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We compute the nominal magnetic penetration depth of RNiO2 (R = La, Nd) from first principles
calculations and discuss the results in relation to the superconducting Tc. We find a marked dis-
crepancy with the well established phenomenology that correlates these two quantities in cuprates
(Uemura plot). We also consider the 2D ultrathin limit and estimate the maximum attainable Tc

to be ∼ 180 K according to the Nelson-Kosterliz universal relation between the superfluid density
and the transition temperature.

I. INTRODUCTION

The recent discovery of superconductivity in Sr-doped
NdNiO2/SrTiO3 thin films [1] has attracted an instan-
taneous research attention (see e.g. [2–13]). After many
attempts, this can potentially be the first successful ex-
tension of high-Tc cuprate superconductivity to isostruc-
tural/isoelectronic nickelates. This important break-
through can thus shed light on their elusive microscopic
superconducting mechanism, even if it poses some im-
portant challenges to current paradigms. In particular,
the parent nickelates are metals without magnetic order
as opposed to their cuprate counterparts that are anti-
ferromagnetic charge-transfer-insulators. Consequently,
Cooper pairing in (Nd,Sr)NiO2 seems to emerge from a
rather different normal non-superconducting state.

First-principles calculations based on density-
functional-theory (DFT) consistently find that, among
the five Ni-3d bands, only the 3dx2−y2 states intercept
the Fermi level [2–6, 14]. This establishes a promising
analogy to CaCuO2, i.e. the parent compound of high-Tc
cuprates. In fact, the electron-phonon coupling has
been ruled out as the exclusive origin of the observed
superconductivity in (Nd,Sr)NiO2 [5]. At the same
time, electrons in the Nd layer make additional electron
pockets in the Fermi surface that likely prevent the
system from being a simple Mott insulator, with Kondo
physics potentially playing a role [6–8]. Besides, the
charge transfer gap between the Ni-3d states and O-2p
states is larger than that in cuprates [9]. On the other
hand, spin fluctuations may still be important for su-
perconductivity, even if there is no long-range magnetic
order. In that case, the dominant pairing has been
proposed to yield a d-wave superconducting gap [3, 4]
with a distinct spin resonance feature that can be tested
experimentally [10]. Here, we compute the nominal
magnetic penetration depth of the superconducting
nickelates as a function of hole doping and discuss these
theoretical results in relation to the observed Tc.

II. PRELIMINARIES

A. Zero-temperature magnetic penetration depth
as a band-structure property

The magnetic penetration depth λ is pivotal to explain
the Meissner effect and therefore is a fundamental quan-
tity of superconductors [15]. This quantity can be deter-
mined experimentally by means of different complemen-
tary techniques such as the tunnel diode oscillator tech-
nique [16, 17] and muon-spin resonance (µSR) [18–21].
The temperature dependence of λ maps the amount of
excited quasiparticles and thereby the structure of the su-
perconducting gap. However, in the London approxima-
tion, the zero-temperature magnetic penetration depth in

the clean limit reduces to λL(T = 0) =
√

m∗

µ0nse∗2
, where

m∗ is the effective mass of charge carriers, µ0 is the vac-
uum permeability, ns is the charge carrier density, and
e∗ is an effective electron charge. Thus, it basically be-
comes a band-structure property formally unrelated to
the gap function. In fact, from a semiclassical general-
ization of the London equation [22] or Eilenberger’s for-
mulation of superconductivity [23] (see Appendix A), a
band-structure-specific result can be obtained as

(λ2)−1
ij (T = 0) =

µ0e
2

4π3~

∮
FS

dS
vFivFj
vF

, (1)

where the integral is over the Fermi surface with vF being
the Fermi velocity (the subscripts i, j = x, y, z refer to
principal axes). In the following, we will make use of this
result to discuss the superconducting properties of the
nickelates.

B. Computational methods

We computed Eq. (1) from DFT calculations that con-
veniently reproduce the reported band structure of the
La and Nd nickelates. Specifically, we used the FLAPW
method as implemented in the WIEN2k package [24]
with the LDA exchange-correlation functional [25]. In
order to avoid the ambiguous treatment of the f -orbital
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FIG. 1. First-principles band structure (left, “fatband” plot), orbital resolved density of states (middle) and top view of Fermi
surface (right) of LaNiO2.

bands, we followed [2, 3] and focused on the mother com-
pound LaNiO2. Further, we modeled Sr doping as a
rigid shift of the Fermi level as in [4] and also within the
virtual-crystal approximation (VCA) as in [3]. We also
considered NdNiO2 with the Nd-4f -states in the core as
well as the influence of epitaxial strain, with which we
obtained almost identical results. We performed spin-
less calculations with muffin-tin radii of 2.5 a.u., 2.1 a.u.,
and 1.62 a.u. for the La (Nd), Ni, and O atoms respec-
tively and a plane-wave cutoff RMTKmax = 7.0. The
integration over the Brillouin zone was performed using
a 11×11×14 k-mesh for the self-consistent calculations,
while a dense 48×48×48 k-mesh was used to compute
and study the Fermi surface. In our calculations the
Fermi velocity is directly obtained from the expectation
value of the momentum operator p (vF = pF /m), and
the dense k-mesh was used to further perform the Fermi-
surface integral.

III. RESULTS

Fig. 1 illustrates the reference band structure of the
infinite-layer nickelates [2–4, 14, 27]. The Ni-3d states in-
tercepting the Fermi level give rise to the large hole-like
Fermi surface α dominated by 3dx2−y2 contributions. In-
terestingly, this pocket α actually originates from two dif-
ferent bands that undergo an avoided crossing along the
Z-R path where their dx2−y2 and dz2 characters swap (see
Appendix B). To the best of our knowledge, this feature
was first pointed out in [28]. We find that this avoided
crossing and its concomitant dx2−y2 -dz2 mix changes with
doping (see Appendix B), thereby having a potential ef-
fect on the superconducting instability [29] that has not
been considered so far. In addition, there is a self-doping
effect due to La-5d states that results into to the extra
electron-like Fermi surfaces β and β′.

The nominal λ(0) of the superconducting nickelates as
a function of Sr doping is reported in Table I. These
values are obtained using a rigid shift of the Fermi level,
and essentially the same is obtained using VCA (see Ap-

doping FS
(
λx(0), λz(0)

)
[nm] λeff(0) [nm]

LaNiO2 0 α (47, 245) 61

β (140, 120) 133

β′ (365, 300) 340

total (44, 101) 54

0.1 α (49, 170) 62

β (165, 140) 156

total (47, 108) 57

0.2 α (50, 215) 64

β (205, 175) 194

total (48, 136) 60

0.3 α (51, 160) 64

β (275, 240) 262

total (50, 133) 62

0.4 α (54, 163) 68

β (450, 580) 486

total (54, 156) 67

NdNiO2 0.2 α (49, 180) 62

β (190, 160) 179

β′ (290, 220) 262

total (47, 105) 57

TABLE I. Zero-temperature magnetic penetration length ob-
tained from DFT calculations in the London approxima-
tion for different values of Sr (hole) doping (modeled as a
rigid shift of the Fermi level). Only the diagonal terms are
non-zero by symmetry, and are denoted by a single sub-
script (λx = λy and λz). The effective lambda is defined

as λeff = 31/4[1 + 2(λx/λz)2]−1/4λx, as probed by µSR in
policrystalline samples [26]. The values for NdNiO2 are ob-
tained assuming the Nd-4f -states in the core.

pendix C). Even if superconductivity has been reported
for 20% doping so far, the nominal values computed for
other dopings allows us to get an idea of the possible
variations in λ(0) due to physical changes in the corre-
sponding band structure (which can be taken as a sort of
‘error bar’).
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These results confirm that (Nd,Sr)NiO2 is a type-II su-

perconductor (i.e. κ ≡ λ/ξ > 1/
√

2, with ξ = 3.25 nm
being the Ginzburg-Landau coherence length [1]). In
the case of the overall in-plane component λx(0), the
main contribution originates from the main hole pocket
α and does not vary dramatically with doping. The out-
of-plane component λz(0), in contrast, is initially domi-
nated by the electron pocket β and therefore undergoes a
more substantial change as β shrinks with doping. Note
that, despite the apparent 2D character of α [14], the
anisotropy of this contribution is moderate compared to
that in cuprates and displays a non-monotonous behav-
ior with doping. This should not be surprising given the
fact that the α pocket results from two different bands
undergoing an avoided crossing that changes with doping
(see Fig. 3 in Appendix B). Beyond that, the effective
λeff probed by µSR turns out to be essentially that of the
hole pocket α (with β having the effect of reducing the
anisotropy resulting from α only).

IV. DISCUSSION

Our results are summarized in Fig. 2 in a Uemura
plot. As we can see, the calculated λeff ’s are totally off
the expected values for a cuprate with Tc ≈ 15 K (shaded
region). The modification of the effective mass due to
correlations can to some extent improve the agreement.
However, the mass has to be > 10 times larger to do the
job, which seems unlikely according to DMFT results (see
e.g. [13]).

We note that a presumably related discrepancy has
been pointed out for the Hall resistance of the parent
compound [2]. Specifically, the Hall coefficient is incon-
sistent with the large hole-like Fermi surface α. To repro-
duce the sign of the measured coefficient and obtain a fair
agreement with its numerical value, a gapped α pocket
has to be assumed. Analogously, in the case of the mag-
netic penetration depth, the cuprate trend in the Uemura
plot is regained if the α contribution is neglected and only
the electron pocket β is taken account for λ(0) at 20% Sr
doping. Even if the Hall coefficient and λ(0) are both a
measure of the DOS, one would tend to think that that is
rather fortuitous coincidence. In any case, this illustrates
that reconciling these estimates with the well established
phenomenology of cuprates seems to require a rather sig-
nificant modification of the corresponding band structure
(this, or the system is to be understood as a missed room-
temperature superconductor according to its λ).

Alternatively, superconductivity in (Nd,Sr)NiO2 thin
films can be a 2D phenomenon and hence a different ra-
tionale must be applied. This will be naturally the case
in the ultrathin limit, and will also be relevant if super-
conductivity is eventually driven by the interface with
the substrate [30, 31]. The magnetic penetration depth,
being a measure of the superfluid density, is also related
to the superfluid stiffness Ds. This relation can be ex-
ploited to set bounds on the superconducting transition
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FIG. 2. Uemura log-log plot for the zero-temperature effective
magnetic penetration depth of (Nd,Sr)NiO2 computed from
Eq. (1). The solid circle corresponds to 20% Sr doping and
Tc = 15 K, while the open circles are associated to the 10%,
30% and 40% dopings in Table I assuming the same Tc.

temperature since fluctuations of the phase of the super-
conducting order parameter will be the ultimate limit-
ing factor in 2D [32]. Such a bound directly reads from
Nelson-Kosterlitz universal jump of the superfluid den-
sity [33]:

kBTc ≤ πDs/2. (2)

The 2D superfluid stifness can be estimated from our

previous calculations as Ds ≈ ~2

4µ0e2
d

2πλ
−2
x , where d is

the interlayer spacing (i.e. the c lattice parameter). This
gives a maxium Tc of about 145 K. By restricting the
integral (1) to the kFz = 0 line of the 3D Fermi surface
this value increases to 180 K. While formally rigorous,
this estimate has to be understood as a rather conserva-
tive upper bound since the superfluid density at T = 0,
and hence the corresponding stiffness, can reasonably be
assumed to overestimate that at Tc.

V. CONCLUSIONS

In summary, we have computed the zero-temperature
magnetic penetration depth λ(0) of the newly super-
conducting nickelate NdNiO2 relying on first-principles
DFT calculations to fully take into account its band-
structure specific features. λ(0) is a fundamental de-
scriptor of superconductivity displaying a phenomeno-
logical correlation to Tc in cuprates and in other uncon-
ventional superconductors. Our calculations confirm the
system as a type-II superconductor. The in-plane com-
ponent of λ(0) is found to be dominated by the hole
Fermi-surface pocket and no substantial change is ob-
tained with doping. However, the extra electron pocket
has a non-negligible impact on the eventual anisotropy.
Remarkably, the nominal λ(0) and the reported Tc do
not follow the same correlation observed in the cuprates.
If the same correlation were to apply, NdNiO2 would be
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a room-temperature superconductor. This suggests that
either the reported band structure needs to be revisited
or the superconducting nature of nickelates is different.
In the 2D case relevant for the ultrathin limit and/or
if the actual phenomenon corresponds to interfacial su-
perconductivity [30, 31], the maximum attainable Tc is
estimated to be ∼ 180 K from the Nelson-Kosterlitz uni-
versal jump of the superfluid density.
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Appendix A: Derivation of Eq. (1).

Here we outline the derivation of Eq. (1) within Eilen-
berger’s formulation of superconductivity. This deriva-
tion can be found in more detail in [17, 23] for example.
Eilenberger’s picture is obtained directly from Gor’kov
equations after integrating out fast-varying degrees of
freedom [34]. Thus the current density reads

j = −4πekBT Im
∑
ω>0

〈vF g〉, (A1)

where g is the Eilenberger function associated to normal
excitations. Here ω = (2n + 1)πkBT/~ are Matsubara
frequencies and the average is defined such that 〈X〉 =∫

d2kF
(2π)3~vF X. In the clean case, Eq. (A1) for the current

is supplemented by the set of equations

(~vF ·Π + 2~ω)f = 2∆g, (A2)

(−~vF ·Π∗ + 2~ω)f+ = 2∆∗g, (A3)

∆(r,vF ) = 2πkBT

ωmax∑
ω>0

〈V (vF ,v
′
F )f(r, ω,v′F )〉v′F , (A4)

where Π = ∇− 2ie
~ A. Here ∆ and V represent the gap

function and the effective coupling respectively, while the
functions f and f+ describe the superconducting conden-
sate and are such that ff+ = 1− g2.

In the absence of currents and fields, the ground-
state uniform solution of Eilenberger equations reads
f0 = f+

0 = ∆0/(∆
2
0 + ~2ω2)1/2, g0 = ~ω/(∆2

0 + ~2ω2)1/2.
The presence of weak fields and supercurrents can be
treated perturbatively to obtain g = g0 + g1, where the

correction g1 reads g1 = i~ ∆2
0

2(∆2
0+~2ω2)3/2

vF · (∇θ+ 2e
~ A),

with θ being the overall phase acquired by ∆, f and f+.
Substituting this in Eq. (1) yields the London relation
ji = − 1

µ0
(λ2)−1

ij aj between the current and the ‘gauge

invariant vector potential’ a = ~
2e∇θ + A, where

(λ2)−1
ij = 4πµ0e

2kBT
∑
ω>0

〈
∆2

0vFivFj
(∆2

0 + ~2ω2)3/2

〉
. (A5)

In the T = 0 limit:

(λ2)−1
ij (T = 0) = 2µ0e

2~
〈
vFivFj

∫ ∞
0

dω
∆2

0

(∆2
0 + ~2ω2)3/2

〉
= 2µ0e

2~
〈
vFivFj

ω

(∆2
0 + ~2ω2)1/2

∣∣∣∣∞
0

〉
= 2µ0e

2 〈vFivFj〉 , (A6)

which corresponds to Eq. (1).

Appendix B: Avoided crossing and dx2−y2 - dz2 mix

Fig. 3 shows a zoom of the electronic band structure
of (La,Ba)NiO2 near the Fermi level. As we can see, the
Ni-3d states generating the hole-like pocket in the Fermi
surface (α in Fig. 1) are associated to two different bands.
These bands undergo an avoided crossing along the Z-R
path that changes with doping. Thus, the apparent 2D
α pocket is in reality a 3D one by its very nature.

FIG. 3. Zoom of the electronic band structure of LaNiO2

(top) and La0.6Ba0.4NiO2 within VCA (bottom) in a “fat-
band” plot.

Appendix C: VCA calculations

Here we report additional calculations using the
virtual-crystal approximation (VCA) and comment on
this approach for the infinite-layer nickelates. We restrict
ourselves to the mother compound LaNiO2 and consider
the substitution of La with Ba instead of Sr as in [3].
Thus, we consider the La1−xBaxNiO2 material which is
further modeled by a virtual compund XNiO2 where the
X atom has a nuclear charge Z = 57− x.
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We note that this strategy would be perfect if the band
structure of SrNiO2 and BaNiO2 were identical. How-
ever, this is not exactly the case as can be seen in Fig. 4.
In particular, the dispersion of the bands is noticeably
different at the A point which leads to non-negligible dif-
ferences in the Fermi surface. This will be more impor-
tant for the case of electron doping. Despite of such a
difference, the values of λ(0) calculated using the VCA
are essentially the same as those calculated with the rigid
band approximation (see Table II). In addition, the two
methods yield the exactly same the trend as a function
of doping: while both λx and the β contribution to λz
increase with doping, the α contribution to λz displays a
non-monotonous behavior. The agreement obtained us-
ing these two different approaches thus strengthens the
validity of our results.

FIG. 4. Band structure of SrNiO2 and BaNiO2 compared.

La1−xBaxNiO2 FS
(
λx(0), λz(0)

)
[nm] λeff(0) [nm]

x = 0.1 α (49, 168) 62

β (164, 145) 157

total (47, 110) 57

x = 0.2 α (50, 153) 63

β (210, 197) 205

total (49, 121) 60

x = 0.3 α (51, 156) 64

β (284, 285) 284

total (50, 138) 62

x = 0.4 α (52, 163) 65

β (345, 400) 361

total (52, 151) 65

TABLE II. Zero-temperature magnetic penetration length
obtained from DFT calculations in the London approxima-
tion for different values of Ba (hole) doping (modeled us-
ing the VCA). The effective lambda is defined as λeff =

31/4[1+2(λx/λz)2]−1/4λx, as probed by µSR in policrystalline
samples [26].
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