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Steady state of the KPZ equation on an interval and Liouville quantum mechanics

We obtain a simple formula for the stationary measure of the height field evolving according to the Kardar-Parisi-Zhang equation on the interval [0, L] with general Neumann type boundary conditions and any interval size. This is achieved using the recent results of Corwin and Knizel (arXiv:2103.12253) together with Liouville quantum mechanics. Our formula allows to easily determine the stationary measure in various limits: KPZ fixed point on an interval, half-line KPZ equation, KPZ fixed point on a half-line, as well as the Edwards-Wilkinson equation on an interval.

Introduction. -The Kardar-Parisi-Zhang (KPZ) equation [START_REF] Kardar | Dynamic scaling of growing interfaces[END_REF] describes the stochastic growth of a continuum interface driven by white noise. In one dimension it is at the center of the so-called KPZ class which contains a number of well-studied models sharing the same universal behavior at large scale. For all these models one can define a height field. For example, in particle transport models such as the asymmetric simple exclusion process (ASEP) on a lattice, the local density is a discrete analog to the height gradient [START_REF] Derrida | An exactly soluble non-equilibrium system: the asymmetric simple exclusion process[END_REF][START_REF] Spohn | Large scale dynamics of interacting particles[END_REF]. In the limit of weak asymmetry, ASEP converges [START_REF] Bertini | Stochastic burgers and KPZ equations from particle systems[END_REF], upon rescaling space and time to the KPZ equation. In the large scale limit, all models in the KPZ class (in particular ASEP and the KPZ equation) are expected to converge to a universal process called the KPZ fixed point [START_REF] Matetski | The KPZ fixed point[END_REF][START_REF] Corwin | Renormalization fixed point of the kpz universality class[END_REF]. Note that the KPZ fixed point is universal with respect to the microscopic dynamics but still depends on the geometry of the space considered (full-line, half-line, circle, segment with boundary conditions).

An important question is the nature of the steady state. While the global height grows linearly in time with non trivial t 1/3 fluctuations, the height gradient, or the height differences between any two points, will reach a stationary distribution. It was noticed long ago [START_REF] Kardar | Dynamic scaling of growing interfaces[END_REF][START_REF] Forster | Largedistance and long-time properties of a randomly stirred fluid[END_REF][START_REF] Parisi | On the replica approach to random directed polymers in two dimensions[END_REF] that the KPZ equation on the full line admits the Brownian motion as a stationary measure. It was proved rigorously in [START_REF] Bertini | Stochastic burgers and KPZ equations from particle systems[END_REF][START_REF] Funaki | KPZ equation, its renormalization and invariant measures[END_REF], and in [START_REF] Hairer | The strong Feller property for singular stochastic PDEs[END_REF] for periodic boundary conditions. For ASEP, stationary measures were studied on the full and half-line [START_REF] Liggett | Ergodic theorems for the asymmetric simple exclusion process[END_REF][START_REF] Andjel | Invariant measures for the zero range process[END_REF] and exact formulas were obtained on an interval using the matrix product ansatz [START_REF] Derrida | Exact solution of a 1D asymmetric exclusion model using a matrix formulation[END_REF]. The large scale limit of the stationary measures for ASEP on an interval was studied in [START_REF] Derrida | The asymmetric exclusion process and brownian excursions[END_REF][START_REF] Bryc | Limit fluctuations for density of asymmetric simple exclusion processes with open boundaries[END_REF]. The processes obtained there as a limit can be described in terms of textbook stochastic processes such as Brownian motions, excursions and meanders, and they should correspond to stationary measures of the KPZ fixed point on an interval.

For the KPZ equation, while the stationary measures are simply Brownian in the full-line and circle case, the situation is more complicated (not translation invariant, not Gaussian) in the cases of the half-line and the interval. One typically imposes Neumann type boundary conditions (that is, we fix the derivative of the height field at the boundary) so that stationary measures depend on boundary parameters and involve more complicated stochastic processes (see below). For the KPZ equation on the halfline with Neumann type boundary condition, it can be shown [START_REF] Barraquand | Half-space stationary Kardar-Parisi-Zhang equation[END_REF] that a Brownian motion with an appropriate drift is stationary (the drift must be proportional to the boundary parameter). This specific stationary measure was studied in [START_REF] Barraquand | The KPZ equation in a half space with flat initial condition and the unbinding of a directed polymer from an attractive wall[END_REF] for the equivalent directed polymer problem for which the boundary parameter measures the attractiveness of the wall. However, based on the analysis of stationary measures of ASEP on a half-line [START_REF] Liggett | Ergodic theorems for the asymmetric simple exclusion process[END_REF], it was expected that more complicated stationary measures for the KPZ equation also exist.

The question of the stationary measure for the KPZ equation on the interval [0, L] has also remained open. In a recent breakthrough, Corwin and Knizel obtained [START_REF] Corwin | Stationary measure for the open KPZ equation[END_REF] an explicit formula for the Laplace transform of the stationary height distribution (for L = 1, and for some range of parameters). This Laplace transform formula relates the stationary measure to an auxiliary stochastic process called continuous dual Hahn process. This construction corresponds to the KPZ equation limit1 of formulas with a similar structure obtained in [START_REF] Bryc | Asymmetric simple exclusion process with open boundaries and quadratic harnesses[END_REF] of formulas with a similar structure obtained in [START_REF] Bryc | Asymmetric simple exclusion process with open boundaries and quadratic harnesses[END_REF] for the stationary measure of ASEP. However, obtaining a characterization of the process allowing to study properties of the stationary measure remains a challenge. This amounts to invert the complicated Laplace transforms in [START_REF] Corwin | Stationary measure for the open KPZ equation[END_REF].

In this Letter we obtain a simple formula for the stationary measure of the KPZ equation on an interval of any size L, with general Neumann type boundary conditions. Our result is particularly convenient to study various limits as L → +∞. In particular we recover the phase diagram for stationary measures of the KPZ fixed point on an interval, we obtain new crossover regimes near the critical point, and we study the stationary measures of the KPZ equation on a half-line and their large scale limits. We unveil and exploit a surprising connection to Liouville quantum mechanics (LQM), i.e. the Schrodinger equation in an exponential potential. The LQM, which is the 1D limit of the 2D Liouville field theory, notably allows to study the statistics of exponential functionals of the Brownian motion, see [START_REF] Comtet | One-dimensional disordered supersymmetric quantum mechanics: a brief survey[END_REF] for a short review. As such, it appears in several areas of physics such as diffusion in 1D random media [START_REF] Comtet | One-dimensional disordered supersymmetric quantum mechanics: a brief survey[END_REF][START_REF] Bouchaud | Classical diffusion of a particle in a onedimensional random force field[END_REF][START_REF] Monthus | On the flux distribution in a one dimensional disordered system[END_REF][START_REF] Broderix | Thermal equilibrium with the Wiener potential: testing the replica variational approximation[END_REF][START_REF] Comtet | Exponential functionals of Brownian motion and disordered systems[END_REF][START_REF] Monthus | Localization of thermal packets and metastable states in the sinai model[END_REF][START_REF] Nagar | Strong clustering of noninteracting, sliding passive scalars driven by fluctuating surfaces[END_REF], multifractal eigenfunctions of random Schrodinger and Dirac operators [START_REF] Comtet | One-dimensional disordered supersymmetric quantum mechanics: a brief survey[END_REF][START_REF] Kolokolov | The spatial statistical properties of wave functions in a disordered finite one-dimensional sample[END_REF][START_REF] Kolokolov | The method of functional integration for one-dimensional localization, higher correlators, and the average current flowing in a mesoscopic ring in an arbitrary magnetic field[END_REF][START_REF] Shelton | Effective theory for midgap states in doped spin-ladder and spin-peierls systems: Liouville quantum mechanics[END_REF][START_REF] Quinn | Scaling of critical wave functions at topological anderson transitions in one dimension[END_REF], diffusion in the hyperbolic plane [START_REF] Comtet | On the landau levels on the hyperbolic plane[END_REF][START_REF] Comtet | Diffusion in a onedimensional random medium and hyperbolic brownian motion[END_REF][START_REF] Ikeda | Brownian motion on the hyperbolic plane and selberg trace formula[END_REF], and more recently, and strikingly, in quantum chaos and its relation to gravity [START_REF] Bagrets | Sachdevye-kitaev model as liouville quantum mechanics[END_REF][START_REF] Mertens | Solving the schwarzian via the conformal bootstrap[END_REF]. LQM was recently used to obtain multipoint observables for the stationary KPZ equation in a half-space (see Supp. Mat. in [START_REF] Barraquand | The KPZ equation in a half space with flat initial condition and the unbinding of a directed polymer from an attractive wall[END_REF]).

Model. -The KPZ equation for the height field h(x, t) reads

∂ t h(x, t) = ν∂ 2 x h + λ 2 (∂ x h) 2 + √ Dξ(x, t) (1) 
where ξ(x, t) is a standard space-time white noise. We use space-time units so that ν = 1 and λ = D = 2 2 . Here we study the problem on the interval so that (1) holds for 0 < x < L. The solution is defined from the Cole-Hopf mapping h(x, t) = log Z(x, t), where Z(x, t) equals the partition sum of a continuum directed polymer with endpoint at (x, t) in a random potential -√ 2ξ(x, t). It satisfies the stochastic heat equation (SHE)

∂ t Z(x, t) = ∂ 2 x Z(x, t) + √ 2Z(x, t)ξ(x, t), x ∈ [0, L] (2)
in the Ito sense, with Robin boundary conditions

∂ x Z(x, t)| x=0 = AZ(0, t), ∂ x Z(x, t)| x=L = -BZ(L, t),
(3) and it will be convenient to define boundary parameters u = A + 1/2 and v = B + 1/2. Although Z(x, t), t > 0, is not differentiable, the standard way to understand (3) is to impose these conditions on the heat kernel [START_REF] Corwin | Open ASEP in the weakly asymmetric regime[END_REF], or through a path integral as in [START_REF] Borodin | Directed random polymers via nested contour integrals[END_REF][START_REF] Nardis | Delta-bose gas on a half-line and the kpz equation: boundary bound states and unbinding transitions[END_REF]. For the DP, A > 0 corresponds to a repulsive wall and A < 0 an attractive one, and similarly for B at x = L. Main result. -Our main result is the prediction that the KPZ random height profile in the stationary state, denoted {H(x)} x∈[0,L] , can be written as the sum of two independent random fields

H(x) -H(0) = 1 √ 2 W (x) + X(x) (4) 
where W (x) is a one sided Brownian motion (i.e. with W (0) = 0 and W (L) free) and the probability distribution of the process X(x) is given by the path integral measure

DX Z u,v e - L 0 dx( dX(x) dx ) 2 e -2vX(L) L 0 dx e -2X(x) -(u+v)
(5) with X(0) = 0 and X(L) free, and Z u,v a normalization such that Z 0,0 = 1. For the choice v = -u, H(x) + vx is thus simply a standard Brownian motion. The Brownian motion with drift u is also stationary for the half-space KPZ equation [START_REF] Barraquand | Half-space stationary Kardar-Parisi-Zhang equation[END_REF], and on the segment it arises only when the two boundary conditions are compatible.

In mathematical terms, X is a continuous stochastic process on [0, L] whose measure P X is absolutely continuous with respect to that of a Brownian motion with diffusion coefficient 1/2, denoted P B , with Radon-Nikodym derivative dP X dP B = 1 Zu,v e -Eu,v(X) where

E u,v (X) = u log L 0 dxe -2X(x) + v log L 0 dxe 2X(L)-2X(x) . ( 6 
)
This is a mere reformulation of (5) in a more symmetric form so that it becomes apparent that the process is left invariant after reversing space and exchanging u, v. This reformulation simply means that for any continuous and bounded functional F of the process

X = {X(x)} x∈[0,L] , E X [F (X)] = 1 Z u,v E B F (B) e -Eu,v(B) , ( 7 
)
where in the R.H.S., B = {B(x)} x∈[0,L] is a Brownian motion with diffusion coefficient 1/2. Surprisingly the measure defined here in (5) as the steady state of the KPZ equation has been already introduced and studied in a work of Hariya and Yor in a different context [START_REF] Hariya | Limiting distributions associated with moments of exponential Brownian functionals[END_REF]. We will use some of their results below.

Liouville quantum mechanics. -The Liouville Hamiltonian Ĥ on the real axis

U ∈ R is defined as Ĥ = - 1 4 
d 2 dU 2 + e -2U (8) 
Its eigenfunctions |k , in coordinate basis ψ k (U ) = U |k , can be chosen real and indexed by k 0 with

Ĥψ k (U ) = k 2 4 ψ k (U ), ψ k (U ) = N k K ik (2e -U ). ( 9 
)
where

N 2 k = 2 πΓ(ik)Γ(-ik)
and K ik is a modified Bessel function.. They form a continuum orthonormal basis with k|k = δ(k -k ) with +∞ 0 dk|k k| = I. We will need the matrix elements of the operator

e -2α Û = R dU e -2αU |U U | (10) 
which read

k|e -2α Û |k = N k N k +∞ 0 r 2α dr r K ik (2r)K ik (2r) = N k N k 8Γ(2α) Γ 4 α ± ik 2 ± ik 2 (11) 
for any α > 0, where Γ 4 (α ± x ± y) := σ,τ =±1 Γ(a + σx + τ y) is a product of four Gamma functions.

Multipoint Laplace transform. -We now compute, using the LQM, the multi-point Laplace transform (LT) of the distribution of H(x), as defined in ( 4), [START_REF] Matetski | The KPZ fixed point[END_REF]. For the moment, we restrict ourselves to u, v > 0, and we will discuss the general case later. We consider the increasing sequence of points

x 0 = 0 < x 1 < • • • < x m < x m+1 = L ( 12 
)
Since W (x) is simply a Brownian independent of X the following multipoint expectation, with parameters

s = {2u > s 1 > • • • > s m > s m+1 = 0}, takes the form E[e - m j=1 sj (H(xj )-H(xj-1)) ] = e 1 4 m+1 j=1 s 2 j (xj -xj-1) J( s) J(0) ( 13 
) where J( s) is the following expectation over the process X(x), from (5), with X 0 = 0

J( s) =   m+1 j=1 R dX j   e - m j=1 sj (Xj -Xj-1)-2vXm+1 × m+1 j=1 X(xj )=Xj X(xj-1)=Xj-1 - x j x j-1 dx( dX(x) dx ) 2 Z L [X] -(u+v) (14)
where Z L [X] := L 0 e -2X(x) . Now we insert in the integrand the following representation

Z L [X] -(u+v) = 2 Γ(u + v) R dU 0 e -2U0(u+v)-e -2U 0 Z L [X] (15) 
Performing the change of variable U j = X j + U 0 , and defining the process U (x) = X(x) + U 0 , the RHS of ( 14), i.e. J( s), takes the form

2 Γ(u + v) m+1 j=0 R dU j e - m j=1 sj (Uj -Uj-1)-2vUm+1-2uU0 × m+1 j=1 U (xj )=Uj U (xj-1)=Uj-1 DU e - x j x j-1 dx[( dU (x) dx ) 2 +e -2U (x) ]
In the last line we recognize the path integral representation of the imaginary time Green's function of the Liouville Hamiltonian Ĥ in [START_REF] Parisi | On the replica approach to random directed polymers in two dimensions[END_REF]. From the Feynman-Kac formula

U (b)=U U (a)=U DU e - b a dx ( dU (x) dx ) 2 +e -2U (x) = U |e -(b-a) Ĥ |U Hence we can rewrite J( s) = 2 Γ(u+v) J( s) with J( s) =   m+1 j=0 dU j   e -2vUm+1-(2u-s1)U0 m j=1 e -(sj -sj+1)Uj m+1 j=1 U j |e -(xj -xj-1) Ĥ |U j-1 . (16)
Inserting the spectral decomposition

e -(xj -xj-1) Ĥ = +∞ 0 dk j e -1 4 (xj -xj-1)k 2 j |k j k j | (17)
and using the definition [START_REF] Hairer | The strong Feller property for singular stochastic PDEs[END_REF], the RHS of ( 16) becomes

R 2 dU 0 dU m+1 m+1 j=1 +∞ 0 dk j e -2vUm+1-(2u-s1)U0 U m+1 |k m+1 × k 1 |U 0 m j=1 k j+1 |e -(sj -sj+1) Û |k j e - m+1 j=1 (xj -xj-1) k 2 j 4 (18) 
Now we use that for w > 0

R dU e -2wU U |k = N k R dU e -2wU K ik (2e -U ) = N k 4 Γ w + ik 2 2 , ( 19 
)
and U |k = k|U to integrate (18) w.r.t. U 0 and U m+1 . We can then substitute the matrix elements k j+1 |e -(sj -sj+1) Û |k j by their explicit expressions from [START_REF] Liggett | Ergodic theorems for the asymmetric simple exclusion process[END_REF]. This leads to (

J( s) = 1 2 m+1 j=1 +∞ 0 dk j 4π|Γ(ik j )| 2 m j=1 Γ 4 sj -sj+1 2 ± ikj 2 ± ikj+1 2 Γ(s j -s j+1 ) × Γ u -s1 2 + ik1 2 Γ v + ikm+1
) 20 
Comparison with the result of Corwin-Knizel. -Now, we explain why our formula for the stationary measure in ( 4) and ( 5) is equivalent to the Laplace transform formula of Corwin-Knizel [START_REF] Corwin | Stationary measure for the open KPZ equation[END_REF] for L = 1. Again, we assume that u, v > 0 with u < 1 (though [START_REF] Corwin | Stationary measure for the open KPZ equation[END_REF] provides formulas for the whole range u + v > 0). The Laplace transform of the stationary height H(x) is expressed in [START_REF] Corwin | Stationary measure for the open KPZ equation[END_REF] in terms of a Markov process {T s } s∈[0,2u) with values on R + , called the continuous dual Hahn process (CDHP) The transition probability for T sj = t j given T sj+1 = t j+1 , with s j > s j+1 , is given by

p sj+1,sj (t j+1 , t j ) = 1 8π × |Γ(u - sj 2 + i 2 √ t j )| 2 Γ 4 ( sj -sj+1 2 ± i 2 √ t j+1 ± i 2 √ t j ) |Γ(u - sj+1 2 + i 2 √ t j+1 )| 2 Γ(s j -s j+1 ) √ t j |Γ(i √ t j )| 2
and the marginal PDF of T s = t at time s is given by

p s (t) = (v + u)(v + u + 1) 8π 
|Γ(v + s 2 + i √ t 2 )Γ(u -s 2 + i √ t 2 )| 2 √ t|Γ(i √ t)| 2 (21) 
Then the Laplace transform is obtained, for 2u

> s 1 > s 2 > • • • > s m+1 = 0, as E e - m j=1 sj (H(xj )-H(xj-1) = e 1 4 m+1 j=1 s 2 j (xj -xj-1) I( s) I 0 (22) 
with (upon some rewriting of formula (1.12) in [START_REF] Corwin | Stationary measure for the open KPZ equation[END_REF])

I( s) =   m+1 j=1 +∞ 0 dt j   p 0 (t m+1 ) m j=1 p sj+1,sj (t j+1 , t j ) × e -1 4 m+1 j=1 tj (xj -xj-1) (23) 
and

I 0 = I(0) = dte -1 4 t p 0 (t).
It is now a simple exercise to check, using the change of variables t j = k 2 j , that the above formula implies that

I( s) = 2(u + v)(u + v + 1) J( s) = Γ(u + v + 2)J( s) (24)
Since the prefactor cancels in the ratio, the multipoint Laplace transform (13) of our formula (4), [START_REF] Matetski | The KPZ fixed point[END_REF] written more explicitly in [START_REF] Bryc | Asymmetric simple exclusion process with open boundaries and quadratic harnesses[END_REF], coincides with the result of [START_REF] Corwin | Stationary measure for the open KPZ equation[END_REF] in the domain u, v > 0 and for L = 1.

We may now extend the result of Corwin-Knizel in two directions. First, we may assume that L is arbitrary, and reproduce the analysis of [START_REF] Corwin | Stationary measure for the open KPZ equation[END_REF] with points x i as in [START_REF] Andjel | Invariant measures for the zero range process[END_REF] using the same scalings as in [START_REF] Corwin | Stationary measure for the open KPZ equation[END_REF] starting from the ASEP model on N L sites and arriving at the same formula [START_REF] Bouchaud | Classical diffusion of a particle in a onedimensional random force field[END_REF]. This shows why (4),( 5) are correct for any L > 0 and not only L = 1 as considered in [START_REF] Corwin | Stationary measure for the open KPZ equation[END_REF]. Then, we may extend the range of parameters u, v. We expect that the distribution of stationary measures depend analytically on u, v for finite L. However, performing a direct analytic continuation on ( 22) is intricate and would involve many residues. This is why it is useful to rewrite, through LQM, the results of Corwin-Knizel as in (4), ( 5) which depends on the parameters in an analytic way for all u, v.

Thus, from now on we will assume that our result for the stationary probability ( 5), ( 4) holds for any u, v, and explore the consequences. Remark: Eq. ( 22) relates the Laplace transform of the KPZ height field under the stationary measure to the Laplace transform of another Markov process, the CDHP, where the role of time/space parameters and Laplace transform parameters are exchanged. The CDHP can be interpreted as living in the Fourier space dual to the real U space of LQM. A similar duality holds for Brownian excursions [START_REF] Bryc | Dual representations of laplace transforms of brownian excursion and generalized meanders[END_REF] and can be obtained as a limit of ( 22) as L → +∞, as we shall see in the sequel. Note also that an analog of [START_REF] Bouchaud | Classical diffusion of a particle in a onedimensional random force field[END_REF] has been established for ASEP [START_REF] Bryc | Asymmetric simple exclusion process with open boundaries and quadratic harnesses[END_REF], and it would be interesting to study the connection to discrete variants of LQM [START_REF] Olshanetsky | Liouville quantum mechanics on a lattice from geometry of quantum lorentz group[END_REF]. It would be also very interesting to know if such dualities extend to other solvable models in the KPZ class.

Limits and consequences. -

To study the various limits, we define the scaled processes H(x), W (x) and X(x), with x = x/L ∈ [0, 1] as

H(x) = √ L H(x), W (x) = √ L W (x), X(x) = √ L X(x) (25) so that one has H(x) = 1 √ 2 W (x) + X(x) (26) 
Clearly W (x) is also a standard one-sided Brownian motion. In order to impose Neumann type boundary conditions on H(x) (with slopes ũ, -ṽ respectively at each boundary) we scale boundary parameters as

u = ũ/ √ L, v = ṽ/ √ L. ( 27 
)
The measure for X(x) can then be written, up to a normalization, as D Xe -S[ X] with the action

S[ X] = 1 0 dx d X(x) dx 2 + ũ √ L log 1 0 dx e -2 √ L X(x) + ṽ √ L log 1 0 dx e 2 √ L( X(1)-X(x)) ( 28 
)
with X(0) = 0 and X(1) free.

Limit L → 0. In this limit one recovers the Edwards-Wilkinson model. One sees that in [START_REF] Kolokolov | The spatial statistical properties of wave functions in a disordered finite one-dimensional sample[END_REF] we can expand up to linear order in X in the logarithmic terms, and one finds that to leading order in L, i.e. to L 0 , it becomes a Gaussian action with a parabolic mean profile. One finds (see details in [42])

H(x) -H(0) =⇒ ũx - 1 2 (ũ + ṽ)x 2 + B(x) (29) 
where B(x) is a standard Brownian motion.

Limit L → +∞ (KPZ fixed point). Under the scalings considered above, X converges to a probability measure proportional to

D Xe - 1 0 dx( d X(x)
dx +ṽ) 2 e 2(ũ+ṽ) minx X(x) [START_REF] Shelton | Effective theory for midgap states in doped spin-ladder and spin-peierls systems: Liouville quantum mechanics[END_REF] with X(0) = 0. Hence it is a Brownian on [0, 1] with a non trivial Radon Nikodym derivative depending on ũ, ṽ (equivalently a Brownian with drift -ṽ with derivative depending only on ũ+ ṽ). The measure can also be rewritten in a more symmetric form as

D Xe - 1 0 dx( d X(x) dx ) 2
e 2ũ minx{ X(x)}+2ṽ minx{ X(x)-X(1)} .

(31) As detailed in [42] the measure (30) can be studied using a limit of LQM, where the exponential potential is replaced by a hard wall. Accordingly all the above Laplace transform formula ( 13)- [START_REF] Bryc | Asymmetric simple exclusion process with open boundaries and quadratic harnesses[END_REF], are obtained for the rescaled process and parameters by simply replacing Γ(z) → 1/z. The field H(x) should correspond to stationary measures of the KPZ fixed point on the interval [0, 1] with boundary parameters ũ, ṽ, and it is natural to predict that they arise as scaling limit of stationary measures of all models in the KPZ class on an interval. This is partially confirmed in some special cases that we study next, where we recover results obtained in [START_REF] Derrida | The asymmetric exclusion process and brownian excursions[END_REF][START_REF] Bryc | Limit fluctuations for density of asymmetric simple exclusion processes with open boundaries[END_REF] for the large scale limit of ASEP stationary measures.

Phase diagram. -Now we study the phase diagram in Fig. 1, obtained in the L → ∞ limit when u, v are fixed (equivalently when ũ, ṽ go to ±∞).

When ũ, ṽ → +∞ (u, v > 0). In that case the weight in [START_REF] Quinn | Scaling of critical wave functions at topological anderson transitions in one dimension[END_REF] vanishes unless min x X(x) = 0 and min x( X(x) -X( 1)) = 0, in which case the weight is 1. The second identity taken at x = 0, together with the first taken at x = 1

v u 0 0 H(x) -u √ Lx ⇓ standard Brownian motion H(x) + v √ Lx ⇓ standard Brownian motion H(x)

⇓

Brownian + Brownian excursion Brownian + Brownian meander Fig. 1: Phase diagram of the large-scale limit of stationary measures for the KPZ equation on the segment. On the three regions u, v > 0 (maximal current phase), v > u < 0 (low density phase) and u > v < 0 (high density phase), we have indicated the nature of the stationary measure in the large scale limit. For the directed polymer the phases are as follows: For u, v > 0 the polymer is delocalized in the bulk, for v < 0, u > v it is bound to x = L, and for u < 0, u < v it is bound to x = 0. Exactly at the phase boundary u = v the polymer has probability 1/2 to be bound to either side.

implies that X(1) = 0. Thus, in the limit ũ, ṽ → +∞,

X(x) ⇒ 1 √ 2 E(x)
, where E is a standard Brownian excursion (i.e. a Brownian bridge conditioned to stay positive), so that

H(x) =⇒ 1 √ 2 W (x) + 1 √ 2 E(x). ( 32 
)
We recover the same process as in the large scale limit of TASEP [START_REF] Derrida | The asymmetric exclusion process and brownian excursions[END_REF] or ASEP [START_REF] Bryc | Limit fluctuations for density of asymmetric simple exclusion processes with open boundaries[END_REF] invariant measures. This shall not be a surprise: TASEP, ASEP and the KPZ equation all converge at large time to the KPZ fixed point [START_REF] Quastel | Convergence of exclusion processes and KPZ equation to the KPZ fixed point[END_REF], so that the process (32) describes the stationary measure of the KPZ fixed point in the so called maximal current phase for ASEP, that is with repulsive boundary conditions in terms of the directed polymer model.

When ũ → +∞, ṽ = 0 or ũ = 0, ṽ → +∞ (u > 0, v = 0 or u = 0, v > 0).
When ũ → +∞, ṽ = 0 (equivalently u > 0, v = 0) the weight in [START_REF] Quinn | Scaling of critical wave functions at topological anderson transitions in one dimension[END_REF] vanishes unless min x X(x) = 0, hence X is now a Brownian meander (Brownian motion conditioned to stay positive up to time 1). We recover the same stationary process as in the large scale limit of ASEP stationary measures [START_REF] Bryc | Limit fluctuations for density of asymmetric simple exclusion processes with open boundaries[END_REF]. Similarly, when ũ = 0, ṽ → +∞ (equivalently u = 0, v > 0), X(1) -X(1 -x) tends to a Brownian meander, and again, this matches with [START_REF] Bryc | Limit fluctuations for density of asymmetric simple exclusion processes with open boundaries[END_REF].

When u or v may be negative. By symmetry, we only need to consider the case where v is negative. The measure for X(x) in ( 5) is a Brownian measure with drift -v weighted by Z L [X] - (u+v) , where Z L [X] = L 0 dxe -2X(x) . We may rewrite [START_REF] Forster | Largedistance and long-time properties of a randomly stirred fluid[END_REF], up to a renormalisation, as

E B-v F (B -v )Z L [B -v ] -(u+v) , (33) 
where B -v denotes a Brownian with drift -v and diffusion coefficient 1/2. It is well-

known that Z L [B -v ] converges as L → ∞ to a finite random variable Z ∞ [B -v ] distributed
as an inverse Gamma law with shape parameter -2v [START_REF] Bouchaud | Classical diffusion of a particle in a onedimensional random force field[END_REF][START_REF] Dufresne | The distribution of a perpetuity, with applications to risk theory and pension funding[END_REF], which becomes asymptotically independent from the rescaled process X. In order for u+v) to have a finite expectation, we need to assume that -(u+v) < -2v, that is u > v. Thus, we are considering the whole high density phase in Fig. 1. At this point, we find that the resulting measure for H(x) + v √ Lx is simply the standard Brownian motion. In the low density phase where u < 0 and v > u (see Figure 1), we deduce by symmetry that the limiting stationary process is a standard Brownian motion with drift u √ L.

Z ∞ [B -v ] -(
Half-line KPZ equation. -Consider the KPZ equation (1) in R + , with boundary parameter u at x = 0. The stationary measures of the height field can be computed as the L → ∞ limit of the stationary measures defined in (4) and ( 5) and depending on parameters u, v. turns out that this limit was studied in [START_REF] Hariya | Limiting distributions associated with moments of exponential Brownian functionals[END_REF] (see also the review [START_REF] Matsumoto | Exponential functionals of brownian motion, i: Probability laws at fixed time[END_REF]). We will make considerable use of these results here. The set of stationary measures obtained in the L → ∞ limit always depend on the boundary parameter u, and sometimes depend on the parameter v. When this is the case v can be interpreted as minus the average drift of the process at infinity (see below).

In the low density phase (u 0, v u), the stationary measure (4) simply converge as L → ∞ to a standard Brownian motion with drift u [START_REF] Hariya | Limiting distributions associated with moments of exponential Brownian functionals[END_REF] (so that the limit does not depend on v). In the maximal current phase (u 0, v 0), the stationary measures converge [START_REF] Hariya | Limiting distributions associated with moments of exponential Brownian functionals[END_REF] to a distribution that we denote HY (0) γu -the letters HY stand for Hariya-Yor. This is the distribution of the process [START_REF] Ikeda | Brownian motion on the hyperbolic plane and selberg trace formula[END_REF] where B (1) (x), B (2) (x) are two independent Brownian motions with diffusion coefficient 1/2 and γ u is an independent Gamma random variable with shape parameter u. Again, the limit does not depend on v. In the high-density phase (v 0, u v), the stationary measures converge [START_REF] Hariya | Limiting distributions associated with moments of exponential Brownian functionals[END_REF] to a distribution that we denote HY (-v) γu-v . This is the distribution of the process [START_REF] Bagrets | Sachdevye-kitaev model as liouville quantum mechanics[END_REF] where B (1) (x), B (2) (x) are two independent Brownian motions with diffusion coefficient 1/2 and γ u-v is an independent Gamma random variable with shape parameter u-v. The diagram means that if the initial condition has drift -v at infinity, the height field should converge at large time under mild assumptions to the stationary measure indicated in one of the three regions of the (u, v) plane. In particular, if u 0 and the drift at infinity is 0, which includes the flat initial data, the height field will converge to a Brownian motion with drift u, as predicted in [START_REF] Barraquand | The KPZ equation in a half space with flat initial condition and the unbinding of a directed polymer from an attractive wall[END_REF]. Along the antidiagonal line u = -v, the stationary measure is always a Brownian motion with drift u, see [42].

H(x) = B (1) (x)+B (2) (x)+log 1 + γ u x 0 e -2B (2) (z) dz ,
H(x) = B (1) (x) + B (2) (x) + vx + log 1 + γ u-v x 0 e -2B (2) (z)-2vz dz ,
In this phase, the limit depends on v, and we remark that the drift at infinity of the process [START_REF] Bagrets | Sachdevye-kitaev model as liouville quantum mechanics[END_REF] is -v (in the sense that H(x) -H(0) -vx when x → +∞).

We expect that for a large class of initial conditions with drift at infinity equal to -v, the height field will converge at large time (modulo a global shift) to one of the stationary measures that we have just described, according to the phase diagram in Figure 2. This prediction is based on an analogous convergence result at large time for ASEP on a half-line proved in [START_REF] Liggett | Ergodic theorems for the asymmetric simple exclusion process[END_REF], though the stationary measures were explicitly described much later [START_REF] Derrida | Exact solution of a 1D asymmetric exclusion model using a matrix formulation[END_REF][START_REF] Grosskinsky | Phase transitions in nonequilibrium stochastic particle systems with local conservation laws[END_REF].

Large-scale limit.

Now that we have described the stationary measures of the KPZ equation on a half-line, it would be interesting to consider their large scale limit as x goes to infinity. The processes obtained in this limit should be understood as stationary measures of the halfspace KPZ fixed point, that is the universal process arising as scaling limit of all half-space models in the KPZ class. In particular, we conjecture that the large scale limit of half-line ASEP stationary measures [START_REF] Grosskinsky | Phase transitions in nonequilibrium stochastic particle systems with local conservation laws[END_REF] do converge to the same limit at large scale. Note that this half-space KPZ fixed point has not been defined rigorously (unlike the full-space situation), but its multipoint distributions for some initial conditions are known [START_REF] Baik | Pfaffian Schur processes and last passage percolation in a half-quadrant[END_REF][START_REF] Betea | The half-space airy stat process[END_REF] B (1) (y) + B (2) (y) + ṽy+ max 0, -E ũ-ṽ -2 min 0 z y { B (2) (z) + ṽz} B (1) (y) + B (2) (y)+ max 0, -E ũ -2 min 0 z y { B (2) (z)} Fig. 3: Large scale limits of stationary measures of the halfspace KPZ equation described in Fig. 2. B (1) (y) and B (2) (y) denote independent Brownian motions with diffusion coefficient 1/2. Eũ and Eũ-ṽ denote independent exponential random variables with parameters ũ and ũṽ. The parameters ũ, ṽ are rescalings of the parameters u, v in Fig. 2 as explained in the Letter. motion in the variable y with drift ũ in the scaling limit. In the maximal current phase (ũ, ṽ > 0), the large scale limit of (34) yields H(y) = B (1) (y) + B (2) (y) + max 0, -E ũ -2 min 0 z y { B (2) (z)} , [START_REF] Mertens | Solving the schwarzian via the conformal bootstrap[END_REF] where B (1) (y), B (2) (y) are two independent Brownian motions with diffusion coefficient 1/2 and E ũ is an independent exponential random variable with rate parameter ũ. Here we have used that -1 √ x log γ ũ/ √ x converges to an exponential distribution with parameter ũ. In particular, when ũ → +∞, we obtain the sum of a Brownian motion and a Bessel 3 process [START_REF] Pitman | One-dimensional Brownian motion and the three-dimensional bessel process[END_REF] 3 , that is a Brownian motion conditioned to remain positive on [0, +∞). In the high density phase (ṽ < 0, ũ > ṽ), we scale v = ṽ √ x and the large scale limit of (35) yields H(y) = B (1) (y) + B (2) (y) + ṽy + max 0, -E ũ-ṽ -2 min 0 z y { B (2) (z) + ṽz} , [START_REF] Borodin | Directed random polymers via nested contour integrals[END_REF] where B (1) (y), B (2) (y) are two independent Brownian motions with diffusion coefficient 1/2 and E ũ-ṽ is an independent exponential random variable with parameter ũṽ. Again, -ṽ represents the drift at infinity of the process H(y). When ũ = -ṽ, the process (37) becomes a standard Brownian motion with drift ũ as this was already the case before taking any limit, although this is not immediately obvious from (37). 3 We thank A. Comtet for an exchange on this point.

Directed polymer endpoint. -We obtain the endpoint probability for a very long polymer as Q(x) = e H(x) / L 0 dxe H(x) , where H(x) is given in (4). The statistics of the ratio Q(L)/Q(0) = e √ L 2 G+Y , where G is a standard Gaussian random variable, requires only the PDF P (Y ) of Y = X(L) -X(0), which in some special cases takes a simple form [42]. For u + v = -1 one obtains

P (Y ) = e -(1+2v)Y + L 4 2Z u,v erf L -2Y 2 √ L + erf L + 2Y 2 √ L ( 38 
)
with

Z u,v = e v 2 L
1+2v (e (1+2v)L -1). At the transition point, u = v = -1/2, P (Y ) becomes uniform in [-L/2, L/2] consistent with the polymer being localized near either boundary with probability 1/2 (see [42] for details, and [START_REF] Krug | Disorder-induced unbinding in confined geometries[END_REF] for an earlier work based on ASEP).

Note.

While this work was near completion, the preprint [START_REF] Bryc | Markov processes related to the stationary measure for the open KPZ equation[END_REF] appeared. This paper also performs a Laplace transform inversion of the result of [START_REF] Corwin | Stationary measure for the open KPZ equation[END_REF], although [START_REF] Bryc | Markov processes related to the stationary measure for the open KPZ equation[END_REF] describes the process X differently, as a Markov process with explicit transition probabilities. Both descriptions are equivalent: indeed, their formula [51, (1.7)] can also be read from ( 16) above.
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 2 Fig.2: Phase diagram of stationary measures for the KPZ equation in the half-space R+ with boundary parameter u. The diagram means that if the initial condition has drift -v at infinity, the height field should converge at large time under mild assumptions to the stationary measure indicated in one of the three regions of the (u, v) plane. In particular, if u 0 and the drift at infinity is 0, which includes the flat initial data, the height field will converge to a Brownian motion with drift u, as predicted in[START_REF] Barraquand | The KPZ equation in a half space with flat initial condition and the unbinding of a directed polymer from an attractive wall[END_REF]. Along the antidiagonal line u = -v, the stationary measure is always a Brownian motion with drift u, see[42].

  . The large scale limit of half-line KPZ equation stationary measures are described in the phase diagram of Fig. 3. We will let x → +∞ and define H(y) = 1 √ x H(xy) and scale the boundary parameter as u = ũ √ x . In the low-density phase, clearly, the Brownian motion with drift u becomes a Brownian ṽ

The limit from ASEP to KPZ was previously investigated in[START_REF] Corwin | Open ASEP in the weakly asymmetric regime[END_REF]. Remark

2.11 therein explains how to rescale ASEP boundary parameters to obtain the boundary conditions for the KPZ equation.[START_REF] Derrida | An exactly soluble non-equilibrium system: the asymmetric simple exclusion process[END_REF] The units chosen in[START_REF] Corwin | Stationary measure for the open KPZ equation[END_REF] amount to rescaling our time as t → 2t, immaterial in the steady state.
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