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The KPZ equation in a half space with flat initial condition
and the unbinding of a directed polymer from an attractive wall

Guillaume Barraquand1 and Pierre Le Doussal1
1Laboratoire de Physique de l’École Normale Supérieure,

ENS, CNRS, Université PSL, Sorbonne Université,
Université de Paris, 24 rue Lhomond, 75231 Paris, France

(Dated: July 28, 2021)

We present an exact solution for the height distribution of the KPZ equation at any time t in a
half space with flat initial condition. This is equivalent to obtaining the free energy distribution of
a polymer of length t pinned at a wall at a single point. In the large t limit a binding transition
takes place upon increasing the attractiveness of the wall. Around the critical point we find the
same statistics as in the Baik-Ben–Arous-Péché transition for outlier eigenvalues in random matrix
theory. In the bound phase, we obtain the exact measure for the endpoint and the midpoint of the
polymer at large time. We also unveil curious identities in distribution between partition functions
in half-space and certain partition functions in full space for Brownian type initial condition.

PACS numbers: 05.40.-a, 02.10.Yn, 02.50.-r

I. INTRODUCTION.

The Kardar-Parisi-Zhang (KPZ) equation [1], which
describes the growth of the height field of an interface
driven by white noise in the continuum, is a paradigmatic
example of stochastic non-equilibrium dynamics. It en-
joys a remarkable connection to the equilibrium problem
of an elastic line in a random potential, also called di-
rected polymer (DP) [2]. In one space dimension, i.e for
the DP in dimension d = 1 + 1, some exact solutions for
the height distribution at all time t have been found in
the last ten years. These finite time solutions are valuable
since they allow to study the crossover in time from short
times, where the growth is in the Edwards-Wilkinson
class [3, 4], to the large time asymptotic behavior which
is common to a large number of systems in the so-called
KPZ class [5–7]. However they have been found only for
a few specific initial conditions (IC), which are the im-
portant ones: the droplet IC (point to point DP) [8–11],
the flat IC (point to line DP) [12, 13] and the Brown-
ian IC (which includes the stationary KPZ) [14–18]. The
KPZ equation on the half-line has also been studied, and
is related to the DP in a half-space with a wall, with a
wall parameter A, which can be repulsive A > 0 or at-
tractive A < 0. It was found in [19] that the polymer
is bound to the wall for A < −1/2 and that it unbinds
for A > −1/2 due to the competition with bulk point
disorder, a different mechanism from the usual thermal
wetting transition [20, 21]. It is also different from the
full space version of the model with a single columnar
defect [22–24] (slow bond problem) where the DP is al-
ways pinned, or the case where disorder in only on the
column [25–27]. An experimentally feasible realization
of half-line KPZ growth in turbulence liquid crystal was
obtained in [28] from a bi-regional geometry with two
different growth rates. In these types of experiments the
aforementioned IC can be easily prepared [29, 30]. Al-
though the transition at A = −1/2 has been studied in

details for other models in the KPZ class [31–36], exact
finite time solutions for the KPZ equation itself have been
obtained until now only for A > −1/2, for droplet IC [37–
40], and for stationary IC [41]. Furthermore, although it
is expected that the height fluctuations are Gaussian at
large time in the bound phase, as was found in [42] for
droplet IC, understanding of the fluctuations of the poly-
mer configuration is still limited, despite the pioneering
results of [19].

In this paper, we obtain the “missing” exact solution
for the KPZ equation in the half-space, that is with flat
IC. Our solution is valid for any time and any wall pa-
rameter A, hence it allows for a complete study of the
two phases and of the transition. While the solutions for
(i) the flat IC in full space and (ii) the other IC in half-
space, are both complicated, the combination of flat IC
and half-space geometry leads to a remarkable simplifi-
cation, and to a simpler solution, in terms of a Fredholm
determinant. This unveils curious identities in distribu-
tion between partition functions in half-space and cer-
tain partition functions in full space for Brownian type
IC. Around the critical point at A = −1/2 we find the
same statistics for the height fluctuations at large time as
for the outlier eigenvalues in the Baik-Ben Arous-Péché
transition [43] of random matrices. In the bound phase
A < −1/2, the fluctuations of the height (i.e. the free en-
ergy of the polymer) are Gaussian. To characterize the
fluctuations of the polymer configuration we obtain the
exact distribution of its endpoint and of its midpoint for
long polymers, and explicit formula for their moments.
We predict an unbinding transition under a force applied
to the endpoint. Interesting connections with the ground
state obtained in replica Bethe ansatz studies [19, 42] of
the half-space delta Bose gas are analyzed.

This paper is organized as follows. In Section II we re-
call the definitions of the KPZ equation on the half-line
and of the related model of the continuum directed poly-
mer in the half space. In Section III we derive the exact
solution for all times of the KPZ equation with flat initial
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FIG. 1. (a) Directed polymer path in 1 + 1 dimensions in
a half-space, pinned at the boundary wall at the point (0, 0),
with free endpoint (x, t) (point to line problem) in presence of
a bulk white noise random potential

√
2ξ(x, t). We will discuss

the fluctuations of the position of the polymer endpoint. By
reversing time, this corresponds to the line to point partition
function ZfA(y = 0, t) in (3), which maps to the KPZ field
at time t with flat IC. (b) We will also consider the position
of the midpoint of a DP with both endpoints pinned at the
boundary.

conditions. Some details are provided in the Appendix
A. We also obtain the large time asymptotics, the details
being provided in Appendix B. In Section IV we study
the stationary measure of the KPZ equation on the half-
line and apply it to obtain a detailed description of the
statistics of the endpoint in the polymer problem. The
connection with the replica method is given in Appendix
E and the calculations of the mean endpoint probability
and its correlations using Liouville quantum mechanics
are described in Appendix F. In Section V we generalize
the identity in distribution obtained in Section III, re-
lating solutions of half-space KPZ equation to solutions
with the full-space KPZ equation with different initial
data, some of the details are presented in Appendix C.
The matching with full space KPZ equation distributions
uses the statistical tilt symmetry recalled in Appendix D.
In Section VI we point out the features which we believe
are universal near the unbinding transition and in rela-
tion to the conjectured half-space KPZ fixed point.

II. HALF-SPACE KPZ EQUATION

Let us recall the KPZ equation for the height h(x, t)
field of an interface

∂th(x, t) = ν∂2
xh+ λ

2 (∂xh)2 +
√
Dξ(x, t) (1)

where ξ(x, t) is a space-time white noise. We use space-
time units so that ν = 1 and λ = D = 2. Here we study
the problem in a half-line x > 0 with boundary conditions

∂xh = A depending on a parameter A. From the Cole-
Hopf mapping it can be equivalently defined as h(x, t) =
logZA(x, t) where ZA(x, t) satisfies the stochastic heat
equation (SHE)

∂tZA(x, t) = ∂2
xZA(x, t) +

√
2ZA(x, t)ξ(x, t), x > 0, (2)

with boundary condition ∂xZA(x, t) = AZA(x, t) at x =
0 and as yet unspecified initial condition at t = 0.

Let us denote by ZA(x, t|y, 0) the partition function
of a continuous DP of length t in a white noise random
potential in dimension d = 1 + 1 (at unit temperature),
in the half-space x > 0, with endpoints at (y, 0) and
(x, t), see Fig. 1. In particular ZA(x, t|y, 0) satisfies the
equation (2) with initial condition at t = 0 given by a
delta mass at the point y.

III. FLAT INITIAL CONDITION

A. Finite-time solution

In this Section, we are interested in the solution of the
KPZ equation (1) with a flat initial condition h(x, 0) = 0.
This is equivalent to studying (2) with ZA(x, 0) = 1, i.e.
a polymer with one fixed endpoint at (y, t) and one free
endpoint, of partition function

ZfA(y, t) =
∫ ∞

0
ZA(y, t|x, 0)dx. (3)

the KPZ field being retrieved as h(y, t) = logZfA(y, t),
where the superscript f stands for flat IC.

Consider now the case where the fixed endpoint is at
the position of the wall y = 0. We will calculate the
moments of ZfA(0, t) which will allow us to obtain an
expression for the Laplace transform of its distribution.
From (3) and by symmetry, we can write the n-th integer
moment of the partition sum as

E
[
ZfA(0, t)n

]
= n!

∫
x1>...>xn>0

E

[
n∏
i=1

ZA(xi, t|0, 0)
]
.

(4)
where here and below, E denote expectation with respect
to the noise ξ. As shown in [38] the moments appearing in
the RHS can be expressed as a multiple contour integral.
We have that, for general endpoint positions x1 > . . . >
xn > 0,

E

[
n∏
i=1

ZA(xi, t|0, 0)
]

= 2n
∫
r1+iR

dz1

2iπ · · ·
∫
rn+iR

dzn
2iπ

n∏
i=1

zi
zi +A

etz
2
i−xizi

∏
16a<b6n

za − zb
za − zb − 1

za + zb
za + zb − 1 , (5)

where the contours are chosen so that r1 > r2 +1 > · · · >
rn+n−1 > max{n−1−A,n−1}, i.e. all contours are to
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the right of −A. To obtain the result for the flat initial
condition we must now integrate over the endpoints xi
over the positive real axis. To this aim we use the identity∫

x1>...>xn>0

n∏
i=1

e−xizi =
n∏
i=1

1
z1 + · · ·+ zi

, (6)

which is a convergent integral, since all Re(zi) > 0 from
our choice of contour. One thus obtains

E
[
ZfA(0, t)n

]
= n!2n

∫
r1+iR

dz1

2iπ · · ·
∫
rn+iR

dzn
2iπ∏

16a<b6n

za − zb
za − zb − 1F (~z), (7)

where

F (~z) =
∏

16a<b6n

za + zb
za + zb − 1

n∏
i=1

etz
2
i

z1 + · · ·+ zi

zi
zi +A

.

(8)
It is convenient to deform all the contours to the single
contour r + iR with r > max(−A, 0). During the de-
formation, one encounters many poles of the integrand
whose residues need to be taken into account. This is
done in a systematic way using [38, Proposition 5.1] (see
also [44]). We obtain for (7)

n∑
`=1

n!2n

`!
∑
~m

∏̀
i=1

∫
r+iR

dwi
2iπ det

(
1

wi +mi − wj

)`
i,j=1

×E(w1, w1+1, . . . , w1+m1−1, . . . , w`, . . . , w`+m`−1)
(9)

where the sum over ~m is a sum over integers mi > 1 with∑`
i=1mi = n, and

E(~z) =
∑
σ∈Sn

∏
16b6a6n

zσ(a) − zσ(b) − 1
zσ(a) − zσ(b)

F (σ(~z)). (10)

This sum over the symmetric group can be simplified.
Note that the factor

∏
16a<b6n

za+zb
za+zb−1 in F (~z) is sym-

metric, so it can be factored out. The remaining sym-
metrization can be performed as in the solution for the
full space flat initial condition [45] (see also [46]) where
it was found that

∑
σ∈Sn

∏
16b6a6n

zσ(a) − zσ(b) − 1
zσ(a) − zσ(b)

n∏
i=1

1
zσ(1) + · · ·+ zσ(i)

=
∏

16a<b6n

za + zb − 1
za + zb

n∏
i=1

1
zi
. (11)

Hence, the products over a < b perfectly cancel each
other, and we are left with the remarkably simple ex-
pression

E(~z) =
n∏
i=1

etz
2
i

zi +A
. (12)

Due to the product structure of the function E, it can be
factored inside the determinant in (9). This leads to an
explicit formula for the integer moments, which we sum
over n to obtain the moment generating series, leading
to the following Fredholm determinant expression (see
Appendix A for details) for u > 0

E[e−uZ
f
A

(0,t)e
t
12 ] = det(I −Ku,t)L2(0,+∞), (13)

where the kernel is given by

Ku,t(v, v′) =
∫
R

2u dr
e−r + 2uφA,t(v + r)ψA,t(v′ + r), (14)

φA,t(v) =
∫
az+iR

dz

2iπ
et
z3
3 −vz

Γ(A+ 1
2 + z)

, (15)

ψA,t(v) =
∫
Caw

dw

2iπ e
−tw3

3 +vwΓ(A+ 1
2 + w). (16)

The contour for z is a vertical line with real part az > 0,
and the contour for w, denoted Caw , is the union of two
semi-infinite rays leaving the point aw > −

(
A+ 1

2
)

in
the direction ±2π/3 to ensure convergence. This expres-
sion is one of our main result and is valid for any value
of the wall parameter A and for all time t > 0.

B. Large-time limit

From the Laplace transform formula one can extract
the probability density function (PDF) of the KPZ height
field h(0, t) = logZfA(0, t) at arbitrary time. Let us now
discuss its large time limit, which depends on the value
of A. The height takes the form as t→ +∞

h(0, t) = logZfA(0, t) ' v∞(A)t+ tβχ (17)

where the free energy per unit length exhibits a transition

v∞(A) =
{
− 1

12 when A > − 1
2 ,

− 1
12 +

(
A+ 1

2
)2 when A < − 1

2 ,
(18)

χ is an O(1) random variable, and β the growth fluctua-
tion exponent

β = 1
3 for A > −1

2 , β = 1
2 for A < −1

2 (19)

Let us turn to the distribution of χ.
a. Case A > −1

2 : We scale u as u = e−t
1/3s with

fixed s, so that

lim
t→∞

E[e−uZ
f
A

(0,t)e
t
12 ] = P(χ 6 s). (20)

The limit of the Fredholm determinant in (13) is obtained
by the change of variables v = t1/3ṽ, v′ = t1/3ṽ′ and
r = t1/3r̃ in (14), z = t−1/3z̃ in (15), and w = t−1/3w̃ in
(16) so that

lim
t→∞

t
1
3Ku,t(t

1
3 ṽ, t

1
3 ṽ′) =

∫ ∞
s

Ai(r̃+ṽ)Ai(r̃+ṽ′)dr̃, (21)
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leading to

P(χ 6 s) = det(I −KAi)L2(s,+∞) = F2(s) (22)

where KAi is the Airy kernel and F2(s) is the cumu-
lative distribution function (CDF) of the Tracy-Widom
distribution for the largest eigenvalue of a GUE random
matrix.

b. Case A < −1
2 : The condition that aw > −(A +

1
2 ) in (16) forbids to use the same change of variables.
In this case we scale u = e−(A+ 1

2 )2t−t1/2s, and use the
change of variables v = t1/2ṽ (and likewise for the vari-
ables v′), r = (A + 1

2 )2t + t1/2r̃, z = −(A + 1
2 ) + t−1/2z̃

in (15) and in (16) we evaluate the integral by residues
(the residue at w = −(A+ 1

2 ) is dominant). We obtain

lim
t→∞

t
1
2Ku,t(t

1
2 ṽ, t

1
2 ṽ′) = 1√

4π|A+ 1
2 |
e
− (s+ṽ)2

4|A+ 1
2 | , (23)

which implies that χ has a Gaussian distribution with
variance 2

∣∣A+ 1
2
∣∣, see details in Appendix B.

c. Near the critical point : We may also scale A
close to the critical point as A = −1

2 + at−1/3. The
asymptotics are similar as in the case A > −1

2 , except
that (see Appendix B)

P(χ 6 s) = det(I −KBBP
a )L2(s,+∞) = FBBP

a (s) (24)

where the CDF FBBP
a (s) was introduced in [43] and gov-

erns the fluctuations of the eigenvalues of spiked Her-
mitian matrices. It was also found to arise in the con-
text of the KPZ universality class in full-space models for
half-Brownian type IC [14, 15, 47] and in other contexts
[43, 48–50]. In particular, for a = 0, FBBP

0 (s) = (F1(s))2

where F1 is the Tracy-Widom distribution function for
the largest eigenvalue of a GOE random matrix.

IV. STATIONARY ENDPOINT DISTRIBUTION

A. Endpoint distribution

The previous results describe the behavior of the par-
tition function of a polymer of arbitrary length t in a
white noise random potential, with one endpoint fixed at
x = 0 and another endpoint free to move, see Eq. (3). It
is natural to ask about the distribution of the distance of
the endpoint to the wall. This information is contained
in the endpoint PDF PA(x, t) in a given disorder realiza-
tion, i.e.

PA(x, t) = ZA(x, t|00)∫
dyZA(y, t|00)

= ZA(x, t|00)
ZfA(0, t)

(25)

and in its average PA(x, t) = E[PA(x, t)]. Direct calcu-
lation of this quantity is not available, however one can
obtain it in the limit of a large polymer length t in the
bound phase A < − 1

2 . For a large class of IC (see below),

the distribution of ratios ZA(x, t)/ZA(y, t) converges at
large time t to a stationary distribution of polymer par-
tition function ratios such that

x 7→ ZA(x, t)
ZA(0, t) = x 7→ eB(x)+(A+ 1

2 )x. (26)

It is stationary in the sense that if at a time t the field
of partition function ratios is distributed as (26) where
B(x) is a standard Brownian motion, then at any later
time t̃, the field of partition function ratios will still be
distributed as (26), with a new Brownian motion B̃(x)
depending nontrivially on B(x) and the disorder ξ(x, s)
for t < s < t̃. Therefore, at large time,

lim
t→∞

PA(x, t) = pA(x) := eB(x)+(A+ 1
2 )x∫ +∞

0 dyeB(y)+(A+ 1
2 )y

, (27)

in the sense that both sides have the same multipoint
distribution.

This result allows to obtain formulas for the mo-
ments of the endpoint position which become time in-
dependent at large t for fixed A < −1/2. One de-
notes the thermal average in a given disorder configu-
ration as 〈O(x)〉 =

∫ +∞
0 dxO(x)PA(x, t), and the ther-

mal cumulants as usual e.g. 〈x2〉c = 〈x2〉 − 〈x〉2. Inter-
preting pA(x) in (27) as the Gibbs measure of a par-
ticle (the endpoint) in a 1d Brownian random poten-
tial (at unit temperature), it is natural to introduce
[51] Z(v) =

∫ +∞
0 dyeB(y)+vy, for v < 0, the generating

function of the thermal cumulants, such that 〈xp〉c =
∂pv log Z(v)|v=A+ 1

2
. It is well-known that the random vari-

able Z(v) is distributed as the inverse of a Gamma vari-
able, Z(v) = 1/Γ(−2v, 1

2 ) [52, 53]. In particular, using
E[log Z(v)] = log 2 − ψ(−2v), one obtains the disorder
averaged thermal cumulants of the polymer endpoint

E[〈xp〉c] = −(−2)pψ(p)(−2A− 1) (28)

for p > 1, where ψ(z) is the digamma function, e.g.

E[〈x〉] = 2ψ′(−2A− 1) ' 2
(2A+ 1)2 , (29)

E[〈x2〉c] = −4ψ′′(−2A− 1) ' 8
|2A+ 1|3 , (30)

where we indicated the leading behavior for A→ −1/2−,
using ψ(x) ∼ −1

x at small x. In the bound phase but near
the transition, i.e. for ε = −(A + 1

2 ) > 0 and small, the
endpoint wanders very far. In terms of the rescaled end-
point position y = ε2x one has eB(x)−εx = e

1
ε (B̃(y)−y),

i.e. ε can be interpreted as an effective temperature
which tends to zero. The PDF of y thus concentrates
around the optimum ym = argmaxz>0(B̃(z) − z). The
explicit PDF of ym is known [54], and reads P (y) =√

2
πy e
−y/2−Erfc(

√
y
2 ), which implies the leading behav-

ior of the moments as A→ −1/2−

E〈xn〉 ' cn
∣∣A+ 1

2
∣∣−2n

, cn =
2nΓ(n+ 1

2 )
(n+ 1)

√
π

(31)
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where c1 = 1
2 agrees with (29). The PDF P (y) is ex-

pected to be the limit a → −∞ of a family of distribu-
tions indexed by a, universal within the KPZ class, which
describes the endpoint distribution around the critical
point (see Section VI). As expected, the thermal fluc-
tuations are subdominant as compared to the disorder.
Recall that for the polymer in full space, with one end-
point fixed at 0, the cumulants are time dependent with
E[〈xp〉c] = tδp,2 for any t, see Appendix D, a behav-
ior very different from (28). For the half-space prob-
lem, near the transition the first two average cumulants
are expected to take the following time dependent scal-
ing form E〈x〉 ' t2/3f1(a) and E〈x2〉c = tf2(a), where
a = t1/3(A + 1

2 ) is the critical scaling variable, with the
asymptotics f1(a) ' 1

2a2 and f2(a) ' 1/a3 for a→ −∞,
from (29),(30). Finally, the result (31) is expected to
hold provided t−1/3 � −(A+ 1

2 )� 1.
The polymer in the half-space can be also studied by

the replica method. It uses the relation between the n-
th moment of the partition sum and the Lieb-Liniger
Hamiltonian Hn for n bosons on the half-line, solvable
via the Bethe ansatz. This was pioneered by Kardar [19]
who proposed an ansatz for the ground state Ψ0 of Hn,
which is a bound state to the wall for A < −1/2, and
used it to predict E[〈x〉]. This calculation assumes that
the limits n → 0 and t → +∞ commute. We checked
that the result of [19] agrees with (29) (using κ = 1/2
and λ = −A there), which indicates that this assump-
tion holds in the bound phase (while it does not hold in
the unbound phase, or in the full space). In Appendix
E we provide a detailed comparison of the two methods
(replica ground state dominance, and Brownian station-
ary measure (27)) and more details on the replica ap-
proach. Note that the full spectrum of Hn is quite com-
plicated and was obtained recently in [42], see also [40],
which confirms [19], and may allow to obtain subleading
large time behavior.

It is also possible to obtain exact formula for the m-
point averages E[pA(x1) . . . pA(xm)] of the Gibbs measure
pA(x), using the Liouville quantum mechanics developed
in [55], [56–59]. The detailed calculations are presented
in Appendix F. For instance, in the case m = 1, we obtain

E[pA(x)] = 1
4Γ(2w)

∫ i∞

−i∞

dz(w2 − z2)
2iπΓ(2z)Γ(−2z)e

−x
2 (w2−z2)

×Γ(w + z)2Γ(w − z)2Γ(1− w − z)Γ(1− w + z). (32)

which is valid for 0 < w = −(A+ 1
2 ) < 1 and can be an-

alytically continued to all w > 0 (see Appendix F where
we also checked that (32) is normalized to unity and re-
produces the first moment (29)).

B. Midpoint probability and unbinding by a force

Consider now a polymer with both endpoints fixed
near the wall at times t = 0 and 2t, see Fig. 1. One may
ask about the PDF of the midpoint position x = x(t)

for a long polymer, i.e. for large t. In the bound phase
A < −1/2, it is proportional to (up to a normalization
factor)

eB1(x)+B2(x)+2(A+ 1
2 )x, (33)

where B1,B2 are independent Brownian motions. Since
B1(x) + B2(x) has the same distribution as

√
2B(x) (d)=

B(2x) (B being a standard Brownian motion), the PDF of
the midpoint equals 2pA(2x), i.e. the midpoint position
is distributed as half of the endpoint position [60].

Applying now a force f on the polymer endpoint in
Fig. 1 results in the change ZA(x, t)→ efxZA(x, t) to its
partition function (only at the final time t). In the sta-
tionary large time limit (27) it amounts to shift A→ A+f
in all the above results for the endpoint. An unbinding
transition thus occurs at f = fc = −(A + 1/2), with the
same behavior as the transition at f = 0 upon varying A
(this is also equivalent to tilting the wall). If the force is
instead applied on the midpoint in Fig. 1, the unbinding
transition then occurs at fc = −2(A+ 1

2 ).

C. Convergence to the stationary distribution

So far we have not justified why the ratios of partition
functions converge to (26) in the bound phase. It was
shown in [41] that this distribution of ratios is indeed
stationary. When A 6 −1

2 , we claim that for a large
class of initial condition such that the drift at infinity is
less than −(A+ 1

2 ), that is

logZA(x+ y, 0)− logZA(x, 0) ' −(B + 1
2 )y, (34)

for large x and y, with B > A (and even for more gen-
eral random initial conditions), then the ratios of par-
tition functions converge to (26). This class of initial
conditions includes the flat IC for the KPZ equation, as
well as the fixed endpoint for the DP (equivalently the
droplet IC for KPZ). It is important to note that there
exist more general stationary distributions of partition
function ratios than the ones described in (26). They can
be parametrized by (A,B), and denoted µA,B , where A
is the boundary parameter, and B is a drift parameter
meaning that logZA(x+ y, t)− logZA(x, t) behaves as a
Brownian motion in y with drift −(B+ 1

2 ) for large x. In
the case B = −1−A, the stationary measure µA,−1−A is
exactly the one described in (26). Depending on the value
of A and the drift at infinity of the initial condition, we
expect that the partition function ratios converge to one
of these stationary measures according to the phase dia-
gram in Fig. 2, based on a similar analysis performed for
the asymmetric simple exclusion process (ASEP) [61, 62].
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A
boundary parameter

B
drift

parameter

−1
2

−1
2

µA,−1−A

µA,B

µ
A,−1

2

FIG. 2. Domains of attraction of KPZ (conjectural) station-
ary measures. The horizontal coordinate A is the boundary
parameter in the half-space SHE (2). The vertical coordinate
means that we start from an initial condition which behaves
as a Brownian motion with drift −(B + 1

2 ) at infinity. Then,
the ratios of partition function Z(x, t)/Z(0, t) converge to one
of the stationary measures µ. In the blue region (low density
phase in ASEP context) these ratios converge to µA,−1−A, as
stated in the text. In the green region (high density phase) the
ratios converge to µA,B , and in the yellow region (maximal
current phase), they converge to µ

A,−1
2

. Along the antidi-
agonal line B = −1 − A, the ratios always converge to the
Brownian stationary measures (26).

V. IDENTITIES IN DISTRIBUTION

The formula (13), which characterizes the distribution
of ZfA(0, t), matches with a known formula characterizing
the distribution of another quantity. Let Z(A)(x, t) be the
solution to the stochastic heat equation

∂tZ(x, t) = ∂2
xZ(x, t) +

√
2Z(x, t)ξ(x, t), x ∈ R, (35)

on the full line, with “half-Brownian” initial condition
given by 1x>0e

B(x)−(A+ 1
2 )x, where B is a standard Brow-

nian motion. It was shown in [15] (see also [14, 47]) that
the Laplace transform of Z(A)(0, t) is given by the same
Fredholm determinant as the one that we obtained in
(13). Matching parameters and notations between [15]
and the present paper (see Appendix C) we find the fol-
lowing surprising identity in distribution: for all fixed
t > 0 and any A ∈ R,

ZfA(0, t) = 2Z(A)(0, t), (36)

where ZfA(0, t) was defined in (3). Remarkably, an iden-
tity of a similar flavour as (36) can be deduced from [32,
Eq. (7.59)] for a model of last passage percolation [63].
We stress that (36) is also valid in the phase A < −1

2 ,
where in the l.h.s., the polymer is bound to the wall. In
the RHS, Z(A)(0, t) is the partition function of polymer

paths in the full space, weighted by 1x>0e
B(x)−(A+ 1

2 )x

(x being the starting point) which, for A < −1/2, is
dominated by x = O(t) so that the fluctuations of the
Brownian motion are dominant over KPZ-type fluctua-
tions. We do not know whether (36) extends at several
times. Nevertheless, we may generalize (36) by introduc-
ing a spatial parameter, though we cannot simply replace
the point 0 by an arbitrary point X > 0 in (36). Let us
define

Zshifted
A (X, t) =

∫
x>X

ZA(0, t|x, 0)dx. (37)

This corresponds to the value at the origin of the solution
to the half-line SHE (2) with initial condition Z(x, 0) =
1x>X . Then, we may readily adapt Eqs. (6), (7), (9),
(12) and (13) (see details in Appendix C) and match the
result with [15]. We obtain that for any fixed time t > 0,
X > 0 and A ∈ R, we have the identity in distribution

Zshifted
A (X, t) = 2Z(A)(−X, t). (38)

Note that Z(A)(−X, t) has the same law as
e−

X2
4t Z(A+X

2t )(0, t) from the tilt symmetry (see Appendix
D), hence we also have Zshifted

A (X, t) = e−
X2
4t Zshifted

A+X
2t

(0, t)
in law.

An even more general identity in distribution holds.
Let us denote ZA,B(x, t) the solution to (2) on the half
line x > 0 with initial condition given by eB(x)−(B+ 1

2 )x.
The moments of ZA,B(x, t) are given in [41, Sec. 4.4] in
a very similar form as in (5). Thus we may still apply
the same steps: we define

Zshifted
A,B (X, t) =

∫
x>X

ZA,B(x, t)dx, (39)

and compute the Laplace transform of Zshifted
A,B (X, t).

Then, for t > 0, X > 0, and parameters A,B such that
A + B + 1 > 0 and B > −1

2 , we have the identity in
distribution

Zshifted
A,B (X, t) = 2Z(B|A,B)(−X, t), (40)

where the quantity Z(B|A,B)(−X, t) is again the solution
to full-line SHE (35) with some specific IC, that we obtain
in Appendix C 3 using exact formulas valid for the ex-
actly solvable log-gamma polymer model. To describe it,
let W1,W2,W3 be three independent Brownian motions
with respective drifts −(B+ 1

2 ), −(A+ 1
2 ) and −(B+ 1

2 ).
Let w be an independent inverse Gamma random vari-
able with parameter (2B + 1). Then for x 6 0,

Z(B|A,B)(x, 0) = weW1(−x), (41)

and for x > 0,

Z(B|A,B)(x, 0) = eW3(x)
(
w +

∫ x

0
eW2(y)−W3(y)dy

)
.

(42)
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When B → +∞, then B Zshifted
A,B (X, t) goes to

Zshifted
A (X, t) and B Z(B|A,B)(X, t) goes to Z(A)(X, t)

(see Appendix C 4), so that we recover (38). When
A→ +∞, we obtain yet another identity in law

Zshifted
+∞,B (X, t) = 2wZ̃(B|B)(−X, t) (43)

where the l.h.s. is related to half-line solution to (2)
with eB(x)−(B+ 1

2 )x IC and Dirichlet boundary condition
(this solution was studied in [40, 64]), and Z̃(B|B)(X, t)
is the full-line solution to (35) with eB(x)−(B+ 1

2 )|x| IC,
independent on w. This solution was studied in [16–18]
and one checks that the Fredholm determinant obtained
here characterizing the law of Zshifted

A,B (X, t) for A→ +∞
matches the one in [17], see Appendix C 2. Going back to
the solution Z(B|A,B)(−X, t) in (40), its distribution was
not obtained in the literature, though its moments can be
computed using known methods, and we explain in Ap-
pendix C 3 appendix how they match with the moments
of Zshifted

A,B (X, t) for generic parameters A,B.

VI. UNIVERSALITY

In this paper we studied the continuum directed poly-
mer model. We found that in the bound phase, taking
the limit t → +∞ first, very near the transition, with
0 < ε = −(A+1/2)� 1, the PDF of the scaled endpoint
position y = x(A + 1/2)2 concentrates around the opti-
mum ym = argmaxz>0(B̃(z) − z). Hence in that limit
this scaled position is distributed with

P (y) =
√

2
πy
e−y/2 − Erfc(

√
y

2), (44)

a PDF which behaves as P (y) '
√

2
πy for y � 1 and as

P (y) '
√

2
πy
−3/2e−y/2 for y � 1.

One can argue that this result holds for finite but very
large time as well, as long as the critical parameter a =
(A+ 1

2 )t1/3 is very large negative −a� 1. In fact one can
surmise that there is a scaling function which describes
the endpoint position x(t) in the critical region as follows

lim
t→+∞

Prob
(
x(t)(A+ 1/2)2 < y

∣∣∣A+ 1
2 = a

t1/3

)
= P(y, a)

(45)
To match the previous result one would need that
lima→−∞ P(y, a) =

∫ y
0 dzP (z). On the other hand one

can conjecture the existence of a (critical) half-space Airy
process, denoted Aa(x̂) continuously depending on the
parameter a. It would describe in particular the simul-
taneous limit t→ +∞ and A→ −1/2 of the continuum
directed polymer model, with fixed a = t1/3(A+ 1

2 )

logZA(x, t|0, 0) ' t1/3(Aa(x̂)−x̂2), x̂ = x

2t2/3
(46)

By universality, this process should be the same as the
limit process obtained from half-space last passage perco-
lation, so that the finite dimensional marginals of Aa(x̂)
are described in [35, Theorem 1.7]. The main result of
this paper (solution for the flat IC) can be stated in terms
of this process Aa(x̂)

max
x̂>0

[(Aa(x̂)− x̂2)] (d)= BBPa (47)

where (d)= denotes the equality of distributions and BBPa
denotes the BBP distribution defined in (24). More gen-
erally, from the identity (37) obtained in this paper, one
would conclude that, for fixed X̂ > 0,

max
x̂>X̂

[(Aa(x̂)− x̂2)] (d)= a2 + 2aX̂ (48)

+[A2→BM (−X̂ − a)− (X̂ + a)2], (49)

where A2→BM was introduced in [65] (see also [14, 66]).
For (46) to match our results on the stationary large time
limit requires that for x̂� 1

Aa(x̂) '
√

2B(x̂) + 2ax̂. (50)

Finally, the endpoint PDF scaling function P(y, a) de-
fined in (45) would be obtained from this process as the
PDF of y = argmax[(Aa(x̂)− x̂2)]. It is then natural to
conjecture the universality of the above distributions at
a half-space KPZ fixed point.

In the context of last passage percolation, an identity
reminiscent of (36) relating the distribution of the point
to point energy in a full-space model and the point to
line energy in a half-space model, was stated as [32, Eq.
(7.59)]. In the large scale limit (studied in [33]) both dis-
tributions converge to the BBP distribution (the limiting
distribution function was denoted F�(x;w) in [33], it co-
incides with the BBP distribution defined later in [43]).
Our asymptotic results at large time for the KPZ equa-
tion in Section III B thus confirm universality predictions.
Let us stress, however, that the identity in distribution
from [32] cannot be scaled to the KPZ equation: one
cannot deduce from it our finite time identities in distri-
bution (36), (38), (40) and (C17).

VII. CONCLUSION

We obtained the solution for all times to the KPZ equa-
tion on a half-line with flat IC, i.e. the distribution of the
height at the origin for any wall parameter A. Thanks to
remarkable algebraic cancellations it is simpler than the
solution for flat IC on the full line. In fact, we find that
it is related to the half-Brownian IC on the full line, and
uncover further curious relations between full and half-
line problems. Equivalently it gives the free energy of a
DP of any length t in a half-space, with one free endpoint
and the other pinned at the wall. We showed that its crit-
ical behavior at the unbinding transition at A = −1/2 is
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identical to the BBP critical behavior for outliers of GUE
random matrices. For A < −1/2 the polymer is bound
to the wall and at large t its endpoint position fluctu-
ates as a particle at equilibrium in a one-sided Brownian
plus linear confining potential. This considerably extends
early predictions within the replica Bethe ansatz. These
results open questions such as generalization of the afore-
mentioned identities to several points or times, studying

the rate of convergence to the stationary measure µA
that we determined, possibly in relation to excited states
within the replica Bethe ansatz, and properties of the
non Gaussian stationary measures µA,B (their analogues
in finite volume were recently studied in [67]). Our re-
sults near criticality are part of a larger universal KPZ
fixed point structure in half-space, yet to be fully char-
acterized.

Appendix A: Flat initial condition: details

1. Explicit formula for the moments

Computing the factor E(w1, w1 + 1, . . . , w1 +m1 − 1, . . . , w`, . . . , w` +m` − 1) in (9) using (12) one finds

E
[
ZfA(0, t)n

]
= n!2n

n∑
`=1

1
`!

∑
~m:
∑`

i=1
mi=n

∏̀
i=1

∫
r+iR

dwi
2iπ det

(
1

wi +mi − wj

)`
i,j=1

∏̀
i=1

Γ(A+ wi)
Γ(A+ wi +mi)

et(G(wi+mi)−G(wi))

(A1)
where we used that

∑m−1
k=0 (w+ k)2 = G(w+m)−G(w) and G(w) is defined as G(w) := w3

3 −
w2

2 + w
6 . We recall that

the real part of integration contours is such that r > −A. One can check that the integrals over wj are convergent.

2. Laplace transform

Let us now consider the generating function 1+
∑+∞
n=1

(−u)n
n! E

[
ZfA(0, t)n

]
. The summation over n allows to eliminate

the constraint
∑`
i=1mi = n in the sum over the variables mi in (A1). Although it is a divergent series, after

rearrangements of the terms and use of a Mellin Barnes representation of the sums, it yields an expression for
the Laplace transform E

[
e−uZ

f
A

(0,t)
]

which in all known cases has given the correct result. The Mellin-Barnes
representation replaces the sum over the integer variables mi by integrals, for each i

+∞∑
m=1

(−1)mf(m) =
∫
C

dz

2iπ
π

sin(−πz)f(z) (A2)

where C = a+ iR with 0 < a < 1, oriented from bottom to top. Introducing a variable zj for each mj and performing
the change from zj to sj = wj + zj , this leads to

E[e−uZ
f
A

(0,t)] =
+∞∑
`=0

1
`!

∫
Caw

dw1

2iπ · · ·
∫
Caw

dw`
2iπ

∫
Cas [w1]

ds1

2iπ · · ·
∫
Cas [w`]

ds`
2iπ det

(
1

si − wj

)`
i,j=1

×
∏̀
j=1

[
etG(sj)

etG(wj)
π

sin(−π(sj − wj)
(2u)sj−wj

] ∏̀
j=1

Γ(A+ wj)
Γ(A+ sj)

. (A3)

The contour for variables wi, denoted Caw , is the union of two semi-infinite rays leaving the point aw > −A in the
direction ±2π/3, oriented from bottom to top. The contour for variables si, denoted Cas [w] is formed by the union
of the vertical line as + iR and the union of negatively oriented circles around the poles at w + 1, w + 2, . . . when
these lie to the left of the vertical line (see Fig. 3). The vertical line is oriented from bottom to top. Furthermore,
a sufficient condition for the integrals over si to be convergent is that as − 1/2 > 0. We choose the real numbers as
and aw so that

−A < aw < as. (A4)

Since from the choices of integration contours one has Re(si − wj) > 0 in (A3), we can use the representation

1
si − wj

=
∫ +∞

0
dve−v(si−wj) (A5)
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0

1/2−A aw as

w w + 1 w + 2 w + 3

Caw Cas [w]

FIG. 3. The contours Caw and Cas [w] are shown in the figure. The contour Cas [w] depends on the location of w. For the w
depicted in the figure, the contour consists of the union of the vertical line with real part as and small negatively oriented
circles around w + 1 and w + 2, since w + 1 and w + 2 lie to the left of the vertical line with real part as.

inside the determinant. After some simple manipulations one recognizes the expansion of a Fredholm determinant

E[e−uZ
f
A

(0,t)] = Det(I +Ku,t)L2(R+) (A6)
with the kernel

Ku,t(v, v′) =
∫
Caw

dw

2iπ

∫
Cas [w]

ds

2iπ
π

sin(−π(s− w)) (2u)s−we−vs+v
′w e

tG(s)

etG(w)
Γ(A+ w)
Γ(A+ s) . (A7)

This provides an expression of the generating function in terms of a kernel involving two contour integrals. We will
now transform this formula to obtain an alternative expression in terms a second kernel, as given in the main text in
Section III. Let us use the identity for <λ > 0

(2u)λ π

sin(−πλ) = −
∫
R
dr

2u
e−r + 2ue

−λr (A8)

and perform the shift wj → wj + 1/2 and change of variables sj = zj + 1/2. This leads to our final formula

E[e−uZ
f
A

(0,t)e
t
12 ] = det(I −Ku,t)L2(0,+∞), (A9)

with the kernel

Ku,t(v, v′) =
∫
R

dr 2u
e−r + 2uφA,t(v + r)ψA,t(v′ + r) (A10)

φA,t(v) =
∫
az+iR

dz

2iπ
et
z3
3 −vz

Γ(A+ 1
2 + z)

(A11)

ψA,t(v) =
∫
Caw

dw

2iπ e
−tw3

3 +vwΓ(A+ 1
2 + w) (A12)

where the contour for z is a vertical line such that az > 0 and the contour for w, denoted Caw , is the union of two
semi-infinite rays leaving the point aw > −

(
A+ 1

2
)

in the direction ±2π/3.

Appendix B: Asymptotics: details

1. Case A > −1
2

Using the rescalings indicated in Section III, we have the limits

lim
t→∞

Γ(A+ 1
2)t1/3φA,t(t1/3ṽ) = lim

t→∞

t1/3ψA,t(t1/3ṽ)
Γ(A+ 1

2 )
= Ai(ṽ) =

∫
1+iR

dz

2iπ e
z3
3 −ṽz. (B1)



10

We also have, with u = e−t
1/3s and r = t1/3r̃,

2u
e−r + 2u = 2

2 + et1/3(s−r̃) −−−→t→∞
θ(r̃ − s) (B2)

which leads to Eqs. (21) and (22) in the main text.

2. Case A < −1
2

When A < −1
2 , we use the following change of variables in Eqs. (A10)-(A12)

r =
(
A+ 1

2

)2
+ t1/2r̃, v = t1/2ṽ, z = −

(
A+ 1

2

)
+ t−1/2z̃ (B3)

so that

φA,t

((
A+ 1

2

)2
t+ t1/2(ṽ + r̃)

)
' 1
t
e

2t(A+ 1
2 )3

3 e(A+ 1
2 )t1/2(ṽ+r̃)

∫
dz̃

2iπ z̃e
−(A+ 1

2 )z̃2−(ṽ+r̃)z̃. (B4)

In order to take the asymptotics of ψA,t, we first shift the contour to the left of the pole at w = −(A + 1
2 ) and we

obtain

ψA,t(v) = e
t(A+ 1

2 )3

3 −v(A+ 1
2 ) +

∫
Ca′w

dw

2iπ e
−tw3

3 +vwΓ(A+ 1
2 + w) (B5)

where now, Ca′w is the union of two semi-infinite rays in direction ±φ where φ ∈ (π2 ,
5π
6 ), (so that Re[w3] > 0), which

intersect the horizontal axis at a′w with −A− 3
2 < a′w < −(A+ 1

2 ). We obtain

ψA,t

((
A+ 1

2

)2
t+ t1/2(ṽ′ + r̃)

)
' e−

2t(A+ 1
2 )3

3 e−(A+ 1
2 )t1/2(ṽ′+r̃)

(
1 +

∫
Caw̃

dw̃

2iπ
e(A+ 1

2 )w̃2+(ṽ′+r̃)w̃

w̃

)
(B6)

where we have chosen φ ∈ ( 3π
4 ,

5π
6 ), (so that Re[w̃2] > 0), and we have used the change of variables w = −(A+ 1

2 ) +
t−1/2w̃ and we scale a′w = −(A + 1

2 ) + aw̃t
−1/2 with aw̃ < 0. Notice that in the integral in the RHS of (B6), the

contour can be freely shifted to the left to −∞, so that the integral is zero. We now set u = e−(A+ 1
2 )2t−st1/2 so that

2u
e−r + 2u = 2

2 + et1/2(s−r̃) −−−→t→∞
θ(r̃ − s) (B7)

and

E
[
e−uZ

f
A

(0,t)e
t
12

]
−−−→
t→∞

P

(
logZfA(0, t) + t

12 − (A+ 1
2 )2t

t1/2
6 s

)
. (B8)

Putting all terms together, there are cancellations of the prefactors from ψA,t and φA,t, so that t1/2Ku,t(v, v′) −−−→
t→∞

K̃s(ṽ, ṽ′) and we obtain that

lim
t→∞

det(I −Ku,t)L2(0,+∞) = det(I − K̃s)L2(0,+∞), (B9)

where

K̃s(ṽ, ṽ′) =
∫ +∞

s

dr̃

∫
dz̃

2iπ z̃e
−(A+ 1

2 )z̃2−(ṽ+r̃)z̃ =
∫

dz̃

2iπ e
−(A+ 1

2 )z̃2−(ṽ+s)z̃ = 1√
4π|A+ 1

2 |
e
− (s+ṽ)2

4|A+ 1
2 | (B10)

so that, at large time

logZfA(0, t) '
(
− 1

12 +
(
A+ 1

2

)2
)
t+ t1/2χ (B11)
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with

P(χ < s) = det(I − K̃s)L2(0,+∞) = 1−
∫ ∞

0
K̃s(ṽ, ṽ)dṽ = P (G 6 s) (B12)

where G is a centered Gaussian random variable with variance 2
∣∣A+ 1

2
∣∣, as announced in the main text. In (B12) the

Fredholm determinant is simple to evaluate since K̃s is a rank one kernel (i.e. a projector). Note that the variance of
the random variable χ has the same value as for the droplet IC, as found by a more heuristic method in [42].

3. Critical case A = −1
2 + at−1/3.

We use the same scalings as indicated in Section III for A > −1
2 , and we obtain

lim
t→∞

t2/3φA,t(t1/3ṽ) = φa(ṽ):=
∫

1+iR

dz̃

2iπ (z̃ + a)e z̃
3
3 −ṽz̃, (B13)

lim
t→∞

ψA,t(t1/3ṽ) = ψa(ṽ):=
∫
Caw̃

dw̃

2iπ
e
−w̃3

3 +ṽw̃

w̃ + a
, (B14)

where the contour Caw̃ in (B14) is the union of two semi-infinite rays in direction ±2π/3 which intersect the horizontal
axis at aw̃ is such that aw̃ > −a. Putting all together we obtain, as announced in the main text,

P(χ 6 s) = det(I −KBBP
a )L2(s,+∞) = FBBP

a (s) (B15)

with the kernel

KBBP
a (v, v′) =

∫ +∞

0
drφa(v + r)ψa(v′ + r). (B16)

where the functions φa and ψa are defined in (B13) and (B14). This distribution was introduced in [43] and the form
that we obtained in (24) (i.e. (B15) above) can be matched with the original definition from [43] using e.g. [47].

Appendix C: Generalization to the shifted partition function with X > 0 and arbitrary parameters A,B

1. Moment formulas

The starting point is the following formula from [41, Sec. 4.4] for the moments of ZA,B(x, t), that is the solution to
the half-space SHE (2) with Brownian IC eB(x)−(B+ 1

2 ). For B > n− 1, A+B > n− 1, and x1 > x2 > . . . > xn

E

[
n∏
i=1

ZA,B(xi, t)
]

= 2n Γ(A+B + 1)
Γ(A+B + 1− n)

∫
r1+iR

dz1

2iπ · · ·
∫
rn+iR

dzn
2iπ

∏
16a<b6n

za − zb
za − zb − 1

za + zb
za + zb − 1

×
n∏
i=1

zi
zi +A

1
B2 − z2

i

etz
2
i−xizi , (C1)

where the contours are chosen so that B > r1 > r2 + 1 > · · · > rn + n− 1 > max{n− 1−A,n− 1}, i.e. all contours
are to the right of −A and to the left of B. Recall the definition of Zshifted

A,B (X, t) from (39). Using the same steps as
in the main text around Eq. (6), we have

E
[
Zshifted
A,B (X, t)n

]
= n!2n Γ(A+B + 1)

Γ(A+B + 1− n)

∫
r1+iR

dz1

2iπ · · ·
∫
rn+iR

dzn
2iπ

∏
16a<b6n

za − zb
za − zb − 1F (~z), (C2)

where now,

F (~z) =
∏

16a<b6n

za + zb
za + zb − 1

n∏
i=1

etz
2
i−Xzi

z1 + · · ·+ zi

zi
zi +A

1
B2 − z2

i

. (C3)
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As in the main text, we may use [38, Proposition 5.1] to obtain that (C1) becomes

n!2n Γ(A+B + 1)
Γ(A+B + 1− n)

n∑
`=1

1
`!

∑
~m:
∑

mi=n

∫
r+iR

dw1

2iπ · · ·
∫
r+iR

dw`
2iπ det

(
1

wi +mi − wj

)`
i,j=1

× E(w1, w1 + 1, . . . , w1 +m1 − 1, . . . , w`, . . . , w` +m` − 1) (C4)

where now, the real part of contours is such that max{−A, 0} < r < B and the function E is given in terms of the
function F in (C3) by the same formula as in as in Eq. (10). It is computed as in the main text using the same
symmetrization formula (11), and we obtain that

E(~z) =
n∏
i=1

etz
2
i−Xzi

zi +A

1
B2 − z2

i

. (C5)

At this point, we may use [38, Proposition 5.1] backwards, and obtain that the moments of Zshifted
A,B (X, t) are given

by the relatively simple nested contour formula:

E
[
Zshifted
A,B (X, t)n

]
= 2n Γ(A+B + 1)

Γ(A+B + 1− n)

∫
r1+iR

dz1

2iπ · · ·
∫
rn+iR

dzn
2iπ

∏
16a<b6n

za − zb
za − zb − 1

n∏
i=1

zi
zi +A

1
B2 − z2

i

etz
2
i−Xzi ,

(C6)
where the contours are chosen so that B > r1 > r2 + 1 > · · · > rn + n− 1 > max{n− 1−A,n− 1}.

2. Laplace transform

We may also use (C4) to form the moment generating series as in Appendix A 2 above and obtain a Fredholm
determinant formula. The main difference with Appendix A is that there is a prefactor Γ(A+B+1)

Γ(A+B+1−n) in the moment
formula (C4). This is the reason why it is convenient to introduce an inverse gamma random variable W with
parameter A + B + 1, i.e. of PDF P (w) = 1

Γ(A+B+1)w
−A−B−2e−1/wθ(w) and moments E[Wn] = Γ(A+B+1−n)

Γ(A+B+1) ,
independent from Zshifted

A,B (X, t), so that the moments of WZshifted
A,B (X, t) satisfy the same formula as (C4) without

the ratio of Gamma functions. At this point we may reproduce the steps detailed above in Appendix A 2. We use∏m−1
i=0

1
w+i+A = Γ(A+w)

Γ(A+w+m) and
∏m−1
i=0

1
B2−(w+i)2 = Γ(B+w)Γ(B−w−m+1)

Γ(B−w+1)Γ(B+w+m) . We obtain

E[e−uWZshifted
A,B (X,t)] =

+∞∑
`=0

1
`!

∫
Caw

dw1

2iπ · · ·
∫
Caw

dw`
2iπ

∫
Das [w1]

ds1

2iπ · · ·
∫
Das [w`]

ds`
2iπ det

(
1

si − wj

)`
i,j=1

×
∏̀
j=1

 etG(sj)−X
(sj−1/2)2

2

etG(wj)−X
(wj−1/2)2

2

π

sin(−π(sj − wj)
(2u)sj−wj

 ∏̀
j=1

Γ(A+ wj)Γ(B + wj)Γ(B − sj + 1)
Γ(A+ sj)Γ(B + sj)Γ(B − wj + 1) . (C7)

The contours are chosen similarly as in Appendix A 2. More precisely, the contour for variables wi, denoted Caw , is
the union of two semi-infinite rays leaving the point aw > max{−A,−B} in the direction ±2π/3. The contour for
variables si, denoted Das [w] is formed by the union two parts: (1) a wedge shaped contour, that is the union of two
semi-infinite rays leaving the point as with aw < as < B + 1, and (2) the union of negatively oriented circles around
the poles at w+ 1, w+ 2, . . . when these lie to the left of the wedge, see Fig. 4. All infinite contours are oriented from
bottom to top. The moment formula (C7) leads to

E[e−uWZshifted
A,B (X,t)e

t
12 ] = det(I −KA,B

u,t )L2(0,+∞), (C8)

with the kernel

KA,B
u,t (v, v′) =

∫
R

dr 2u
e−r + 2uφA,B,t(v + r)ψA,B,t(v′ + r) (C9)

φA,B,t(v) =
∫
Daz

dz

2iπ e
t z

3
3 −X

z2
2 −vz

Γ(B + 1
2 − z)

Γ(A+ 1
2 + z)Γ(B + 1

2 + z)
(C10)

ψA,B,t(v) =
∫
Caw

dw

2iπ e
−tw3

3 +X w2
2 +vw Γ(A+ 1

2 + w)Γ(B + 1
2 + w)

Γ(B + 1
2 − w)

(C11)
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0

−A B + 1−B aw as

w w + 1 w + 2 w + 3 w + 4

Caw Das [w]

FIG. 4. The contours Caw and Das [w] are shown in the figure. The contour Das [w] depends on the location of w. For the w
depicted in the figure, the contour consists of the union of the wedge crossing the real axis at the point as < B + 1 and small
negatively oriented circles around w + 1, w + 2 and w + 3, since w + 1, w + 2 and w + 3 lie to the left of the wedge.

where the contours for z, denoted Daz is the union of two semi-infinite rays leaving the point az < B + 1
2 in

the direction ±π/3, and the contour for w, denoted Caw , is the union of two semi-infinite rays leaving the point
aw > max

{
−
(
A+ 1

2
)
,−
(
B + 1

2
)}

in the direction ±2π/3.

Limit as A → +∞. In this limit, ZA,B(x, t) converges to ZDir,B(x, t), the solution to the half-space SHE
(2) with Brownian IC eB(x)−(B+ 1

2 )x and Dirichlet boundary condition, that is it satisfies the boundary condition
ZDir,B(0, t) = 0 for all t > 0. Then, defining

Zshifted
Dir,B (X, t) =

∫
x>X

ZDir,B(x, t)dx, (C12)

as in (39), Equations (C8) and (C9) become

E[e−uZ
shifted
Dir,B (X,t)e

t
12 ] = det(I −K∞,Bu,t )L2(0,+∞), (C13)

where

K∞,Bu,t (v, v′) =
∫
R

dr 2u
e−r + 2uφ∞,B,t(v + r)ψ∞,B,t(v′ + r) (C14)

φ∞,B,t(v) =
∫
az+iR

dz

2iπ e
t z

3
3 −X

z2
2 −vz

Γ(B + 1
2 − z)

Γ(B + 1
2 + z)

(C15)

ψ∞,B,t(v) =
∫
Caw

dw

2iπ e
−tw3

3 +X w2
2 +vw Γ(B + 1

2 + w)
Γ(B + 1

2 − w)
. (C16)

Note that when performing the limit A→ +∞ the prefactor Γ(A+B+1)
Γ(A+B+1−n) in the moment formula (C4) is replaced by

An which is compensated by the total factor A−n from the Gamma functions inside the integrals. Hence there is no
need anymore for the variable W and one obtains the finite limit in (C13).

This kernel K∞,B already appeared in [17, Prop. 1] and [18, Th. 2.9] in the context of the full space KPZ with
two sided Brownian IC. This implies that we have the equality in distribution, for fixed X, t and B > −1

2 ,

Zshifted
Dir,B (X, t) = 2Z(B|B)(−X, t) = 2wZ̃(B|B)(−X, t), (C17)

where Z(B|B)(X, t) is the solution to the full-space SHE (35) with initial condition weB(x)−(B+ 1
2 )|x| where B(x) is a

two-sided Brownian motion with B(0) = 0 and w is an independent inverse Gamma random variable with parameter
2B + 1. The last identity is trivial since w can be put in factor at all x, t and Z̃(B|B)(−X, t) has the same IC but
without the w factor, as defined in the main text. As we explained in the main text, the identity in law (C17) can be
seen as the limit of (40) as A goes to infinity.
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3. Mapping to full-space KPZ with specific initial condition

In this Section, we explain the identity in law (40) (which in particular implies the identity in distribution (38)
after letting B go to +∞). Recall the definition of Z(B|A,B)(X, t), that is the solution to full-line SHE (35) with IC
depending on parameters A,B and specified by (41) and (42). It seems that for this quantity, moment formulas have
not been written down previously, nor a Fredholm determinant representation for the moment generating function.
Thus, we cannot immediately compare its distribution with the formulas (C6) or (C8).

Nevertheless, the moments of Z(B|A,B)(X, t) can be obtained from methods that are available in the literature. For
this, we first need to establish a moment formula for certain partition functions of the log-gamma polymer, a directed
polymer model on the lattice Z2 introduced in [68]. Then we will take the continuous limit to the KPZ equation along
the lines of [41], and find that the moments match with (C6), up to a factor 2 that accounts for the factor 2 in (40).

Remark: Note that for the same log-gamma polymer model, Fredholm determinant formulas are available in
[18, 69, 70], and after taking the limit to the KPZ equation, this should allow to match with (C8) but this route is
more technical and we will not pursue it here.

We need to briefly define the log-gamma polymer partition function that we will be working with, and we refer to
[68, 71] for details. Consider a sequence of random variables (wi,j)i,j>1 distributed as independent inverse Gamma
random variables with parameter αi+βj , where αi and βj are arbitrary sequences of real numbers such that αi+βj > 0.
We define the partition function

Z(n,m) =
∑

π:(1,1)→(n,m)

∏
(i,j)∈π

wi,j , (C18)

where the sum runs over up-right paths π in Z2 going from (1, 1) to (n,m). For n1 > . . . > nk > 1 and 1 6 m1 6
. . . 6 mk, we have

E

[
k∏
i=1

Z(ni,mi)
]

=
∮ dw1

2iπ · · ·
∮ dwk

2iπ
∏
a<b

wa − wb
wa − wb − 1

k∏
j=1

(
nj∏
i=1

1
αi − 1/2 + wj

mj∏
i=1

1
βi − 1/2− wj

)
, (C19)

where all integration contours are positively oriented and enclose the −αi + 1/2 but not the βj − 1/2, and are nested
such that for i < j, the wi-contour encloses the wj-contour shifted by 1. These conditions can be satisfied only
for small enough k. The contours may be taken as closed curves or be deformed to become infinite vertical lines. It
seems that the formula (C19) has not been written anywhere in the literature (though Fredholm determinant formulas
for the Laplace transform are given in [18, 69, 70]). This moment formula can be obtained by taking appropriate
specializations and limits in [72, Theorem 4.6] (the appropriate specializations and limits that one needs to take are
explained in many references, see e.g. [44, Sec. 4 and 5.3]).

Now, we are ready to take the continuous limit. The fact that the partition function Z(n,m) converges to the
solution to the SHE (35) was originally proved in [73, 74] for general directed polymer models (see also [75] for the
application to the log-gamma polymer), but we will follow the arguments from the physics work [41, Sec. 4]. Assume
that we scale αi and βj such that

β1 = 1
2 +B, βi = 1

2 +
√
n, (i > 2), (C20)

and

α1 = 1
2 +A,α2 = 1

2 +B, αi = 1
2 +
√
n, (i > 3), (C21)

The rescaled partition function

Zn(x, t) = ntnZ(tn− x
√
n/2, tn+ x

√
n/2) (C22)

converges as n goes to infinity [41, Claim 4.6] to the solution of (35) with initial condition given as follows. Let
W1,W2 and W3 be independent Brownian motions with respective drifts −(B + 1

2 ),−(A+ 1
2 ),−(B + 1

2 ). Let w11 be
an inverse Gamma random variable with parameter A+B + 1 and w21 be an inverse Gamma random variable with
parameter 2B + 1. For x 6 0, the initial condition is given by

Z(x, 0) = w11w21e
W1(−x). (C23)
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and for x > 0,

Z(x, 0) = w11w21e
W3(x) + w11

∫ x

0
eW2(y)+W3(x)−W3(y)dy. (C24)

Let us briefly explain how this initial condition is obtained. Note that under (C20) and (C21), the weights w11 and
w22 are independent and inverse Gamma distributed with parameters A+B + 1 and 2B + 1. We have that for i > 3
αi + β1 = B + 1 +

√
n, so that under the scaling given in (C22), products of weights along the first row converge to

eW1(−x), where x < 0 and W1 has drift −(B + 1
2 ) (see [41, Eq. (4.12)] for details). Since paths need to go through

the vertices (1, 1) and (2, 1) before continuing along the first row until location (−x
√
n, 1), this explain the expression

(C23). Along the first columns, we have that for j > 2, α1 + βj = A + 1 +
√
n, and α2 + βj = B + 1 +

√
n, so that

products of weights along the first row converge to eW2(x) and products of weights along the second row converge to
eW3(x). We need to consider two types of paths: those going through vertices (1, 1), (2, 1), and collecting a number of
weights on the second column until the location (1, x

√
n), hence the first term in (C24); those going through vertex

(1, 1), then collecting a number of weights along the first column until a location close to (1, y
√
n) then collecting a

number of weights on the second columns between locations (1, y
√
n) and (1, x

√
n), hence the second term in (C24).

Note that the weight w11 is in factor of the IC Z(x, 0) for any x, so that the solution of the full-space SHE
(35) with such initial condition that we have obtained as a limit of the log-gamma polymer model can be written as
Z(x, t) = w11Z

(B|A,B)(x, t), and w21 = w, using the notations in the main text in Section V. Assuming the convergence
of moments, and taking the limit of the integral formula (C19) under the scalings (C20), (C21) and (C22), we obtain
the following moment formula: For x1 6 . . . 6 xn,

E

[
n∏
i=1

Z(B|A,B)(xi, t)
]

= Γ(A+B + 1)
Γ(A+B + 1− n)

∫
r1+iR

dz1

2iπ · · ·
∫
rn+iR

dzn
2iπ

∏
a<b

za − zb
za − zb − 1

n∏
j=1

(
1

A+ zj

1
B2 − z2

j

etz
2
j+xjzj

)
,

(C25)
where the contours are such that

B > r1 > r2 + 1 > · · · > rk + k − 1, with rk > −A,−B, (C26)

and we have used that the moments of w11 are given by E
[
wk11
]

= Γ(A+B−k+1)
Γ(A+B+1) . Comparing with (C6), we have that

for x > 0, and any integer n > 1,

2nE
[
Z(B|A,B)(−x, t)n

]
= E

[
Zshifted
A,B (x, t)n

]
, (C27)

from which we deduce the equality in distribution (40) (strictly speaking, an equality of moments does not imply an
equality in distribution but we will ignore this mathematical subtlety).

4. Degeneration as B → +∞

In the B → +∞ limit, we need to multiply both members of (C27) by Bn before taking the limit. Then, the full
space solution in the l.h.s. of (C27) has half-Brownian IC (in the limit), as can be seen from (41) and (42), that is, on
R+ the initial condition is the exponential of a Brownian motion with drift −(A+ 1

2 ) and on R+ the initial condition
is zero. The half-space solution involved in the RHS of (C27) has Robin type boundary condition with parameter A,
and delta at 0 IC in the limit (i.e. droplet initial condition). Hence, we obtain the identity in distribution (38).

The identity in distribution can also be obtained by a comparison of Fredholm determinant formulas. Indeed, the
kernel Ku,t already appeared in [15]. This paper was considering the solution Z(A)(x, t) to the full-space SHE (35)
with half-Brownian IC Z(A)(x, 0) = eB(x)−(A+ 1

2 )x for x > 0 and Z(A)(x, 0) = 0 for x < 0. In fact the solution was
obtained there for any x but in the absence of the drift (i.e. for A = −1/2), however it is immediate to extend it to
arbitrary drift, using the statistical symmetry (see section D). Comparing the formula (A9) with [15, Prop. 2], we
obtain the identity in distribution (36). The correspondence of notations is as follows: one must set α = 1, γt = t1/3

there and here u = e−t
1/3s
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Appendix D: Tilt symmetry

Let us consider the SHE on the full line (35) with standard space time white noise ξ(x, t). Suppose that
{Z(x, t)}x∈R,t>0 is a solution with IC Z(x, 0) = Z0(x). Consider now for any fixed real a

Z̃(x, t) = eax+a2tZ(x+ 2at, t). (D1)

Since ξ̃(x, t) = ξ(x + 2at, t) is also a standard space time white noise, Z̃(x, t) is also a solution of the SHE (35),
with IC Z̃(x, 0) = Z̃0(x) = eaxZ0(x) in another realization of the noise. Hence the (statistical) tilt symmetry (STS)
relates the statistics of the solutions of the SHE with “tilted” initial conditions. In the particular case of the droplet
IC, Z̃0(x) = Z0(x) = δ(x) these IC are identical and the statistics of {Z(x, t)}x∈R,t>0 and {Z̃(x, t)}x∈R,t>0 are thus
identical (as space time processes).

Half-Brownian IC. Let us denote now Zv(x, t) the solution with the half Brownian IC with drift v, i.e. Zv(x, 0) =
eB(x)+vxθ(x). The solution Zv+a(x, t) with a half Brownian IC with drift v + a, i.e. Zv+a(x, 0) = eB(x)+(v+a)xθ(x)
can thus be constructed using the STS, i.e. one has in law

Zv+a(x, t) = eax+a2tZv(x+ 2at, t). (D2)

This is an identity between space time processes. We want now to focus only on the distribution at a single fixed
space-time point (x, t). Then we can choose a = −x/(2t) and v = w − a and obtain the equality in law

Zw(x, t) = e−
x2
4t Zw+ x

2t
(0, t). (D3)

Setting w = −(A+ 1
2 ) and x = −X we obtain the identity in law Z(A)(−X, t) = e−

X2
4t Z(A+X

2t )(0, t) given in the main
text.

Droplet IC. Consider now the solution Z(x, t) = Z(x, t|0, 0) of the full line SHE with the droplet IC. Let us define
G(f, t) =

∫ +∞
−∞ dxefxZ(x, t). It is the partition sum of a directed polymer with one fixed endpoint at (0, 0) and one

free endpoint (x, t) but with an applied force f on that endpoint. From the STS property we have that G(f, t) has the
same distribution as ∫ +∞

−∞
dxefxeax+a2tZ(x+ 2at, t) = G(f + a, t)e−(a2+2af)t. (D4)

Hence, choosing a = −f

E logG(f, t) = E logG(0, t) + f2t. (D5)

It follows, by differentiation, that the averaged thermal cumulants of the free endpoint (x, t) in the absence of the
force, i.e. for f = 0, are simply E〈xp〉c = ∂pf E logG(f, t) = 2tδp,2 on the full line, as mentioned in the main text. Similar
remarkable identities for thermal fluctuations occur in a larger class of disordered models [76]. While it is valid for
any t, for large t this result is usually interpreted within the droplet picture [51, 77]. The typical Gibbs measure of the
endpoint is localized, i.e. the thermal fluctuations of the endpoint are typically δx = O(1). However, with probability
p(t) ∼ T/t1/3 (where the temperature is T = 1 here) there exists two distant states, almost degenerate in energy
(within O(T )): the Gibbs measure is splitted between them and that leads to a much larger δx ∼ t2/3. Putting these
factors together leads to E〈x2〉c ∼ Tt−1/3t4/3 ∼ Tt

Note that by the tilt symmetry the polymer configurations are mapped into each others. In the case of the half-
space the STS maps a problem with a vertical wall to a problem with a tilted wall, so a priori one cannot readily use
it. In the main text we have found the curious relation (38) and used on the r.h.s. the STS for the half-Brownian in
full space (shown above) to deduce the equality in law Zshifted

A (X, t) = e−
X2
4t Zshifted

A+X
2t

(0, t). Although it has a flavor of
STS in half space, it is not, and in fact there is no simple correspondence between the polymer trajectories on both
sides of this relation.

A similar puzzle occurs upon applying a force f to the endpoint in the half space. A tilt transformation which
removes the force would also tilt the wall, so no obvious consequence can be obtained. Nevertheless, as shown in the
main text, the force induces an additional drift in the drifted Brownian stationary measure leading to the simple shift
A→ A+ f. There also, it does not seem to exist any simple picture in terms of tilted polymer paths.
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Appendix E: Replica Bethe ansatz approach

In this Appendix we explore the interplay between the energy spectrum of the replica delta Bose gas in the half-
space and the stationary measure of increments of partition function that is used in the main text in Section IV to
study endpoint distributions of polymers.

1. Moments of partition sum

The replica Bethe ansatz method (RBA) allows to write the multipoint equal time moments of Z(x, t), solution of
the SHE equation (in full or half space), as a quantum mechanical expectation (denoting ~x = (x1, . . . , xn))

E[Z(x1, t) · · ·Z(xn, t)] = 〈~x|e−tHn |Ψ(t = 0)〉 =
∑
µ

Ψµ(x1, . . . , xn)〈Ψµ|Ψ(t = 0)〉 e
−tEµ

||Ψµ||2
. (E1)

i.e. a sum over the unnormalized eigenfunctions Ψµ (of norm denoted ||Ψµ||) of the n-body Lieb-Liniger (LL)
Hamiltonian

Hn = −
n∑
j=1

∂2

∂x2
j

− 2
∑

16i<j6n
δ(xi − xj), (E2)

with eigenenergies Eµ. In (E1), we have denoted Ψµ(x1, . . . , xn) = 〈~x|Ψµ〉 and the initial state |Ψ(t = 0)〉 encodes
the initial condition of the SHE, with 〈~x|Ψ(t = 0)〉 =

∏n
i=1 Z(xi, 0) for a deterministic IC and 〈~x|Ψ(t = 0)〉 =

E[
∏n
i=1 Z(xi, 0)] for a random IC. These initial conditions being symmetric in (x1, · · · , xn) only the symmetric, i.e.

bosonic, eigenstates contribute to the sum in (E1). The representation (E1) is valid in full space and half space. The
sum (E1) is weighted by the overlaps 〈Ψµ|Ψ(t = 0)〉 =

∫ ∏
i dxiΨ∗µ(~x)〈~x|Ψ(t = 0)〉.

In the half space case Hn acts on wave-functions which satisfy the boundary conditions ∂xiΨ(~x)|xi=0 = AΨ(~x)|xi=0,
i = 1 . . . , n (hence the eigenstates Ψµ satisfy this condition). The n body spectrum of the half-space problem is
complicated and was obtained from the Bethe ansatz in [42]. We also refer to [42] for a more detailed presentation
and for the references to the literature on the Bethe ansatz for the half-space LL model. In addition to the usual bulk
string bound states which exist in the full space problem and have an arbitrary center of mass momentum, there are
also n body boundary bound states which are localized at the boundary.

The ground state (lowest energy state) was found by Kardar in [19], and this was confirmed in [42]. One has

1. For n 6 1 + 2A the ground state is a state made of a single bulk string with a vanishing momentum. Far from
the boundary its wave-function behaves like the ground state of the full-space problem

Ψ0(~x) ∼ e−
1
2

∑
16i<j6n

|xi−xj | = e
1
2

∑n

j=1
(n+1−2j)xj , for large x1 6 . . . 6 xn. (E3)

The ground state energy is E0(n) = − 1
12n(n2 − 1).

2. For n > 1 + 2A the ground state is made of a single boundary string. The ground state energy is E0(n) =
−n
(
A+ 1

2 (1− n)
)2 − 1

12n(n2 − 1). It has the form

Ψ0(~x) ∝ e
∑n

j=1
(A−j+1)xj , for any 0 6 x1 6 x2 6 · · · 6 xn, (E4)

and its norm was computed in [42]. Note that shifting all xi → xi+x̄ the wave-function decays as e− x̄2n(n−(1+2A)).

Exactly at the transition for n = 1 + 2A, the two states are identical as the RHS of (E3) and (E4) match. This
state should be considered as a bulk string ground state as its center of mass is delocalized in the full volume. The
ground state energy is continuous across the transition.

In the limit t→ +∞, for any fixed positive integer n, the sum over states is dominated by the ground state Ψ0(~x).
It is thus tempting to follow the following two steps:

(i) write

E[ZA(x1, t) · · ·ZA(xn, t)] '
Ψ0(~x)
||Ψ0||2

〈Ψ0|ψ(t = 0)〉e−E0(n)t (E5)

where ZA(x, t) solves the half-space SHE (2),
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(ii) postulate that the form of the expression found for positive integer n can be extended to real n > 0 in the limit
n→ 0 to calculate moments.

This is what was done by Kardar in [19] to predict E(〈x〉) in the bound phase. In the following it will be convenient
to rewrite (E5) as

E[ZA(x1, t) · · ·ZA(xn, t)] ' cn(t)Ψ̃0(~x), cn(t) = E[ZA(0, t)n], Ψ̃0(~x)|x16···6xn = e

∑n

j=1
(A−j+1)xj . (E6)

In that form it is clear that the continuation of cn(t) to n = 0 is simply unity.

It is well known that in the full space problem (and we can expect the same in the unbound phase for the half-space
problem), in step (i) the amplitude in (E5) is not correct since the spectrum is gap-less and one must further integrate
over the low lying center of mass excitations, but this integration can be performed for a given initial condition. In
step (ii), more severely, the limit t → +∞ and n → 0 do not commute (i.e. one would need to perform the limit
n→ 0 on the full sum and then take the limit t→ +∞). However, once these two issues are addressed, this program
enables to obtain the right tails of the free energy logZ [78, 79].

In the bound phase however, for A < −1/2, step (i) is more reasonable as there are no center of mass excitations and
there is a finite gap between the ground state and the excited states [42], so (E5) should give the correct asymptotics.
In step (ii) it is quite likely that the limits t→ +∞ and n→ 0 commute in that case: for A < −1/2 the ground state
holds for any n > 0, and it is a system of effectively finite size. Indeed our results below confirm that.

2. Thermal cumulants of the endpoint position via the RBA

Let us recall the definition of the endpoint distribution (in a given noise realization) and of the thermal averages

P(x, t) = ZA(x, t)
Z

, Z =
∫ +∞

0
dyZA(y, t), 〈O(x)〉 =

∫ +∞

0
dxO(x)P(x, t), (E7)

where the time dependence of the averages is implicit. Note that we have not specified the initial condition, so it can
be fixed endpoint at t = 0 in some position, or more general. Let us first calculate the thermal cumulants.

The generating function f(v) of the averaged thermal cumulants can be written as

f(v) = E
[
log
∫ +∞

0
dxevxZA(x, t)

]
= ∂nE

[(∫ +∞

0
dxevxZA(x, t)

)n] ∣∣∣∣∣
n→0

(E8)

= ∂n

∫ +∞

0
d~xev

∑n

i=1
xiE [ZA(x1, t) · · ·ZA(xn, t)]

∣∣∣
n→0

. (E9)

Thus in the large time limit (under the above assumptions) it becomes

E[〈xp〉c] = ∂pvf(v)
∣∣
v=0, f(v) = ∂n(cn(t)In(v))

∣∣
n=0, In(v) :=

∫
d~xev

∑n

i=1
xiΨ̃0(~x). (E10)

Let us calculate the integral

In(v) = n!
∫

0<x1<···<xn
e

∑n

j=1
(A+v−j+1)xj = n!

n∏
j=1

−2
j(1 + 2A+ 2v + j − 2n) = 2nΓ(−2A+ n− 2v − 1)

Γ(−2A+ 2n− 2v − 1) (E11)

where we have used the identity ∫
0<y1<···<yp

e

∑p

j=1
zjyj =

p∏
j=1

−1
zp + · · ·+ zp−j+1

(E12)

We see that I0(v) = 1 as expected, and recall that c0(t) = 1, so that

f(v) = ∂ncn(t) + ∂nIn(v)
∣∣
n=0 = E[logZA(0, t)] + log(2)− ψ(−2A− 2v − 1). (E13)
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Note that this is exactly compatible with what was obtained in the main text around (28) since

E
[
log
∫ +∞

0
dxevxZA(x, t)

]
− E [logZA(0, t)] = E

[
log
∫ +∞

0
dxevx

ZA(x, t)
ZA(0, t)

]
(E14)

where the limit ZA(x,t)
ZA(0,t) was shown to converge to the exponential of the Brownian with drift A + 1

2 . So the RBA
method reproduces exactly the result (28) for the general averaged thermal cumulant. In the case p = 1 this is the
result obtained by Kardar [19]. This coincidence between the results of the RBA and of the method used in the main
text appears to extend to all moments as we now discuss.

3. Comparison of the two methods and general moments

Let us put side by side the results of the two methods. In the method based on stationary measures of increments
described in the main text in Section IV, one states that

E
[
ZA(x1, t)
ZA(0, t) · · ·

ZA(xn, t)
ZA(0, t)

]
−−−−→
t→+∞

Φ0(~x) := E
[
e
∑n

i=1
B(xi)+(A+ 1

2 )xi
]
, Φ0(~x)|x16···6xn = e

∑n

j=1
(n−j+ 1

2 )xj+(A+ 1
2 )xj

(E15)
while in the RBA method, one obtains

E[Z(x1, t) · · ·Z(xn, t)] 't→+∞ E[Z(0, t)n] Ψ̃0(~x) , Ψ̃0(~x)|x16···6xn = e

∑n

j=1
(A−j+1)xj (E16)

The functions Φ0(~x) and Ψ̃0(~x) are both fully symmetric in their arguments and very similar, although different.

General moments. The multipoint average of the endpoint distribution can be written as

E[P(x1, t) · · · P(xp, t)] = E
[

1
Zp

ZA(x1, t) · · ·ZA(xp, t)
]

= lim
n→0

E
[∫ +∞

0
dxp+1· · ·

∫ +∞

0
dxnZA(x1, t) · · ·ZA(xn, t)

]
(E17)

where we used that 1
Zp = limn→0 Z

n−p, and we recall that Z =
∫ +∞

0 dyZA(y, t).
Using the RBA result (E16), in the large time limit it thus becomes

E[P(x1, t) · · · P(xp, t)] ' lim
n→0

∫ +∞

0
dxp+1· · ·

∫ +∞

0
dxn Ψ̃0(~x) (E18)

Upon multiplication by O1(x1) . . . Op(xp) and integration, it implies in particular for the most general type of moment

E[〈O1(x)〉 · · · 〈Op(x)〉] ' lim
n→0

∫ +∞

0
dx1· · ·

∫ +∞

0
dxnO1(x1) . . . Op(xp) Ψ̃0(~x) (E19)

Within the method based on the stationary measure, one has from (27), limt→∞ PA(x, t) = pA(x) with pA(x) =
1
Ze
B(x)+(A+ 1

2 )x and Z =
∫ +∞

0 dyeB(y)+(A+ 1
2 )y. Using the same steps as in (E17) with 1

Zp = limn→0 Zn−p one obtains
using (E15)

E[pA(x1) · · · pA(xp)] = lim
n→0

∫ +∞

0
dxp+1· · ·

∫ +∞

0
dxnΦ0(~x) (E20)

which provides a starting formula for the evaluations of the many point correlations of the stationary measure via the
replica method.

We can now compare (E20) and (E18) and use that Φ0(~x) and Ψ̃0(~x) are very similar. More precisely,
Φ0(~x) = en

∑n

i=1
xiΨ̃0(~x), i.e. they differ by a term which contains n explicitly and vanishes at n = 0. This indicates

that the results of the two methods for the endpoint probability correlations, and thus for all the moments, are the
same.

Correlation between endpoint positions and free energy. The RBA ground state Ψ̃0(~x) thus seems to
contain the information about the stationary measure of the partition sum ratios. However it should contain more,
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(0, 0)

(0, t)

M = (x′, t− τ)

(x, t)

γ1(s) = γ2(s)

γ1(s)
γ2(s)

τ = x

2|A+ 1
2 |

E12 =
∫ t−τ

0 ξ(γ1(s))ds

E1 =
∫ t
t−τ ξ(γ1(s))ds

E2 =
∫ t
t−τ ξ(γ2(s))ds

FIG. 5. Illustration of the geodesics γ1 = (γ1(s), s)06s6t and γ2 = (γ2(s), s)06s6t.

and encode also for some information about the correlations between Z(0, t) and these ratios, or with the endpoint
distribution, which remains to be explored. Indeed putting together (E15) and (E16) we obtain that at large time

E[Z(0, t)nZt(x1) . . . Zt(xn)] ' e−n
∑n

i=1
xiE[Z(0, t)n]E[Zt(x1) . . . Zt(xn)] (E21)

where we denoted the ratios as Zt(x) = Z(x, t)/Z(0, t). Taking xi = x for i = 1, . . . , p and xi = 0 for i = p+ 1, . . . , n,
it gives E[Z(0, t)nZt(x)p] = e−npxE[Z(0, t)n]E[Zt(x)p] for all positive integers n 6 p. This suggest that at large time
the only non zero joint cumulant between logZ(0, t) and logZt(x) is the two point covariance

Cov(logZ(0, t), logZt(x)) = −x. (E22)

It is possible to obtain some understanding of how this relation (which is a conjecture at this stage) could come about.
At large t and large x we may approximate the polymer partition functions by the exponential of the energy collected
along geodesics (i.e. paths with maximal energy). Consider the geodesics γ1(t) from (0, 0) to (0, t) and γ2(t) from
(0, 0) to (x, t). They first coincide and then split at some point M of coordinate (x′, t− τ), see Fig. 5. In the bound
phase A < −1/2, γ1(t) remains close to the wall, and x′ remains bounded. Let us call E12 the energy of the common
segment (that is E12 =

∫ t−τ
0 ξ(γ1(s))ds), E1 the one of the segment from M = (x′, t − τ) to (0, t), and E2 from M

to (x, t). At large t, one has logZ(0, t) ' E1 + E12 and logZ(x, t) ' E2 + E12. Conditionally on the position of M ,
E12 is independent from E1 and E2, and for large t and x, E1 and E2 are asymptotically independent. Hence the left
hand side of (E22) is thus

Cov(E12 + E1, E2 − E1) = Cov(E1, E2 − E1) ' −Var(E1). (E23)

We have obtained in the main text, see also [42], that for large τ , we have VarE1 ' 2τ |A + 1
2 |. Further one expects

that for large τ and x, the length τ is proportional to x. If one equate the elastic energy x2/(4τ) with (A+ 1
2 )2τ one

obtains τ ' x/(2|A+ 1
2 |), which makes (E23) consistent with (E22) in the limit of large x. A similar understanding

when x is not going to infinity seems more difficult.

Remark: midpoint. The partition function with two fixed endpoints in x = 0 at times 0 and 2t and a given
midpoint position x(t) = x is given by Z(0, 2t|x, t)Z(x, t|0, 0), which has the same law as two independent copies of
Z(x, t|0, 0). The moments of this partition function will thus be the square of the moments of Z(x, t|0, 0). Within the
RBA it will thus amount to the same formula as above, replacing Ψ̃0(x)→ Ψ̃0(x)2. From (E16) it is an exponential
linear in the xi, hence this replacement amounts to change xi → 2xi. This agrees with the result of the main text.

Remark: basin of attraction. We expect that the property of “ground state dominance” (E5) in the RBA will
hold in the bound phase upon some condition on the initial condition (i.e. on the behavior of the overlaps). The
condition for the convergence to the stationary measure for the ratios was discussed in the main text in Section IV.
It would be interesting to see whether it can also be obtained with the RBA.
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Appendix F: Correlations of pA(x) via Liouville quantum mechanics

The stationary measure for the endpoint position at large time in the bound phase is pA(x) given in (27). It is
possible to compute its m-point correlations (and therefore all the moments) using methods developped in [56, 58]
and in [55] based on stochastic processes, replica, and most notably on Liouville quantum mechanics. Other works
adressed similar questions in various contexts [80–82], often motivated by multifractal properties of eigenfunctions
of random Dirac type operators. Although it is a simple extension of these works (which often focus on periodic
boundary conditions) the formula for the case of the Brownian (i.e. with free boundary conditions) and in presence
of a drift have not been given, so we display them here (for details of the method we refer to [55] and [56]).

1. Moments of pA(x)

Let us denote w = −(A+ 1
2 ) > 0. As in these works we consider a finite L truncation, denoting ZwL =

∫ L
0 dxeB(x)−wx,

and we take L→ +∞ at the end. A simple but useful observation [55, 58] is that pA(x) in (27) can be rewritten as

pA(x) = lim
L→∞

1∫ L
0 dyeB(y)−B(x)−w(y−x)

= lim
L→∞

1
Z−wx + Z̃wL−x

= 1
Z−wx + Z̃w∞

(F1)

where Z̃ contains an independent realisation of the Brownian. This is obtained splitting the integral over y on the two
interval [0, x] and [x, L] and performing the change of variable y = x−z on the first and y = x+z on the second, with
z positive. In the last equation we used the property that ZwL converges for L→ +∞ to an inverse Gamma random
variable Z̃w∞ = Γ(2w, 1

2 ) where here 1/2 is the scale parameter, i.e. z = Z̃w∞ has PDF p(z) = 1
2Γ(2w) ( 2

z )1+2we−2/z.
Thus the moments of pA(x) are given by

E[pA(x)n] =
∫ +∞

0
dp
pn−1

Γ(n)E
[
e−pZ

−w
x

]
E
[
e−pZ

w
∞

]
= 2

Γ(2w)

∫ +∞

0
dp
pn−1

Γ(n)φ
µ=−2w(p, x)(2p)wK2w(2

√
2p) (F2)

where we inserted the exact result for Zw∞ and the function φµ(p, x) was obtained in [56, (3.6)] (setting β = σ = 1,
α = 1/2 there)

φµ=−2w(p, x) = E
[
e−pZ

−w
x

]
= (2p)−w

4π2

∫ +∞

−∞
dqq sinh(πq)

∣∣∣∣Γ(w + iq
2

)∣∣∣∣2Kiq(2
√

2p)e− x8 (q2+4w2) (F3)

Inserting into (F2) the factors (2p)w and (2p)−w cancel. Let us specialize now to n = 1. For w < 1 we can interchange
the integrals and use that∫ +∞

0
dpK2w(2

√
2p)Kiq(2

√
2p) =

∫ +∞

0

du

4 uK2w(u)Kiq(u) =
π2 (q2 + 4w2)

16(cosh(πq)− cos(2πw)) (F4)

leading to our first result, valid for 0 < w 6 1, w = −(A+ 1
2 )

E[pA(x)] = 1
32Γ(2w)

∫ +∞

−∞
dqe−

1
8 (q2+4w2)xq sinh(πq)

∣∣∣∣Γ(w + iq
2

)∣∣∣∣2 q2 + 4w2

cosh(πq)− cos(2πw) . (F5)

Under the change of variables iq = 2z, and after using some trigonometric identities and Euler’s reflection formula,
(F5) can be rewritten as

E[pA(x)] = 1
4Γ(2w)

∫ i∞

−i∞

dz

2iπ
(w2 − z2)e−x2 (w2−z2)Γ(w + z)2Γ(w − z)2Γ(1− w − z)Γ(1− w + z)

Γ(2z)Γ(−2z) . (F6)

We may now analytically continue this formula for all w > 0 by subtracting and adding the necessary residues when
w > 1 (see Figure 6).

The analytic continuation of the RHS of (F6) to w > 1 is

1
4Γ(2w)

∫ i∞

−i∞

dz

2iπ
(w2 − z2)e−x2 (w2−z2)Γ(w + z)2Γ(w − z)2Γ(1− w − z)Γ(1− w + z)

Γ(2z)Γ(−2z) + 1
4Γ(2w)

∑
16n<w

(Rw−n −Rn−w)

(F7)
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iR

0 < w < 1

1− ww − 1

1 < w < 2

C

w − 11− w

1 < w < 2

iR

FIG. 6. We consider a function I(w) such that for 0 < w < 1, we have I(w) =
∫

iR f(z, w), and f(z, w) is analytic in both z
and w except at some isolated poles. In particular it has poles at z = w − 1, w − 2, w − 3, . . . and z = 1− w, 2− w, 3− w, . . . .
Then, its analytic continuation to w such that n < w < n + 1 is

∫
C f(z, w) where C is the contour shown above (in the case

n = 1). This contour is such that 1− w, . . . , n − w still lie on the right of the contour (as when 0 < w < 1), and the poles at
w − 1, . . . , w − n still lie on the left of the contour (as when 0 < w < 1). Since the poles do not cross the contour, the formula
remains analytic in w. This contour can be then deformed to the union of a vertical line and small circles around simple poles
whose contribution can be computed by the residue Theorem.

where Rw−n and Rn−w are residues of the integrand at z = w − n and z = n− w respectively. We have

Rw−n = −Rn−w = 2(−1)n−1n!e
−x
2 (2wn−n2)(w − n)Γ(2w)Γ(1− 2w)

Γ(n− 2w) , (F8)

so that, for w = −(A+ 1
2 ) > 0,

E[pA(x)] = 1
4Γ(2w)

∫ i∞

−i∞

dz

2iπ
(w2 − z2)e−x2 (w2−z2)Γ(w + z)2Γ(w − z)2Γ(1− w − z)Γ(1− w + z)

Γ(2z)Γ(−2z)

+
∑

16n<w
n!(−1)n−1e

−x
2 (2wn−n2)(w − n) Γ(1− 2w)

Γ(n− 2w) . (F9)

Note that for large w the finite series dominates and the integral can be neglected for most averages.

Remark: Normalization. Let us first check that the formula (F9) obeys the normalization condition∫ +∞
0 dxE[pA(x)] = 1. By analyticity, it suffices to check it for 0 < w < 1. Then, using (F6), this is equivalent

to the identity ∫ i∞

−i∞

dz

2iπ
Γ(w + z)2Γ(w − z)2Γ(1− w − z)Γ(1− w + z)

Γ(2z)Γ(−2z) = 2Γ(2w). (F10)

which is a particular case of the known identity [83, Eq. (3.6.1)]∫ i∞

−i∞

dz

2iπ
Γ(a+ z)Γ(a− z)Γ(b+ z)Γ(b− z)Γ(c+ z)Γ(c− z)

Γ(2z)Γ(−2z) = 2Γ(a+ b)Γ(a+ c)Γ(b+ c), (F11)

valid for a, b, c with positive real part.

Remark: First moment. We may also check that (F6) is consistent with the result (29) for the first thermal
cumulant given in Section IV, i.e. E〈x〉 =

∫ +∞
0 xE[pA(x)]dx = 2ψ′(2w). Indeed, from (F6), we have∫ +∞

0
xE[pA(x)]dx = 1

Γ(2w)

∫ i∞

−i∞

dz

2iπ
Γ(w + z)2Γ(w − z)2Γ(−w − z)Γ(−w + z)

Γ(2z)Γ(−2z) . (F12)



23

The integral in (F12) cannot be simplified directly using (F11), but we may use that

(F12) = lim
ε→0

1
Γ(2w)

∫ i∞

−i∞

dz

2iπ
Γ(w + z)2Γ(w − z)2Γ(ε− w − z)Γ(ε− w + z)

Γ(2z)Γ(−2z) . (F13)

When 0 < w < 1, this integral above is analytic in ε ∈ (0,+∞), and the expression for 0 < ε < w can be obtained by
an analytic continuation from the expression when ε > w, which is given by (F11). More precisely, for 0 < ε < w,

1
Γ(2w)

∫ i∞

−i∞

dz

2iπ
Γ(w + z)2Γ(w − z)2Γ(ε− w − z)Γ(ε− w + z)

Γ(2z)Γ(−2z) = 1
Γ(2w)

(
2Γ(2w)Γ(ε)2 +Rε−w −R−ε+w

)
(F14)

where R±ε∓w are residues of the integrand at z = ±ε∓ w, which can be computed as

Rε−w = −Rw−ε = −Γ(2w − ε)2Γ(ε)2

Γ(2w − 2ε) . (F15)

Finally, taking the limit ε→ 0, we obtain∫ +∞

0
xE[pA(x)]dx = lim

ε→0

1
Γ(2w)

(
2Γ(2w)Γ(ε)2 − 2Γ(2w − ε)2Γ(ε)2

Γ(2w − 2ε)

)
= 2ψ′(2w). (F16)

Remark: Value of E[pA(0)]. Letting x = 0 in (F6) and using the identity (F11) yields E[pA(0)] = w. This result
has a simple origin: when x = 0 pA(0) =

(∫∞
0 eB(x)−wxdx

)−1 ∼ Γ(2w, 1/2) and E[Γ(2w, 1/2)] = w.
Remark: Decay for large x. Let us start with 0 < w < 1. Saddle point analysis and rescaling in formula (F6)

gives that at large x the decay is exponential with a −3/2 power law prefactor, E[pA(x)] ' cwx
−3/2e−w

2x/2, with
cw = π3/2 csc2(πw)Γ(w+1)2

√
2Γ(2w) . For w > 1 however the decay at large x is dominated by the term n = 1 in the discrete

series in (F9) and E[pA(x)] ∼ e−x2 (2w−1) for w > 1, i.e. a much slower decay than e
−x
2 w2 .

Remark: Limit w = −(A+ 1
2 )→ 0. In the limit w → 0, it is easy to check, upon rescaling q → wq and x→ y/w2

in (F5) that as w → 0+ one has E[pA(x)]dx → P (y)dy where P (y) is the probability given in the main text (of
moments given by (31)). In that limit the large x tail obtained above matches the tail of P (y) at large y, since
cw ∼

√
2
π/w for w → 0. The −3/2 exponent, ubiquitous in this types of problems [55, 57], is known to originate from

quasi-degenerate extrema of the Brownian [84].

2. m-point correlations

To compute the m point correlations with m > 2 one uses the Liouville quantum mechanics. One introduces the
Liouville Hamiltonian Hp on the real axis U ∈ R, and its eigenfunctions ψk(U) which are real and indexed by k > 0

Hp = −1
2
d2

dU2 + peU , Hpψk(U) = k2

8 ψk(U), ψk(U) = 1
π

√
k sinh(πk)Kik(2

√
2peU/2). (F17)

These eigenfunctions form a continuum orthonormal basis (we use the conventions in [55] with β = σ = 1 and
α = p). It allows to compute our observables of interest. The first one is expressed as follows, using the path integral
representation for the Brownian motion with drift, U(x) = B(x) − wx, with U0 = U(0) = 0 and free U(L) = UL,
followed by the Feynman-Kac formula

φµ=2w(p, L) = E[e−pZ
w
L ] = e−

w2L
2

∫ +∞

−∞
dULe

−wUL〈UL|e−LHp |U0 = 0〉 (F18)

=
∫ +∞

0
dk

∫ +∞

−∞
dULψk(UL)ψ∗k(0)e−wUL−L8 (k2+4w2)

where the dependence in the drift −w is made explicit through a trivial shift. In the last equation we have used the
spectral decomposition of Hp in terms of its eigenvectors, 〈U |k〉 = ψk(U) introduced above. For w < 0 one can use
the identity ∫ +∞

−∞
dUe−wUKik(2

√
2peU/2) = (2p)w

2

∣∣∣∣Γ(−w + ik
2

)∣∣∣∣2 (F19)
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and one checks that (F18) yields (F3) after the change w → −w.
The m-point correlation can be written following closely [55] upon adding the drift w. Upon exponentiation of

the denominators 1
Zm =

∫ +∞
0 dq q

m−1

Γ(m) e
−qZ and using the same path integral representation, one obtains for L > x1 >

. . . xm > 0,

E[pA(x1) . . . pA(xm)] =
∫ +∞

0
dq
qm−1

Γ(m)e
−w2L

2

∫ +∞

−∞
dULe

−wUL〈UL|e−Hq(L−x1)eÛe−Hq(x1−x2)eÛ . . . e−Hqxm |U0 = 0〉

= e−
w2L

2 pm

Γ(m)

∫ +∞

−∞
dU0

∫ +∞

−∞
dULe

−w(UL−U0)〈UL|e−Hp(L−x1)eÛe−Hp(x1−x2)eÛ . . . e−Hpxm |U0〉 (F20)

where eÛ =
∫ +∞
−∞ dU |U〉eU 〈U |. The second line is obtained after the standard trick in Liouville theory, i.e. the change

of variable q = peU0 followed by the shift U(x)→ U(x)−U0. Introducing the eigenbasis of Hp, and choosing p = 1/2
for convenience, one obtains (here w = −(A+ 1

2 ) > 0)

E[pA(x1) . . . pA(xm)] = 1
2mΓ(m)e

−w2L
2

∫ +∞

−∞
dU0

∫ +∞

−∞
dULe

−w(UL−U0)
∫ +∞

0
dkψk(UL) (F21)

×
m∏
j=1

∫ +∞

0
dkjF (k, k1)F (k1, k2) . . . F (km−1, km)ψ∗km(U0)e− k

2
8 (L−x1)−

k2
1
8 (x1−x2)−···− k

2
m
8 xm (F22)

where we have defined the matrix elements [55]

F (k, k′) = 〈k|eÛ |k′〉 =
∫ +∞

−∞
dUψ∗k(U)eUψk′(U) = 1

8
√
kk′ sinh(πk) sinh(πk′) k2 − (k′)2

cosh(πk)− cosh(πk′) (F23)

Examination of the calculations in [56] (Section 5, in particular (5.6)) for a simpler quantity, indicates that the limit
L→ +∞ is controlled by setting k = −2iw (the integral

∫ +∞
−∞ dULe

−wULψk(UL) is divergent for w > 0, but one can
extract the residue of its analytic continuation). This amount to use that as L→ +∞

e−
w2L

2

∫ +∞

−∞
dULe

−wUL
∫ +∞

0
dkψk(UL)F (k, k1)e− k

2
8 L −−−−→

L→∞

2π
Γ(2w)

F (k, k1)√
k sinh(πk)

∣∣∣∣
k=−2iw

(2p)w (F24)

valid for p arbitrary, and recalling our choice p = 1/2. Using further (F19) (with w → −w) to integrate over U0 this
leads to the final result, for 0 < w 6 1 and x1 > x2 . . . > xm > 0

E[pA(x1) . . . pA(xm)] = 1
2mΓ(2w)Γ(m)

m∏
j=1

∫ +∞

0

dkj
8 kj sinh(πkj)

×
m−1∏
j=1

k2
j − k2

j+1

cosh(πkj)− cosh(πkj+1)
k2

1 + 4w2

cosh(πk1)− cos(2πw)

∣∣∣∣Γ(w + ikm
2

)∣∣∣∣2 e−w2
2 x1−

k2
1
8 (x1−x2)−···− k

2
m
8 xm (F25)

which for m = 1 agrees with the formula (F5) obtained by a different method. The normalization is checked
below. For m = 2, we have checked numerically using Mathematica, using also (F5), that

∫ +∞
0 dxx2E[pA(x)] −∫ +∞

0 dx1
∫ +∞

0 dx2x1x2E[pA(x1)pA(x2)] agrees numerically with the result (30) for the thermal cumulant E[〈x2〉c].
Using similar manipulations as around (F6), we may write (with the convention xm+1 = 0)

E[pA(x1) . . . pA(xm)] = 1
22mΓ(2w)Γ(m)

∫
iR

dz1

2iπ · · ·
∫

iR

dzm
2iπ

m∏
j=1

e

(
z2
j
2 −

w2
2

)
(xj−xj+1)

Γ(2zj)Γ(−2zj)

× Γ(w + zm)Γ(w − zm)(w2 − z2
1)Γ(w + z1)Γ(w − z1)Γ(1− w + z1)Γ(1− w − z1)

×
m−1∏
j=1

Γ(1 + zj+1 − zj)Γ(1 + zj+1 + zj)Γ(1− zj+1 + zj)Γ(1− zj+1 − zj). (F26)

A similar analytic continuation as in (F9) can be performed on (F26) to obtain a formula when w > 1.
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Verification of the normalization. Let us compute

Cm = m!
∫
x1>x2...>xm>0

E[pA(x1) . . . pA(xm)]dx1 . . . dxm, (F27)

and check that Cm = 1. We use the change of variables yj = xj−xj+1 and compute the integrals over y1, z1, y2, z2 . . .
sequentially. We will need the identity [83, Th. 3.6.2]∫

iR

dz

2iπ
Γ(a+ z)Γ(a− z)Γ(b+ z)Γ(b− z)Γ(c+ z)Γ(c− z)Γ(d+ z)Γ(d− z)

Γ(2z)Γ(−2z) =

2Γ(a+ b)Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)Γ(c+ d)
Γ(a+ b+ c+ d) , (F28)

valid for a, b, c, d with positive real part. Performing the integration over y1 and z1 using (F28) with {a, b, c, d} =
{w, 1− w, 1 + z2, 1− z2}, we obtain

Cm = Γ(m+ 1)
22(m−1)Γ(2w)Γ(m)

∫
iR

dz2

2iπ · · ·
∫

iR

dzm
2iπ

m∏
j=2

e

(
z2
j
2 −

w2
2

)
(xj−xj+1)

Γ(2zj)Γ(−2zj)

× Γ(w + zm)Γ(w − zm)(w2 − z2
2)Γ(w + z2)Γ(w − z2)Γ(2− w + z2)Γ(2− w − z2)Γ(1)Γ(2)

Γ(3)

×
m−1∏
j=2

Γ(1 + zj+1 − zj)Γ(1 + zj+1 + zj)Γ(1− zj+1 + zj)Γ(1− zj+1 − zj). (F29)

Then we integrate over y2 and z2 using (F28) with {a, b, c, d} = {w, 2 − w, 1 + z3, 1 − z3}, we integrate over y3 and
z3 using (F28) with {a, b, c, d} = {w, 3 − w, 1 + z4, 1 − z4}, and we continue until we are left with variables ym, zm,
where we use (F11) with {a, b, c} = {w,w,m−w}. Keeping track of all the Gamma factors involved at each step, we
find that

Cm = Γ(m+ 1)
Γ(m)Γ(2w) ×

Γ(2)Γ(1)
Γ(3)

Γ(2)Γ(2)
Γ(4)

Γ(2)Γ(3)
Γ(5) . . .

Γ(2)Γ(m− 1)
Γ(m+ 1) × Γ(2w)Γ(m)2 = 1. (F30)
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gouras, Tropical combinatorics and Whittaker functions,
Duke Math. J. 163, 513 (2014), arXiv:1110.3489.

[72] A. Borodin, I. Corwin, V. Gorin, and S. Shakirov, Ob-
servables of Macdonald processes, Trans. Amer. Math.
Soc. 368, 1517 (2016), arXiv:1306.0659.

[73] T. Alberts, K. Khanin, and J. Quastel, Intermediate dis-
order regime for directed polymers in dimension 1 + 1,
Phys. Rev. Lett. 105, 090603 (2010).

[74] T. Alberts, K. Khanin, and J. Quastel, The intermediate
disorder regime for directed polymers in dimension 1+1,
Ann. Probab. 42, 1212 (2014), arXiv:1202.4398.

[75] I. Corwin and M. Nica, Intermediate disorder limits for
multi-layer semi-discrete directed polymers, Electron. J.
Probab (2017), arXiv:1609.00298.

[76] U. Schulz, J. Villain, E. Brézin, and H. Orland, Thermal
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