)

where in the second line B has no drift. The non-trivial part is the third line, i.e. after expectation over
γu the average is the same that over the path transformed process,

Y (z) = B(z) + log
(

1 + γu

∫ z

0
dz′e−2B(z′)

)
(93)

which gives the result stated in the Letter (and above in (77)). A similar identity allows to obtain the
result stated above in the third line in (77), using (87), when v < u, v 6 0.

6.3 The T -transformation on paths
For completeness, we briefly recall here how the identity (92) is derived in [1]. For simplicity we will
return to Bµ, the standard Brownian motion with drift µ used there, and use the correspondence (68),(70)
at the end. The argument is based on:

(i) The definition of the path transformation Tz (also used in [10]) defined for any process X as

Tz(X)(t) = Xt − log
(

1 + z

∫ t

0
dse2X(s)

)
(94)

which has the following interesting properties

1∫ t
0 dse

2Tz(X)(s)
= 1∫ t

0 dse
2X(s)

+ z, TzTz′ = Tz+z′ , eX(t) = eTz(X)(t)

1− z
∫ t

0 dse
2Tz(X)(s)

(95)

The first follows from the total derivative property

e2Tz(X)(t) = e2X(t)

(1 + z
∫ t

0 dse
2X(s))2

= −1
z

d

dt

1
1 + z

∫ t
0 dse

2X(s)
. (96)

The second is a consequence of the first. The third is obtained from the first, also consistent with
the fact that the inverse path transform of Tz is T−z.

(ii) The non-trivial identity in law, from [11,12], valid for µ < 0,(
{Bµ}t>0 ,

1∫ +∞
0 dse2Bµ(s)

)
=
(
{T2γ−µ(B−µ)}t>0 , 2γ−µ

)
(97)

Using these two inputs, the derivation of (92) goes as follows. The simple change of drift

e
− 1

2

∫ t
0

(
dX(s)
ds −ν

)2

= e−
1
2 (ν2−b2)te

− 1
2

∫ t
0

(
dX(s)
ds −b

)2
+(ν−b)X(t) (98)

gives for any observable
E [O(Bν)] = e−

1
2 (ν2−b2)tE

[
e(ν−b)Bb(t)O(Bb)

]
. (99)
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Let us apply it with the choice O(X) := F [T2γb(X)]. One obtains

E [F [T2γb(Bν)]] = e−
1
2 (ν2−b2)tE

[
e(ν−b)Bb(t)F [T2γb(Bb)]

]
(100)

= e−
1
2 (ν2−b2)tE

[
e(ν−b)T2γb (Bb)(t)

(1− 2γb
∫ t

0 dse
2T2γb (Bb)(s))ν−b

F [T2γb(Bb)]
]

(101)

= e−
1
2 (ν2−b2)tE

e(ν−b)B−b(t)

(
1−

∫ t
0 dse

2B−b(s)∫ +∞
0 dse2B−b(s)

)b−ν
F [B−b)]

 (102)

In the second line we have used the last identity in (95). In the third line the identity in law (97) has
been used to replace the joint average over T2γb(Bb) and γb with the same joint average over B−b and
1/
∫ +∞

0 dse2B−b(s). Now since we are interested only in the first part of the process (up to time t) we
can replace

∫ +∞
t

dse2B−b(s) (d)= e2B−b(t)/(2γb) thus

1−
∫ t

0 dse
2B−b(s)∫ +∞

0 dse2B−b(s)
=

∫ +∞
t

dse2B−b(s)∫ t
0 dse

2B−b(s) +
∫ +∞
t

dse2B−b(s)

(d)= e2B−b(t)

2γb
∫ t

0 dse
2B−b(s) + e2B−b(t)

(103)

Inserting into (102) and using again the CM theorem to relate expectations over B−b to B−ν one finally
obtains the identity

E[F [T2γb(Bν), s 6 t]] = E

( 1
2γb

∫ t
0 dse

2B−ν(s) + e2B−ν(t)

)b−ν
F [B−ν , s 6 t]

 (104)

which for ν = 0 and b = u and upon the correspondence (68),(70) leads to (92).
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