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NON UNIVERSALITY OF FLUCTUATIONS OF OUTLIERS FOR
HERMITIAN POLYNOMIALS IN A COMPLEX WIGNER MATRIX

AND A SPIKED DIAGONAL MATRIX

MIREILLE CAPITAINE∗

Abstract

We study the fluctuations associated to the a.s. convergence of the outliers es-
tablished by Belinschi-Bercovici-Capitaine of an Hermitian polynomial in a complex

Wigner matrix and a spiked deterministic real diagonal matrix. Thus, we extend the
non universality phenomenon established by Capitaine-Donati Martin-Féral for ad-

ditive deformations of complex Wigner matrices, to any Hermitian polynomial. The

result is described using the operator-valued subordination functions of free proba-
bility theory.

Key words: Random matrices; Free probability; Outliers; Fluctuations; Nonuniver-
sality; Linearization; Operator-valued subordination.
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1 Introduction

There is currently a quite precise knowledge of the asymptotic spectral properties
(i.e. when the dimension of the matrix tends to infinity) of a number of “classical”
random matrix models (Wigner matrices, Wishart matrices, invariant ensembles...).
This understanding covers both the so-called global regime (asymptotic behavior
of the spectral measure) and the local regime (asymptotic behavior of the extreme
eigenvalues and eigenvectors, spacings...). We refer to the monographies [2, 5, 26,
28, 34, 37] for a thorough introduction to random matrix theory.

Practical problems (in the theory of statistical learning, signal detection etc.)
naturally lead to wonder about the spectrum reaction of a given random matrix
after a deterministic perturbation. For example, in the signal theory, the determin-
istic perturbation is seen as the signal, the perturbed matrix is perceived as a noise,
and the question is to know whether the observation of the spectral properties of
signal plus noise can give access to significant parameters on the signal. Theoretical
results on these “deformed” random models may allow to establish statistical tests
on these parameters. A typical illustration is the so-called BBP phenomenon (after
Baik, Ben Arous, Péché [7]) which put forward outliers (eigenvalues that move away
from the rest of the spectrum) and their Gaussian fluctuations for spiked covariance
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matrices.

Péché [38] established Gaussian fluctuations for any outlier of a low rank additive
deformation of a G.U.E. matrix. Fluctuations of outliers for additive finite rank de-
formations of non-Gaussian Wigner matrices have been studied in [20, 21, 27, 39, 40].
It turns out that the limiting distribution depends on the localisation/delocalisation
of the eigenvectors associated to the non-null eigenvalues of the perturbation. Note
that in the G.U.E. case investigated by Péché [38], the eigenvectors of the pertur-
bation are irrelevant for the fluctuations, due to the unitary invariance in Gaussian
models. Let us illustrate this dependence on the eigenvectors of the perturbation
in a very simple situation. Let WN = (Wij)1≤i,j≤N be a N ×N Hermitian Wigner
matrix where {Wii,

√
2RWij ,

√
2IWij}1≤i<j are independent identically distributed

random variables with law µ, µ is a symmetric distribution, with variance 1, and
satisfies a Poincaré inequality (see the Appendix). Note that when µ is Gaussian,
WN is a G.U.E matrix. Consider two finite rank perturbations of rank 1, with one

non-null eigenvalue θ > 1. The first one A
(1)
N is a matrix with all entries equal to

θ/N (delocalized eigenvector associated to θ). The second one A
(2)
N is a diagonal

matrix (localized eigenvector associated to θ). The limiting spectral distribution of

each matrix M
(i)
N = WN√

N
+A

(i)
N (i = 1, 2) is the semi-circular distribution

dµsc(t) =
1

2π

√
4− t21I[−2;2](t)dt.

Nevertheless the largest eigenvalue λ1 of each matrix M
(i)
N (i = 1, 2) separates from

the bulk and converges towards ρθ := θ+ 1
θ (> 2). The fluctuations of λ1 around ρθ

are given as follows :

Proposition 1.1. 1. Delocalized case [27]: The largest eigenvalue λ1(M
(1)
N ) have

Gaussian fluctuations,

√
N(λ1(M

(1)
N )− ρθ)

D−→ N (0, 1− 1/θ2). (1.1)

2. Localized case [20]: The largest eigenvalue λ1(M
(2)
N ) fluctuates as

√
N(1− 1

θ2
)(λ1(M

(2)
N )− ρθ)

D−→ µ ?N (0, vθ). (1.2)

where the variance vθ of the Gaussian distribution depends on θ and the fourth
moment of µ.

Hence, for localized eigenvectors of the perturbation, the limiting distribution
depends on the distribution of the entries of the Wigner matrix and thus, this un-
covers a non universality phenomenon. This paper wants to extend such a non
universality phenomenon for an additive deformation, to general polynomials in a
Wigner matrix and a diagonal deterministic matrix. Free probability is a main tool
to achieve this purpose.
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Free probability theory was introduced by Voiculescu around 1983 motivated by
the isomorphism problem of von Neumann algebras of free groups. He developped
a noncommutative probability theory, on a noncommutative probability space, in
which a new notion of freeness plays the role of independence in classical probabil-
ity. Around 1991, Voiculescu [43] threw a bridge connecting random matrix theory
with free probability since he realized that the freeness property is also present
for many classes of random matrices, in the asymptotic regime when the size of
the matrices tends to infinity. Since then, several papers aimed at developing the
contribution of free probability theory to the analysis of the spectral properties of
deformed ensembles and polynomials in random matrices. In particular, the main
principle of subordination in free probability is emphasized as a main tool in the
understanding of the localization of the outliers and the corresponding eigenvectors
of many matricial models. It was the purpose of [19] to put forward an unified
understanding based on subordination in free probability for studying the spectral
properties of full rank deformations of classical Hermitian matrix models. This
investigation relies notably on [22, 16, 17, 10, 18]. This universal understanding
culminates in [12] dealing with noncommutative polynomials in random Hermitian
matrices; this investigation is achieved by an even more general methodology based
on a linearization procedure and operator-valued subordination properties.

The aim of this paper is to study the fluctuations associated to the a.s. con-
vergence of the outliers described in [12] of an Hermitian polynomial in a Wigner
matrix and a spiked deterministic Hermitian matrix (spiked means that the matrix
has a fixed eigenvalue outside the support of its limiting spectral measure). Capi-
taine and Péché [23] established Gaussian fluctuations for any outlier of a full rank
additive deformation of a G.U.E. matrix using scalar-valued free probability theory.
We generalize this result to any polynomial in a G.U.E. matrix and a deterministic
Hermitian matrix which has a spike with multiplicity one, using operator-valued
free probability theory. Moreover, considering any Hermitian polynomial in a non-
Gaussian Wigner matrix and a deterministic real diagonal matrix which has a spike
with multiplicity one, we establish that the limiting distribution of outliers is the
classical convolution of a Gaussian distribution and the distribution of the entries of
the Wigner matrix; thus, this extends the non universality phenomenon (1.2) estab-
lished in [20] for additive deformations of Wigner matrices. The result is described
in terms of operator-valued subordination functions related to a linearization of the
noncommutative polynomial involved in the definition of our model. Therefore, we
start by describing the necessary terminology and results concerning linearization
procedure and free probability theory in Sections 2 and 3. In Section 4, we present
our matrix model and main results (Theorem 4.1 and Corollary 4.1). Section 5
gathers several preliminary results that will be used in Section 6 to prove Theorem
4.1. An Appendix recalls some basic facts on Poincaré inequalities and concentra-
tion phenomenon that are used in some proofs, as well as a basic development of
the determinant of a perturbation of a matrix.

To begin with, we introduce some notations.

• Mp(C) is the set of p×p matrices with complex entries, Msa
p (C) the subset of
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self-adjoint elements of Mp(C) and Ip the identity matrix. In the following, we
shall consider two sets of matrices with p = m (m fixed) and p = N or N − 1
with N −→∞.

• Trp denotes the trace and trp = 1
p Trp the normalized trace on Mp(C).

• ||.|| denotes the operator norm on Mp(C).

• idp denotes the identity operator from Mp(C) to Mp(C).

• (Eij)
N
i,j=1 (resp. (Eij)

N−1
i,j=1) denotes the canonical basis of MN (C) (resp.

MN−1(C)) whereas (epq)
m
p,q=1 denotes the canonical basis of Mm(C).

For any integer number k, we will say that a random term in some Mp(C), de-
pending on N and w ∈ Mm(C) such that =w is positive definite, is O

(
1
Nk

)
if its

operator norm is smaller than
Q(‖(=w)−1‖)(‖w‖+1)d

Nk
for some deterministic polyno-

mial Q whose coefficients are nonnegative real numbers and some integer number d
(which may depend on m).

For a family of random terms Ii, i ∈ {1, . . . , N}2, we will set Ii = O
(u)
i

(
1
Nk

)
if for

each i, Ii = O
(

1
Nk

)
and moreover one can find a bound of the norm of each Ii as

above involving a common polynomial Q and a common d, that is not depending
on i.

Throughout the paper, K, C denote some positive constants that may depend
on m and vary from line to line.

2 A Linearization trick

A powerful tool to deal with noncommutative polynomials in random matrices or
in operators is the so-called “linearization trick” that goes back to Haagerup and
Thorbjørnsen [29, 30] in the context of operator algebras and random matrices (see
[35]). We use the procedure introduced in [1, Proposition 3].

Given a polynomial P ∈ C〈X1, . . . , Xk〉, we call linearization of P any LP ∈
Mm(C)⊗ C〈X1, . . . , Xk〉 such that

LP :=

(
0 u
v Q

)
∈Mm(C)⊗ C〈X1, . . . , Xk〉

where

1. m ∈ N,

2. Q ∈Mm−1(C)⊗ C〈X1, . . . , Xk〉 is invertible,

3. u is a row vector and v is a column vector, both of size m− 1 with entries in
C〈X1, . . . , Xk〉,
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4. the polynomial entries in Q, u and v all have degree ≤ 1,

5.
P = −uQ−1v.

It is shown in [1] that, given a polynomial P ∈ C〈X1, . . . , Xk〉, there exist m ∈ N
and a linearization LP ∈ Mm(C) ⊗ C〈X1, . . . , Xk〉. The algebra of polynomials
in noncommuting indeterminates X1, . . . , Xk becomes a ∗-algebra by anti-linear
extension of (Xi1Xi2 · · ·Xil)

∗ = Xil · · ·Xi2Xi1 , (i1, . . . , il) ∈ {1, . . . , k}l, l ∈ N\{0}.
It turns out that if P is self-adjoint, LP can be chosen to be self-adjoint.
The well-known result about Schur complements (see [35, Chapter 10, Proposition
1]) yields then the following invertibility equivalence.

Lemma 2.1. Let P = P ∗ ∈ C〈X1, . . . , Xk〉 and let LP ∈Mm(C)⊗ C〈X1, . . . , Xk〉
be a linearization of P with the properties outlined above. Let y = (y1, . . . , yk) be
a k-tuple of self-adjoint operators in a unital C∗-algebra A. Then, for any z ∈ C,
ze11 ⊗ 1A − LP (y) is invertible if and only if z1A − P (y) is invertible and we have

(ze11 ⊗ 1A − LP (y))
−1

=

(
(z1A − P (y))

−1
?

? ?

)
. (2.1)

Beyond the equivalence described above, we will use the following bound.

Lemma 2.2. [12] Let z0 ∈ C be such that z01A − P (y) is invertible. There exist
two polynomials T1 and T2 in k commutative indeterminates, with nonnegative co-
efficients, depending only on LP , such that∥∥(z0e11 ⊗ 1A − LP (y))−1

∥∥
≤ T1 (‖y1‖, . . . , ‖yk‖)

∥∥(z01A − P (y))−1
∥∥+ T2 (‖y1‖, . . . , ‖yk‖) .

Moreover, if the distance from z0 to the spectrum of P (y) is at least δ > 0, and for
any i ∈ {1, . . . , k}, ‖yi‖ ≤ C, for some positive real numbers δ and C, then there
exists a constant ε > 0, depending only on LP , δ, C such that the distance from 0 to
the spectrum of (z0e11 ⊗ 1A − LP (y)) is at least ε.

3 Free Probability Theory

3.1 Scalar-valued free probability theory

For the reader’s convenience, we recall the following basic definitions from free
probability theory. For a thorough introduction to free probability theory, we refer
to [47].

• A C∗-probability space, resp. a W∗-probability space, is a pair (A, φ) consist-
ing of a unital C∗-algebra A, resp. of a unital von Neumann algebra, and a
state φ on A (i.e a linear map φ : A → C such that φ(1A) = 1 and φ(aa∗) ≥ 0
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for all a ∈ A), resp. a normal state. φ is a trace if it satisfies φ(ab) = φ(ba)
for every (a, b) ∈ A2. A trace is said to be faithful if φ(aa∗) > 0 whenever
a 6= 0. An element of A is called a noncommutative random variable.

• The ?-noncommutative distribution of a family a = (a1, . . . , ak) of noncom-
mutative random variables in a C∗-probability space (A, φ) is defined as the
linear functional µa : P 7→ φ(P (a, a∗)) defined on the set of polynomials
in 2k noncommutative indeterminates, where (a, a∗) denotes the 2k-tuple
(a1, . . . , ak, a

∗
1, . . . , a

∗
k). For any self-adjoint element a1 in A, there exists a

probability measure νa1
on R such that, for every polynomial P, we have

µa1
(P ) =

∫
P (t)dνa1

(t).

Then, we identify µa1 and νa1 . If φ is faithful then the support of νa1 is the
spectrum of a1 and thus ‖a1‖ = sup{|z|, z ∈ support(νa1)}.

• A family of elements (ai)i∈I in a C∗-probability space (A, φ) is free if for all
k ∈ N and all polynomials p1, . . . , pk in two noncommutative indeterminates,
one has

φ(p1(ai1 , a
∗
i1) · · · pk(aik , a

∗
ik

)) = 0 (3.1)

whenever i1 6= i2, i2 6= i3, . . . , in−1 6= ik and φ(pl(ail , a
∗
il

)) = 0 for l = 1, . . . , k.

• A noncommutative random variable x in a C∗-probability space (A, φ) is a
standard semicircular variable if x = x∗ and for any k ∈ N,

φ(xk) =

∫
tkdµsc(t)

where dµsc(t) = 1
2π

√
4− t21I[−2;2](t)dt is the semicircular standard distribu-

tion.

• Let k be a nonnull integer number. Denote by P the set of polynomials
in 2k noncommutative indeterminates. A sequence of families of variables
(an)n≥1 = (a1(n), . . . , ak(n))n≥1 in C∗-probability spaces (An, φn) converges,
when n goes to infinity, respectively in distribution if the map P ∈ P 7→
φn(P (an, a

∗
n)) converges pointwise and strongly in distribution if moreover

the map P ∈ P 7→ ‖P (an, a
∗
n)‖ converges pointwise.

Proposition 3.1. [25, Proposition 2.1] Let xn = (x1(n), . . . , xk(n)) and
x = (x1, . . . , xk) be k-tuples of self-adjoint variables in C∗-probability spaces,
(An, φn) and (A, φ), with faithful states. Then, the following assertions are
equivalent.

– xn converges strongly in distribution to x,

– for any self-adjoint variable hn = P (xn), where P is a fixed polynomial,
µhn converges in weak-* topology to µh where h = P (x). Moreover, the
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support of µhn converges in Hausdorff distance to the support of µh, that
is: for any ε > 0, there exists n0 such that for any n ≥ n0,

supp(µhn) ⊂ supp(µh) + (−ε,+ε).

The symbol supp means the support of the measure.

Additive free convolution arises as natural analogue of classical convolution in
the context of free probability theory. For two Borel probability measures µ and ν
on the real line, one defines the free additive convolution µ� ν as the distribution
of a + b, where a and b are free self-adjoint random variables with distributions µ
and ν, respectively. We refer to [14, 33, 42] for the definitions and main properties
of free convolutions. Let us briefly recall the fundamental analytic subordination
properties [15, 44, 46] of this convolution. The analytic subordination phenomenon
for free additive convolution was first noted by Voiculescu in [44] for free additive
convolution of compactly supported probability measures. Biane [15] extended the
result to free additive convolutions of arbitrary probability measures on R. A new
proof was given later, using a fixed point theorem for analytic self-maps of the
upper half-plane [9]. Note that such a subordination property allows to give a new
definition of free additive convolution [24]. Let us define the reciprocal Cauchy-
Stieltjes transform Fµ(z) = 1/gµ(z), which is an analytic self-map of the upper
half-plane, where gµ : z ∈ C \R 7→

∫
1
z−tdµ(t). Given Borel probability measures µ

and ν on R, there exist a unique pair of analytic functions ω1, ω2 : C+ → C+ such
that

Fµ(ω1(z)) = Fν(ω2(z)) = Fµ�ν(z), z ∈ C+. (3.2)

Moreover limy→+∞ ωj(iy)/iy = 1, j = 1, 2 and

ω1(z) + ω2(z)− z = Fµ�ν(z), z ∈ C+.

In particular (see [9]), for any z ∈ C+ ∪ R so that ω1 is analytic at z, ω1(z) is the
attracting fixed point of the self-map of C+ defined by

w 7→ Fν(Fµ(w)− w + z)− (Fµ(w)− w).

A similar statement, with µ, ν interchanged, holds for ω2.
In particular, according to (3.2), we have for any z ∈ C+,

gµ�ν(z) = gµ(ω1(z)) = gν(ω2(z)). (3.3)

3.2 Operator-valued free probability theory

There exists an extension, operator-valued free probability theory, which still shares
the basic properties of free probability but is much more powerful because of its
wider domain of applicability. The concept of freeness with amalgamation and some
of the relevant analytic transforms were introduced by Voiculescu in [45].

Definition 3.1. Let M be an algebra and B ⊂M be a unital subalgebra. A linear
map E : M → B is a conditional expectation if E(b) = b for all b ∈ B and

7



E(b1ab2) = b1E(a)b2 for all a ∈ M and b1, b2 in B. Then (M, E) is called a B-
valued probability space. If in addition M is a C∗-algebra, B is a C∗-subalgebra of
M and E is completely positive, then we have a B-valued C∗-probability space.

Example: Let (A, φ) be a noncommutative probability space. Define

M2(A) :=

{(
a b
c d

)
, a, b, c, d ∈ A

}
, E := id2 ⊗ φ that is

E

[(
a b
c d

)]
=

(
φ(a) φ(b)
φ(c) φ(d)

)
.

(M2(A), E) is an M2(C)-valued probability space (C ≈ C1A).

As in scalar-valued free probability, one defines [45] freeness with amalgamation
over B via an algebraic relation similar to freeness, but involving E and noncom-
mutative polynomials with coefficients in B.

Definition 3.2. Let (M, E :M→ B) be an operator-valued probability space.
The B-valued distribution of a noncommutative random variable a ∈M is given by
all B-valued moments E(ab1ab2 · · · bn−1a) ∈ B, n ∈ N, b0, . . . , bn−1 ∈ B.
Let (Ai)i∈I be a family of subalgebras with B ⊂ Ai for all i ∈ I. The subalgebras
(Ai)i∈I are free with respect to E or free with amalgamation over B if E(a1 · · · an) =
0 whenever aj ∈ Aij , ij ∈ I, E(aj) = 0, for all j and i1 6= i2 6= · · · 6= in.

Random variables in M or subsets of M are free with amalgamation over B if
the algebras generated by B and the variables or the algebras generated by B and the
subsets, respectively, are so.

A centred B-valued semicircular random variable s is uniquely determined by
its variance η : b 7→ E(sbs); a characterization in terms of moments and cumulants
via η is provided by Speicher in [41].

The previous results of free subordination property in the scalar case are ap-
proached from an abstract coalgebra point of view by Voiculescu in [46] and this
approach extends the results to the B-valued case. In [13], Belinschi, Mai and Spe-
icher develop an analytic theory. In order to describe operator-valued subordination
property, we need some notation. If A is a unital C∗-algebra and b ∈ A, we denote
by <b = (b + b∗)/2 and =b = (b − b∗)/2i the real and imaginary parts of b, so
b = <b+ i=b. For a self-adjoint operator b ∈ A, we write b ≥ 0 if the spectrum of b
is contained in [0,+∞) and b > 0 if the spectrum of b is contained in (0,+∞). The
operator upper half-plane of A is the set H+(A) = {b ∈ A : =b > 0}.

Proposition 3.2. [46],[13](see Theorem 5 p 259 [35]) Let (M, E :M→ B) be an
operator-valued C∗-probability space. Let x1, x2 ∈M be self-adjoint variables which
are free with amalgamation over B.
There exist a unique pair of Fréchet analytic maps ω1, ω2 : H+(B) → H+(B) such
that, for all b ∈ H+(B),

•
=ωj(b) ≥ =b, j = 1, 2; (3.4)
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•
E
[
(b− (x1 + x2))−1

]
= E

[
(ω1(b)− x1)−1

]
= E

[
(ω2(b)− x2)−1

]
,

• {
E
[
(ω1(b)− x1)−1

]}−1
+ b =

{
E
[
(ω2(b)− x2)−1

]}−1
+ b

= ω1(b) + ω2(b).

Moreover, if b ∈ H+(B), then ω1(b) is the unique fixed point of the map

fb : H+(B)→ H+(B), fb(w) = hx2
(hx1

(w) + b) + b

where hxi(b) = E
[
(b− xi)−1

]−1 − b

and ω1(b) = lim
k→+∞

f◦kb (w), for any w ∈ H+(B).

The following result from [36] explains why the particular case B = Mm(C),
M = Mm(A), E = idm ⊗ φ, where (A, φ) is a noncommutative probability space,
is relevant in our work using linearizations of polynomials.

Proposition 3.3. Let (A, φ) be a C∗-probability space, let m be a positive integer,
and let x1, . . . , xn ∈ A be freely independent. Then the map idm ⊗ φ : Mm(A) →
Mm(C) is a unit preserving conditional expectation, and α1 ⊗ x1, . . . , αn ⊗ xn are
free over Mm(C) for any αi ∈Mm(C).

Now, if x is a standard scalar-valued semicircular centred noncommutative ran-
dom variable which is free from a self-adjoint variable a in some W∗-probability
space (A, φ), then, for any Hermitian matrices α, β in Mm(C), α⊗ x is a Mm(C)-
valued semicircular of variance η : b 7→ αbα which is free over Mm(C) from β ⊗ a
and the subordination function has a more explicit form (see [35, Chapter 9] and
the end of the proof of Theorem 8.3 in [3]): for b ∈ H+(Mm(C)),

(idm ⊗ φ)
[
(b⊗ 1A − α⊗ x− β ⊗ a)

−1
]

= (idm ⊗ φ)
[
(ωm(b)⊗ 1A − β ⊗ a)

−1
]
,

where
ωm(b) = b− α (idm ⊗ φ)

[
(b⊗ 1A − α⊗ x− β ⊗ a)

−1
]
α. (3.5)

Denote by N the unital von Neumann algebra generated by Mm(C) and β ⊗ a
and by EN the unique trace preserving conditional expectation of Mm(A) onto N .
Actually the following strengthened result [46, Theorem 3.8] holds:

EN

[
(b⊗ 1A − α⊗ x− β ⊗ a)

−1
]

= (ωm(b)⊗ 1A − β ⊗ a)
−1
. (3.6)
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4 Assumptions and main results

Assumptions on the Wigner matrix.
We consider a N × N Hermitian Wigner matrix WN = (Wij)1≤i,j≤N such that
the random variables {Wii,

√
2RWij ,

√
2IWij}1≤i<j are independent identically dis-

tributed with law µ, µ is a centered distribution, with variance 1, and satisfies a
Poincaré inequality (see the Appendix). We set

WN =

(
W11 Y ∗

Y WN−1

)
,

where Y ∗ = (W12, · · · ,W1N ) and WN−1 ∈MN−1(C).

Assumptions on the deterministic matrix.
We consider a deterministic real diagonal matrix AN :

AN = diag(θ,AN−1)

where θ ∈ R is independent of N and AN−1 is a N − 1×N − 1 deterministic diag-
onal matrix such that for any i = 1, . . . , N − 1, (AN−1)ii = di(N). We assume that
AN−1 ∈ (MN−1(C), 1

N−1 Tr) converges strongly in distribution towards a noncom-
mutative self-adjoint random variable a in some W∗-probability space (A, φ), with
φ faithful (see Section 3.1 for the definition of strong convergence). Note that this
implies that

sup
N
‖AN−1‖ < +∞, (4.1)

and, by Proposition 3.1, that, for all large N , all the eigenvalues of AN−1 are
in any small neighborhood of the spectrum of a. We assume that θ is such that
θ /∈ supp(µa) = spect(a). Note that the previous assumptions yield that AN ∈
(MN (C), 1

N Tr) converges in distribution towards the noncommutative random vari-
able a and that, for N large enough, θ is an eigenvalue of multiplicity 1 of AN .

Matrix model.
Fix a self-adjoint polynomial P ∈ C < X1, X2 >. The matrix model we are inter-
ested in is

MN = P

(
WN√
N
,AN

)
.

Denote by λi(MN ), i = 1, . . . , N , its eigenvalues and by

µMN
=

1

N

N∑
i=1

λi(MN )

its empirical spectral measure. According to (2.10) in [11] and [2, Theorem 5.4.5],
we have

lim
N→∞

µMN
= µP (x,a)

almost surely in the weak∗ topology, where x is a standard semicircular noncom-
mutative random variable in (A, φ) (i.e dµx = 1

2π

√
4− x2 11[−2,2](x)), a and x are

10



freely independent, and µP (x,a) denotes the distribution of P (x, a).

The set of outliers of MN is calculated in [12] from the spike θ of AN using
linearization and Voiculescu’s matrix subordination function [46] as follows. Choose
a linearization LP of P where LP = γ⊗1 +α⊗X1 +β⊗X2, α, β, γ are self-adjoint
matrices in Mm(C), and let ωm be the subordination function associated to the
semicircular operator-valued random variable α⊗x with respect to β⊗a, as defined
by (3.5). According to Lemma 2.1, ωm extends as an analytic map z 7→ ωm(ze11−γ)
to C \ supp(µP (x,a)). For any ρ 6∈ supp(µP (x,a)), define m(ρ) as the multiplicity of
ρ as a zero of det(ωm(ρe11 − γ)− θβ). [12] establishes the following.

Proposition 4.1. [12] There exists δ0 > 0 such that, for any 0 < δ ≤ δ0, a.s

for large N , there are exactly m(ρ) eigenvalues of P
(
WN√
N
, AN

)
in ]ρ − δ; ρ + δ[,

counting multiplicity.

Assumptions on ρ.
In this paper, we assume that there exists some real number

ρ 6∈ supp(µP (x,a)) = spect(P (x, a))

such that ρ is a zero with multiplicity one of

det(ωm(ρe11 − γ)− θβ) = 0, (4.2)

that is such that
m(ρ) = 1. (4.3)

Assumptions on ε.
Throughout the paper ε > 0 is fixed such that

d(ρ, spect(P (x, a))) > ε (4.4)

and
det(ωm(ye11 − γ)− θβ) 6= 0, for any y ∈]ρ− ε; ρ+ ε[\{ρ}.

Main result.
We first introduce events and objects needed to state our main result.
By strong asymptotic freeness of [12] and Proposition 3.1, almost surely for all large

N , spect
(
P
(
WN−1√

N
, AN−1

))
⊂ {y ∈ R; d(y, spect(P (x, a)) ≤ ε/2}. Thus,

almost surely for all large N, d

(
ρ, spect

(
P

(
WN−1√

N
,AN−1

)))
> ε/2. (4.5)

Define the event

Ω̃N−1 =

{
d

(
ρ, spect

(
P

(
WN−1√

N
,AN−1

)))
> ε/2;

∥∥∥∥WN−1√
N

∥∥∥∥ ≤ 3

}
, (4.6)
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Note that according to Lemma 2.2, there exists Cε > 0 such that

d(0, spect((ρe11 − γ)⊗ 1A − α⊗ x− β ⊗ a)) > Cε (4.7)

and on Ω̃N−1

d

(
0, spect

(
(ρe11 − γ)⊗ IN−1 − α⊗

WN−1√
N
− β ⊗AN−1

))
> Cε. (4.8)

Let δ0 be as defined in Proposition 4.1. Set

τ = min(δ0, ε/4, Cε/4). (4.9)

Define the event

ΩN = Ω̃N−1 ∩ {card(spect(MN )∩]ρ− τ ; ρ+ τ [) = 1} . (4.10)

It readily follows from Proposition 4.1, (4.5) and Bai-Yin’s theorem (see Theorem
5.1 in [5]) that

lim
N→+∞

1IΩN = 1, a.s.

and then
P(ΩN )→N→+∞ 1.

Now, define

λ(N, ρ) =

{
ρ if spect(MN )∩]ρ− τ ; ρ+ τ [= ∅
max{spect(MN )∩]ρ− τ ; ρ+ τ [} else.

(4.11)

On ΩN , λ(N, ρ) is the unique eigenvalue of MN which is located in ]ρ− τ ; ρ+ τ [. In
this paper, we study the fluctuations of λ(N, ρ). Note that Proposition 4.1 readily
implies that

λ(N, ρ)→N→+∞ ρ a.s.. (4.12)

Let aN−1 be a self-adjoint noncommutative random variable in (A, φ) whose dis-
tribution is µAN−1

(meaning that ∀k ∈ N, 1
N−1 Tr(AkN−1) = φ((akN−1)) and which

is free with the semicircular variable x. Since AN−1 (and thus aN−1) converges
strongly to a, we have, for all large N ,

spect(P (x, aN−1)) ⊂ spect(P (x, a))+]− ε/4, ε/4[,

and thus, using (4.4), for any z ∈ B(ρ, τ) := {z ∈ C, |z − ρ| < τ},∥∥∥(z1A − P (x, aN−1))
−1
∥∥∥ ≤ 2/ε. (4.13)

Define for any κ ∈ H+(Mm(C))

ω(N)
m (κ) = κ− α (idm ⊗ φ)

[
(κ⊗ 1A − α⊗ x− β ⊗ aN−1)−1

]
α. (4.14)

ω
(N)
m is the subordination function associated to the semicircular operator-valued

random variable α ⊗ x with respect to β ⊗ aN−1. According to Lemma 2.1, ω
(N)
m

12



extends as an analytic map z 7→ ω
(N)
m (ze11−γ) to C\supp(µP (x,aN−1)). Using (4.13)

and Lemma 2.2, it is straightforward to see that
(
z 7→ det(ω

(N)
m (ze11 − γ)− θβ)

)
N≥1

is a bounded sequence in the set of analytic functions endowed with the uniform
convergence on compact subsets of B(ρ, τ); therefore, using moreover (5.16) and
Vitali’s theorem, by Hurwitz’s theorem, (4.2) yields that for any 0 < τ

′
< τ , for all

large N , there exists one and only one ρN in B(ρ, τ
′
), such that

det(ω(N)
m (ρNe11 − γ)− θβ) = 0, (4.15)

and we have
ρN →N→+∞ ρ. (4.16)

Moreover, necessarily ρN is real since (4.15) implies that det(ω
(N)
m (ρNe11−γ)−θβ) =

0.
Here is our main result. (For a matrix X, com(X) denotes the comatrix of X.)

Theorem 4.1. Define

Cm =t com(ωm(ρe11 − γ)− βθ), (4.17)

R∞(ρe11 − γ) = ((ρe11 − γ)⊗ 1A − α⊗ x− β ⊗ a)−1, (4.18)

C(1)
ρ = Trm (Cm [e11 + α (idm ⊗ φ) (R∞(ρe11 − γ) (e11 ⊗ 1A)R∞(ρe11 − γ))α]) ,

(4.19)
C(2)
ρ = Trm [Cmα] , (4.20)

vρ =
(
E
(
|W21|4

)
− 2
) ∫ [

Trm

(
αCmα (ωm(ρe11 − γ)− tβ)

−1
)]2

dµa(t)

+φ
(

[(Trm⊗idA) {R∞(ρe11 − γ)(αCmα)⊗ 1A}]2
)
, (4.21)

with ωm defined by (3.5).

C
(1)
ρ

√
N(λ(N, ρ)− ρN ) converges in distribution to the classical convolution of the

distribution of C
(2)
ρ W11 and a Gaussian distribution with mean 0 and variance vρ.

Using the unitarily invariance of the distribution of a G.U.E. matrix, we can
readily deduce the following result.

Corollary 4.1. Assume that WN is a G.U.E. matrix. Let AN be a determin-
istic Hermitian matrix such that its spectral measure µAN weakly converges to-
wards a compactly supported measure µa, θ /∈ supp(µa) is a spiked eigenvalue
of AN with multiplicity one whereas the other eigenvalues of AN converge uni-
formly to the compact support of µa. Then, under the assumptions (4.2) and (4.3),

C
(1)
ρ

√
N(λ(N, ρ) − ρN ) converges in distribution to a Gaussian distribution with

mean 0 and variance

ṽρ = (C(2)
ρ )2 + φ

(
[(Trm⊗idA) {R∞(ρe11 − γ)(αCmα)⊗ 1A}]2

)
,

where λ(N, ρ), ρN , C
(1)
ρ , C

(2)
ρ , Cm and R∞(ρe11− γ) are defined by (4.11), (4.15),

(4.19), (4.20), (4.17) and (4.18) respectively.
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Example
As an illustration, consider the random matrix

MN = AN
WN√
N

+
WN√
N
AN +

W 2
N

N
,

where WN is a Wigner matrix of size N such that dµ(x) = 1
2
√

3
1I[−
√

3;
√

3](x)dx and

AN = Diag(θ, 0, . . . , 0), θ ∈ R \ {0}.

According to [8, (4.6.6)], µ satisfies a Poincaré inequality. In this case, AN has rank
one, and thus a = 0. It follows that the limit spectral measure Π of MN is the
same as the limit spectral measure of W 2

N/N . Thus, Π is the Marchenko-Pastur
distribution with parameter 1:

dΠ(t) =

√
(4− t) t
2πt

1(0,4)(t)dt.

The polynomial P is P (X1, X2) = X2X1 +X1X2 +X2
1 , a = 0 and x is the standard

semi-circular distribution. An economical linearization of P is provided by L =
γ ⊗ 1 + α⊗X1 + β ⊗X2, where

γ =

0 0 0
0 0 −1
0 −1 0

 , α =

0 1 1
2

1 0 0
1
2 0 0

 , β =

0 0 1
0 0 0
1 0 0

 .
Thus, here m = 3. Denote by

GΠ(z) =

∫ 4

0

1

z − t
dΠ(t) =

z −
√
z2 − 4z

2z
, z ∈ C \ [0, 4],

the Cauchy transform of the measure Π. This function satisfies the quadratic
equation zGΠ(z)2 − zGΠ(z) + 1 = 0. Suppose now that t /∈ [0, 4]. Denoting by
E = id3 ⊗ φ : M3(A)→ M3(C) the usual expectation, since a = 0, the function ω3

is computed as follows:

ω3(te11 − γ) = E((te11 − γ − α⊗ x)−1)−1, t ∈ R \ [0, 4].

The inverse of te11 − γ − α ⊗ x is then calculated explicitly and application of the
expected value to its entries yields

ω3(te11 − γ) =


1

GΠ(t) 0 0

0 1
tGΠ(t) − 1 1

2tGΠ(t) + 1
2

0 1
2tGΠ(t) + 1

2
1

4tGΠ(t) −
1
4

 .
The equation det[βθ − ω(te11 − γ)] = 0 is easily seen to reduce to

θ2GΠ(t)2 − (1−GΠ(t)) = 0. (4.22)
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Thus, the matrix MN exhibits one (negative) outlier when 0 < |θ| ≤
√

2

ρ−θ =
2θ4

−(3θ2 + 1)−
√

4θ2 + 1(θ2 + 1)
,

and two outliers (one negative and one > 4) when |θ| >
√

2:

ρ±θ =
2θ4

−(3θ2 + 1)±
√

4θ2 + 1(θ2 + 1)
;

note that

gρ±θ
= GΠ(ρ±θ ) =

1

2
+
−(θ2 + 1)±

√
4θ2 + 1

2θ2
.

Let ρ be any of the two solutions ρ+
θ and ρ−θ and set

gρ = GΠ(ρ).

Note that since here aN−1 = a = 0, we have ρN = ρ. After computations

C3 =

 gρ − 1 θ
2 (gρ − 2) −gρθ

θ
2 (gρ − 2) −( 1

4 + θ2) − 1
gρ

+ 1
2

−gρθ − 1
gρ

+ 1
2 −1

 ,

R∞(ρe11 − γ) =

 (ρ− x2)−1 1
2x(ρ− x2)−1 x(ρ− x2)−1

1
2x(ρ− x2)−1 1

4x
2(ρ− x2)−1 1 + 1

2x
2(ρ− x2)−1

x(ρ− x2)−1 1 + 1
2x

2(ρ− x2)−1 x2(ρ− x2)−1

 ,

and then
C(2)
ρ = −2θ,

C(1)
ρ = −θ2g2

ρ

(
1 +

∫
y

(ρ− y)2
dΠ(y)

)
− 1

g2
ρ

∫
1

(ρ− y)2
dΠ(y) < 0

and

vρ = −3

5

(
θ2gρ + 2

)2
+ θ4g4

ρ

∫
y2

(ρ− y)2
dµΠ(y) + 2θ2(2 + θ2g2

ρ + gρ)

∫
y

(ρ− y)2
dµΠ(y)

+(
1

gρ
+ θ2)2

∫
1

(ρ− y)2
dµΠ(y) + 2θ4g4

ρ

∫
y

(ρ− y)
dµΠ(y)

+θ2g2
ρ(θ2g2

ρ + 2θ2gρ + 2),

with ∫
y

(ρ− y)
dµΠ(y) = −1 + ρgρ,∫

y

(ρ− y)2
dµΠ(y) = −gρ − ρg

′

ρ,
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∫
y2

(ρ− y)2
dµΠ(y) = 1− 2ρgρ − ρ2g

′

ρ,

and g
′

ρ = G
′

Π(ρ) =
gρ(1−gρ)
ρ(2gρ−1) (after differentiating the equation tGΠ(t)2−tGπ(t)+1 =

0). Thus,

C(1)
ρ = −θ4g4

ρ +
g
′

ρ

g2
ρ

(gρ + 1), C(2)
ρ = −2θ,

vρ = −3

5

(
θ2gρ + 2

)2 − g
′

ρ

g2
ρ

(
1 +

7

gρ
+ θ2

)
− 4θ2gρ.

Now, set

C =

∣∣∣∣∣C(2)
ρ

C
(1)
ρ

∣∣∣∣∣ , σ2 =
vρ

(C
(1)
ρ )2

.

According to Theorem 4.1,
√
N(λ(N, ρ)− ρ) converges in distribution to the prob-

ability measure with density function

f(x) =
1

2
√

6πCσ

∫ √3C

−
√

3C

exp
(
−(x− t)2/2σ2

)
dt.

5 Preliminary results

5.1 Basic bounds and convergences

We start with straightforward bounds and convergences involving resolvents and
that will be of basic use for the proof of Theorem 4.1. For any w ∈ Mm(C) such

that w⊗ IN−1−α⊗ WN−1√
N
− β⊗AN−1, resp. w⊗ 1A−α⊗ x− β⊗ a, is invertible,

define

RN−1(w) =

(
w ⊗ IN−1 − α⊗

WN−1√
N
− β ⊗AN−1

)−1

,

resp.
R∞(w) = (w ⊗ 1A − α⊗ x− β ⊗ a)−1.

Note that we have the following resolvent identities for any w1 and w2 in Mm(C)
such that the resolvents are defined:

RN−1(w1)−RN−1(w2) = RN−1(w1) [(w2 − w1)⊗ IN−1]RN−1(w2), (5.1)

R∞(w1)−R∞(w2) = R∞(w1) [(w2 − w1)⊗ 1A]R∞(w2). (5.2)

Lemma 5.1. • For any w ∈Mm(C) such that =w > 0, w⊗IN−1−α⊗WN−1√
N
−

β⊗AN−1, w⊗1A−α⊗x−β⊗a and w⊗1A−α⊗x−β⊗aN−1 are invertible
and

‖RN−1(w)‖ ≤ ‖(=w)−1‖, (5.3)

‖R∞(w)‖ ≤ ‖(=w)−1‖, (5.4)∥∥∥(w ⊗ 1A − α⊗ x− β ⊗ aN−1)
−1
∥∥∥ ≤ ‖(=w)−1‖. (5.5)
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• Let Ω̃N−1 be as defined by (4.6) and Cε be as in (4.7) and (4.8). Let z be in
R such that |z − ρ| < Cε/4 and z0 be in C such that |z0| < Cε/4.
Then, (ze11 +z0Im−γ)⊗1A−α⊗x−β⊗a, (ze11 +z0Im−γ)⊗1A−α⊗x−
β ⊗ aN−1 and (ze11 + z0Im − γ)⊗ IN−1 − α ⊗ WN−1√

N
− β ⊗ AN−1 on Ω̃N−1,

are invertible and we have∥∥∥RN−1(ze11 + z0Im − γ)1IΩ̃N−1

∥∥∥ ≤ 2/Cε, (5.6)

‖R∞(ze11 + z0Im − γ)‖ ≤ 2/Cε, (5.7)∥∥∥((ze11 + z0Im − γ)⊗ 1A − α⊗ x− β ⊗ aN−1)
−1
∥∥∥ ≤ 4/Cε. (5.8)

Moreover, for any t in the spectrum of a, ωm(ze11 +z0Im−γ)−tβ is invertible
and ∥∥∥(ωm(ze11 + z0Im − γ)− tβ)

−1
∥∥∥ ≤ 2/Cε, (5.9)

and, for any t in the spectrum of AN−1, ω
(N)
m (ze11+z0Im−γ)−tβ is invertible

and ∥∥∥∥(ω(N)
m (ze11 + z0Im − γ)− tβ

)−1
∥∥∥∥ ≤ 4/Cε. (5.10)

Proof. (5.3), (5.4) and (5.5) come from Lemma 3.1 (i) of [29]. Now, according to
[32], since AN−1 (and thus aN−1) converges strongly to a, we have, for all large N ,

spect((ρe11 − γ)⊗ 1A − α⊗ x− β ⊗ aN−1)

⊂ spect((ρe11 − γ)⊗ 1A − α⊗ x− β ⊗ a)+]− Cε/4, Cε/4[. (5.11)

(5.6), (5.7) and (5.8) easily follow from (4.7), (4.8), (5.11) and the following facts: if
y is a self-adjoint element in a C∗-algebra and λ0 ∈ C\spect(y), then d(λ0, spect(y)) =
1/‖(λ0 − y)−1‖ and for any other element ỹ, the distance between any element in
the spectrum of ỹ and the spectrum of y is smaller than ‖y − ỹ‖.
Using the analyticity on the set {w ∈Mm(C), w ⊗ 1A − α⊗ x− β ⊗ a invertible}
of the functions EN [R∞(·)] and ωm, one can easily deduce from (3.6) that,

Im ⊗ 1A

= (ωm(ze11 + z0Im − γ)⊗ 1A − β ⊗ a)EN [R∞ (ze11 + z0Im − γ)]

= EN [R∞ (ze11 + z0Im − γ)] (ωm(ze11 + z0Im − γ)⊗ 1A − β ⊗ a) .(5.12)

Let t be in the spectrum of a. Choose a character χ of the commutative C∗-algebra
C < a > such that χ(a) = t and denote by χm : Mm(C < a >) → Mm(C) the
algebra homomorphism obtained by applying χ to each entry. Applying χm to
(5.12), we deduce that

(ωm(ze11 + z0Im − γ)− tβ)
−1

= χm(EN [R∞ (ze11 + z0Im − γ)])

so that (5.9) readily follows from (5.7). (5.10) can be proven similarly.

17



The following convergence results are quite straightforward consequences of
asymptotic freeness of WN−1/

√
N and AN−1.

Lemma 5.2. For any Σ, Σ1, Σ2 in Mm(C) such that ∃C > 0, ‖Σ‖ ≤ C, ‖Σ1‖ ≤
C, ‖Σ2‖ ≤ C, almost surely,

1)

(idm ⊗ trN−1) (RN−1(ρNe11 − γ) (Σ⊗ IN−1)RN−1(ρNe11 − γ))1IΩ̃N−1

−→N→+∞ (idm ⊗ φ) [R∞(ρe11 − γ) (Σ⊗ 1A)R∞(ρe11 − γ)] (5.13)

2)

1IΩ̃N−1
× trN−1 {(Trm⊗idN−1) [RN−1(ρNe11 − γ) (Σ1 ⊗ IN−1)]

× (Trm⊗idN−1) [RN−1(ρNe11 − γ) (Σ2 ⊗ IN−1)]}

−→N→+∞ φ {(Trm⊗idA) [R∞(ρe11 − γ) (Σ1 ⊗ 1A)]

× (Trm⊗idA) [R∞(ρe11 − γ) (Σ2 ⊗ 1A)]} , (5.14)

3)
∀w ∈Mm(C),=w > 0, ω(N)

m (w) −→N→+∞ ωm(w). (5.15)

∀z ∈ R, |z − ρ| < τ, ω(N)
m (ze11 − γ) −→N→+∞ ωm(ze11 − γ). (5.16)

ω(N)
m (ρNe11 − γ) −→N→+∞ ωm(ρe11 − γ). (5.17)

Proof. We have for any self-adjoint operators u and v, for any w ∈ Mm(C) such
that =w > 0, for any non null integer p,

(w ⊗ 1− α⊗ u− β ⊗ v)−1

=

p−1∑
k=0

w−1 ⊗ 1(αw−1 ⊗ u+ βw−1 ⊗ v)k

+ (w ⊗ 1− α⊗ u− β ⊗ v)
−1

(αw−1 ⊗ u+ βw−1 ⊗ v)p. (5.18)

For any K > 0, define

OK = {w ∈Mm(C),=(w) > KIm}.

According to Lemma 3.1 (i) of [29], for any w ∈ OK , we have ‖w−1‖ ≤ 1/K. Let
0 < C < 1. For any κ > 0, there exists K = K(κ, α, β) > 0 such that if w ∈ OK ,
for any u and v such that ‖u‖ ≤ κ and ‖v‖ ≤ κ then

‖(αw−1 ⊗ u+ βw−1 ⊗ v)‖ ≤ C, (5.19)

so that (using once more Lemma 3.1 (i) of [29])

sup
w∈OK

∥∥∥(w ⊗ 1− α⊗ u− β ⊗ v)
−1

(αw−1 ⊗ u+ βw−1 ⊗ v)p
∥∥∥ ≤ Cp

K
→p→+∞ 0.
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Fix K > 0 such that (5.19) holds for (u, v) = (x, a) and (u, v) = (WN−1√
N
, AN−1) on

Ω̃N−1. Therefore, for any δ > 0, we can find a polynomial Qw with coefficients in
Mm(C) depending on w,α and β such that:

sup
w∈OK

||R∞(w)−Qw(x, a)|| ≤ δ, (5.20)

sup
w∈OK

||RN−1(w)−Qw
(
WN−1√

N
,AN−1

)
||1IΩ̃N−1

≤ δ. (5.21)

Now, by the asymptotic freeness of WN−1√
N

and AN−1 (see [2, Theorem 5.4.5]), we

have that almost surely

(idm ⊗ trN−1)

{
Qw

(
WN−1√

N
,AN−1

)
(Σ⊗ IN )Qw

(
WN−1√

N
,AN−1

)}
−→N→∞ (idm ⊗ φ) {Qw(x, a)(Σ⊗ 1A)Qw(x, a)} . (5.22)

Using (5.22), (5.20), (5.21), (5.3), (5.4) and

lim
N→+∞

1IΩ̃N−1
= 1 a.s., (5.23)

we can deduce that for w ∈ OK , (idm ⊗ trN−1) (RN−1(w)(Σ ⊗ IN−1)RN−1(w))
converges almost surely towards (idm ⊗ φ) (R∞(w)(Σ⊗ 1A)R∞(w)), when N goes
to infinity.
Let O = {w ∈Mm(C),=(w) > 0}. The two functions

ΦN (w) = (idm ⊗ trN−1) [RN−1(w) (Σ⊗ IN−1)RN−1(w)]

and
Φ∞(w) = (idm ⊗ φ) [R∞(w) (Σ⊗ 1A)R∞(w)]

are holomorphic on O. Moreover, using (5.3), we have

||ΦN (w)|| ≤ ||(=w)−1||2||Σ|| ≤ C||(=w)−1||2.

It readily follows that ΦN is a bounded sequence in the set of analytic functions
on O endowed with the uniform convergence on compact subsets. Since moreover,
almost surely, for any t > K, t ∈ Q, ΦN (itIm) converges towards Φ(itIm), we
can apply Vitali’s theorem to conclude that almost surely the convergence of ΦN
towards Φ∞ holds on O. Of course, this convergence still holds on −O.
Let z ∈ R be such that |z − ρ| ≤ Cε/4. For any q > 0, such that 1

q ≤ Cε/4, define

w(q) = ze11−γ+ i 1
q Im. Almost surely, for any such q, ΦN (w(q)) converges towards

Φ∞(w(q)). Using (5.23), the resolvent identities (5.2) and (5.1) on Ω̃N−1, and the
bounds (5.6) and (5.7), we easily deduce by letting q goes to infinity that a.s.

(idm ⊗ trN−1) [RN−1(ze11 − γ) (Σ⊗ IN−1) RN−1(ze11 − γ)] 1IΩ̃N−1

−→N→+∞ (idm ⊗ φ) [R∞(ze11 − γ) (Σ⊗ 1A)R∞(ze11 − γ)] . (5.24)

Note that using (4.16), the bound (5.6), and the resolvent identity (5.1) on Ω̃N−1,
(5.13) readily follows from (5.24) applied to z = ρ.
(5.14), (5.15), (5.16) and (5.17) can be proven using similar ideas.
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The proof of Theorem 4.1, that will be presented in Section 6, is based on the
writing of the outlier in terms of a quadratic form involving the resolvent RN−1.
Section 5.2 presents the central limit theorem for random quadratic forms involved
in the proof whereas Section 5.3 gather results that will be used to prove that some
terms are negligible.

5.2 Central limit theorem for random quadratic forms

Proposition 5.1. For any Hermitian m×m matrix H,

√
N

(
1

N
Trm

{
H (α⊗ Y ∗)RN−1(ρNe11 − γ)1IΩ̃N−1

(α⊗ Y )
}

− 1

N
Trm

{
αHα

[
(idm ⊗ TrN−1)

(
RN−1(ρNe11 − γ)1IΩ̃N−1

)]})
converges in distribution to a Gaussian variable with mean 0 and variance(

E
(
|W12|4

)
− 2
) ∫ [

Trm

(
αHα (ωm(ρe11 − γ)− tβ)

−1
)]2

dµa(t)

+φ
([

(Trm⊗idA)
{

(ρe11 − γ)⊗ 1A − α⊗ x− β ⊗ a)−1 ((αHα)⊗ 1A)
}]2)

.

Proof. We apply the following Proposition 5.2 to B = RN−1(ρNe11 − γ)1IΩ̃N−1
by

using (4.16), (5.6) and Proposition 5.4 below.

Proposition 5.2. Let m be a fixed integer number and α be a Hermitian m ×m
deterministic matrix that does not depend on N . Let B be a random Hermitian
mN ×mN matrix such that there exists C > 0 such that ‖B‖ ≤ C. Let us write

B =
∑N
i,j=1Bij⊗Eij where Bij are m×m matrices. Assume that, for any p, q, p′, q′

in {1, . . . ,m}4,

• 1
N

∑N
i=1(Bii)pq(Bii)p′q′ →N→+∞ ω(p,q),(p′,q′) in probability,

• 1
N

∑N
i,j=1(Bij)pq(Bji)p′q′ →N→+∞ θ(p,q),(p′,q′) in probability.

Let tX = (x1, . . . , xN ) be an independent vector of size N which contains i.i.d.
complex standardized entries with bounded fourth moment and such that E(x2

1) = 0.
Let H be a m × m deterministic Hermitian matrix that does not depend on N .
Then, when N goes to infinity,

1√
N

Trm {H [(α⊗X∗)B (α⊗X)− α (idm ⊗ TrN ) (B)α]}

converges in distribution to a Gaussian variable with mean 0 and variance(
E
(
|x1|4

)
− 2
) m∑
p,q,p′,q′=1

(αHα)qp(αHα)q′p′ω(p,q),(p′,q′)

+

m∑
p,q,p′,q′=1

(αHα)qp(αHα)q′p′θ(p,q),(p′,q′).
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Proof. Note that

1√
N

Trm {H [(α⊗X∗)B (α⊗X)− α (idm ⊗ TrN ) (B)α]} =
1√
N
{X∗BX − TrN B}

where B = (Bij)1≤i,j≤N and Bij = Trm αHαBij .

Thus, the result follows from [6] or Theorem 5.2 in [20].

Proposition 5.3. When it is defined, let us rewrite

RN−1 =

N−1∑
i,j=1

(RN−1)ij ⊗ Eij ,

where (RN−1)ij ∈Mm(C). For any w ∈ H+
m(C), we have that, almost surely,

FN (w) =
1

N − 1

N−1∑
i=1

[(RN−1(w − γ))ii]pq[(RN−1(w − γ)ii)]p′q′ (5.25)

→N→+∞

∫
[(ωm(w − γ)− tβ)−1]pq[(ωm(w − γ)− tβ)−1]p′q′dµa(t) (5.26)

Proof. First we are going to prove that almost surely,

1
N−1

N−1∑
i=1

[(RN−1(w − γ))ii]pq[(RN−1(w − γ))ii]p′q′

− 1

N − 1

N−1∑
i=1

[E(RN−1(w − γ))ii]pq[E(RN−1(w − γ))ii]p′q′ −→N→+∞ 0. (5.27)

Set ai = [(RN−1(w − γ))ii]pq and bi = [(RN−1(w − γ))ii]p′q′ . We have

1

N − 1

N−1∑
i=1

aibi −
1

N − 1

N−1∑
i=1

E(ai)E(bi)

=
1

N − 1

N−1∑
i=1

aibi −
1

N − 1

N−1∑
i=1

E(aibi)

+
1

N − 1

N−1∑
i=1

E {(ai − E(ai))(bi − E(bi))} .

Consider the linear isomorphism Ψ between Msa
N−1(C) and R(N−1)2

given by

Ψ((akl)1≤k,l≤N−1) =
(

(akk)1≤k≤N−1, (
√

2<akl)1≤k<l≤N−1, (
√

2=akl)1≤k<l≤N−1

)
(5.28)
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for (akl)1≤k,l≤N−1 in Msa
N−1(C). MN−1(C)sa is an Euclidean space with inner prod-

uct given by 〈A,B〉 = TrN−1(AB) and with norm

‖A‖e =
(
TrN−1A

2
)1/2

.

We shall identify Msa
N−1(C) with R(N−1)2

via the isomorphism Ψ. Note that under
this identification the norm ‖ · ‖e on Msa

N−1(C) corresponds to the usual Euclidean

norm on R(N−1)2

.

Define fN : Msa
N−1(C) 7→ C by

fN (W ) =
1

N − 1

N−1∑
i=1

Trm(N−1)

[
((w − γ)⊗ IN−1 − α⊗W − β ⊗AN−1)

−1
(eqp ⊗ Eii)

]
×Trm(N−1)

[
((w − γ)⊗ IN−1 − α⊗W − β ⊗AN−1)

−1
(eq′p′ ⊗ Eii)

]
.

Using the resolvent identity, for H1, H2 ∈Msa
m(N−1)(C),

(w ⊗ IN−1 −H1)
−1 − (w ⊗ IN−1 −H2)

−1

= (w ⊗ IN−1 −H1)
−1

(H1 −H2) (w ⊗ IN−1 −H2)
−1
, (5.29)

and [29, Lemma 3.1 (i)], one can easily prove that fN◦Ψ−1 is Lipschitz with constant
‖(=w)−1‖3. Therefore, according to Lemma A.1,

P

(∣∣∣∣∣ 1

N − 1

N−1∑
i=1

(aibi − E(aibi))

∣∣∣∣∣ > ε

)
≤ K1 exp

(
−K2N

1/2‖(=w)−1‖−3ε
)
.

By Borell-Cantelli lemma, we deduce that, almost surely, when N goes to infinity,
1

N−1

∑N−1
i=1 aibi − 1

N−1

∑N−1
i=1 E(aibi) goes to zero.

Now define gN : Msa
N−1(C) 7→ C by

gN (W ) = Trm(N−1)

[
((w − γ)⊗ IN−1 − α⊗W − β ⊗AN−1)

−1
(eqp ⊗ Eii)

]
.

Define also g̃N : R(N−1)2 → C by g̃N = gN ◦Ψ−1, where Ψ is defined in (5.28). Note
that

‖∇g̃N (Ψ(W ))‖ = ‖gradgN (W )‖e
and

‖gradgN (W )‖2e = sup
w∈S1(Msa

N−1(C))

∣∣∣∣ ddtgN (W + tw)|t=0

∣∣∣∣2 ,
where S1(Msa

N−1(C)) denotes the unit sphere of Msa
N−1(C) with respect to ‖ · ‖e.

Applying Poincaré inequality for g̃N , we get that

E

(∣∣∣∣gN (WN−1√
N

)
− E

{
gN

(
WN−1√

N

)}∣∣∣∣2
)
≤ C

N
E

(∥∥∥∥gradgN

(
WN−1√

N

)∥∥∥∥2

e

)
.
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Using (5.29) and (5.3), it readily follows that, there exists C > 0, such that for any
i = 1, . . . , N − 1,

E |ai − E(ai)|2 ≤
C‖(=w)−1‖4

N
and similarly

E |bi − E(bi)|2 ≤
C‖(=w)−1‖4

N

so that 1
N−1

∑N−1
i=1 E {(ai − E(ai))(bi − E(bi))} goes to zero as N goes to infinity.

Thus, the proof of (5.27) is complete.

Lemma 5.3. For any w ∈ H+
m(C), for any j ∈ {1, . . . , N − 1},

E {(RN−1(w − γ))jj} = (ω(N)
m (w − γ)− djβ)−1 +O

(u)
j (1/

√
N).

Proof. First set

R̂N−1(w) =

(
w ⊗ IN−1 − α⊗

WN−1√
N − 1

− β ⊗AN−1

)−1

.

Using Lemma 3.1 (i) of [29], we have

‖R̂N−1(w)‖ ≤ ‖(=w)−1‖. (5.30)

Note that,

RN−1(w) = R̂N−1(w)

+
1

√
N − 1(

√
N +

√
N − 1)

× (Im ⊗ IN−1 −RN−1(w) (w ⊗ IN−1 − β ⊗AN−1)) R̂N−1(w).

Thus, using (5.30), (5.3) and (4.1), it readily follows that for any w ∈ H+
m(C), for

any j ∈ {1, . . . , N − 1},

E {(RN−1(w − γ))jj} = E
{

(R̂N−1(w − γ))jj

}
+O

(u)
j (1/N). (5.31)

Therefore, in the following, we will prove that

E
{

(R̂N−1(w − γ))jj

}
= (ω(N)

m (w − γ)− djβ)−1 +O
(u)
j (1/

√
N).

Denote by κ3 the classical third cumulant of µ. According to Corollary 5.5 in [11],
for any j ∈ {1, . . . , N − 1},

E
{

(R̂N−1(w − γ))jj

}
= (YN−1(w))jj

+

N−1∑
i,l=1

κ3(1−
√
−1)

2
√

2(N − 1)
√
N − 1

(YN−1(w))jlα(YN−1(w))iiα(YN−1(w))llα

× E
{

(R̂N−1(w − γ))ij

}
+O

(u)
j (1/N),
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where

YN−1(w) = ((w − γ − αGN−1(w)α)⊗ IN−1 − β ⊗AN−1)
−1

(5.32)

with
GN−1(w) = (idm ⊗ trN−1)

(
R̂N−1(w − γ)

)
.

Note that according to [11, (5.7)], = [(w − γ − αGN−1(w)α)] ≥ =w so that, indeed,
by Lemma 3.1 of [29], (w − γ − αGN−1(w)α)⊗ IN−1 − β ⊗AN−1 is invertible and
we have

‖YN−1(w)‖ ≤ ‖(=w)−1‖. (5.33)

Now set

G̃N−1(w) = idm ⊗ φ ((w − γ)⊗ 1A − α⊗ x− β ⊗ aN−1)
−1
. (5.34)

Similarly, (w − γ − αG̃N−1(w)α)⊗ IN−1 − β ⊗AN−1 is invertible, we can define

ỸN−1(w) =
(

(w − γ − αG̃N−1(w)α)⊗ IN−1 − β ⊗AN−1

)−1

(5.35)

and we have
‖ỸN−1(w)‖ ≤ ‖(=w)−1‖. (5.36)

Using the resolvent identity, (5.33), (5.36) and [11, (5.48)], one can easily deduce
that there exists a polynomial Q with nonnegative coefficients such that, for any
w ∈Mm(C) such that =w > 0,∥∥∥YN−1(w)− ỸN−1(w)

∥∥∥ ≤ Q(‖(=w)−1‖√
N

.

Note that ỸN−1(w) =
(
ω

(N)
m (w − γ)⊗ IN−1 − β ⊗AN−1

)−1

. Now∥∥∥∥∥∥
N−1∑
i,l=1

κ3(1−
√
−1)

2
√

2(N − 1)
√
N − 1

(YN−1)jlα(YN−1)iiα(YN−1)llαE
{

(R̂N−1(w − γ))ij

}∥∥∥∥∥∥
≤ C‖(=w)−1‖2√

N

(
N−1∑
l=1

‖(YN−1)jl‖2
)1/2(N−1∑

i=1

∥∥∥E{(R̂N−1(w − γ))ij

}∥∥∥2
)1/2

≤ Cm‖(=w)−1‖2√
N

‖YN−1‖
∥∥∥E(R̂N−1(w − γ)

)∥∥∥
≤ Cm‖(=w)−1‖4√

N
,

where we used [11, Lemma 8.1], (5.33) and (5.3). It readily follows that, for any
j ∈ {1, . . . , N − 1},

E
{

(R̂N−1(w − γ))jj

}
=

((
ω(N)
m (w − γ)⊗ IN−1 − β ⊗AN−1

)−1
)
jj

+O
(u)
j (1/

√
N).
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Now, note that there exist two permutation matrices Π1 and Π2 in M(N−1)m(C)
such that, for any matrices A ∈ Mm(C), B ∈ MN−1(C), A ⊗ B = Π1(B ⊗ A)Π2.
Therefore[((

ω
(N)
m (w − γ)⊗ IN−1 − β ⊗AN−1

)−1
)
jj

]
pq

= Trm(N−1)

[(
ω(N)
m (w − γ)⊗ IN−1 − β ⊗AN−1

)−1

(eqp ⊗ Ejj)
]

= Trm(N−1)

[
Π−1

2

(
IN−1 ⊗ ω(N)

m (w − γ)−AN−1 ⊗ β
)−1

Π−1
1 Π1 (Ejj ⊗ eqp) Π2

]
= Trm(N−1)

[(
IN−1 ⊗ ω(N)

m (w − γ)−AN−1 ⊗ β
)−1

(Ejj ⊗ eqp)
]

=

[(
ω(N)
m (w − γ)− djβ

)−1
]
pq

.

Thus,

E
{

(R̂N−1(w − γ))jj

}
=
(
ω(N)
m (w − γ)− djβ

)−1

+O
(u)
j (1/

√
N).

Lemma 5.3 follows.

Note that, using (3.4) and [29, Lemma 3.1 (i)], we have that for any w ∈ H+
m(C)∥∥∥(ω(N)

m (w)− diβ)−1
∥∥∥ ≤ ‖(=w)−1‖, (5.37)∥∥(ωm(w)− diβ)−1
∥∥ ≤ ‖(=w)−1‖, (5.38)

and then∥∥∥(ω
(N)
m (w)− diβ)−1 − (ωm(w)− diβ)−1

∥∥∥
≤

∥∥∥(ω(N)
m (w)− diβ)−1

[
ωm(w)− ω(N)

m (w)
]

(ωm(w)− diβ)−1
∥∥∥

≤ ‖(=w)−1‖2
∥∥∥ω(N)

m (w)− ωm(w)
∥∥∥ . (5.39)

Recall that FN was defined by (5.25). Lemma 5.3 and (5.27) yield that for any
w ∈ H+

m(C), almost surely,

FN (w) =
1

N − 1

N−1∑
i=1

[(ω(N)
m (w − γ)− diβ)−1]pq[(ω

(N)
m (w − γ)− diβ)−1]p′q′ + o(1)

=
1

N − 1

N−1∑
i=1

[(ωm(w − γ)− diβ)−1]pq[(ωm(w − γ)− diβ)−1]p′q′ + o(1),

25



using (5.37) in the first line and (5.37), (5.38), (5.39) and (5.15) in the last line.
Thus

FN (w) =

∫
[(ωm(w − γ)− tβ)−1]pq[(ωm(w − γ)− tβ)−1]p′q′dµAN−1

(t) + o(1)

where µAN−1
= 1

N−1

∑N−1
i=1 δλi(AN−1) is the empirical spectral measure of AN−1.

Since µAN−1
weakly converges towards µa, Proposition 5.3 follows.

Proposition 5.4. When it is defined, let us rewrite

RN−1 =

N−1∑
i,j=1

(RN−1)ij ⊗ Eij ,

where (RN−1)ij ∈Mm(C). We have that, almost surely,

1

N − 1

N−1∑
i=1

[(RN−1(ρNe11 − γ))ii]pq[(RN−1(ρNe11 − γ)ii)]p′q′1IΩ̃N−1

→N→+∞

∫
[(ωm(ρe11 − γ)− tβ)−1]pq[(ωm(ρe11 − γ)− tβ)−1]p′q′dµa(t) (5.40)

and

1

N − 1

N−1∑
i,j=1

[(RN−1(ρNe11 − γ))ij ]pq[(RN−1(ρNe11 − γ))ji]p′q′1IΩ̃N−1
→N→+∞

φ {(Trm⊗idA) [R∞(ρe11 − γ) (eqp ⊗ 1A)] (Trm⊗idA) [R∞(ρe11 − γ) (eq′p′ ⊗ 1A)]} .
(5.41)

Proof. First, with w = ρNe11 − γ, let us rewrite

1
N−1

∑N−1
i,j=1{[RN−1(w)]ij}pq{[RN−1(w)]ji}p′q′ =

trN−1 {(Trm⊗idN−1) [RN−1(w) (eqp ⊗ IN−1)] (Trm⊗idN−1) [RN−1(w) (eq′p′ ⊗ IN−1)]} .

Thus (5.41) readily follows from Lemma 5.2.

Now, according to Lemma 5.1, on Ω̃N−1, FN defined by (5.25) is well defined at
the points w = ze11, ze11 + i 1

r , for any r ∈ Q \ {0}, 0 < 1/r < τ and any z ∈ R such
that |z − ρ| < τ . Using the bounds (5.6), (5.7), (5.9) and the resolvent identities
(5.1), (5.2), one can easily prove that
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∣∣∣FN (ze11)1IΩ̃N−1
−
∫

[(ωm(ze11 − γ)− tβ)−1]pq[(ωm(ze11 − γ)− tβ)−1]p′q′dµa(t)
∣∣∣

≤ 1

r

32

C3
ε

{
1 +

2

C2
ε

‖α‖2
}

+
4

C2
ε

1IcΩ̃N−1

+

∣∣∣∣FN (ze11 + i
1

r
Im)

−
∫

[(ωm(ze11 + i
1

r
Im − γ)− tβ)−1]pq

× [(ωm(ze11 + i
1

r
Im − γ)− tβ)−1]p′q′dµa(t)

∣∣∣∣ .
We deduce by letting N go to infinity, using Proposition 5.3, and then r go to
infinity that for any z ∈ R such that for |z − ρ| < τ , almost surely, FN (ze11)1IΩ̃N−1

converges to
∫

[(ωm(ze11 − γ)− tβ)−1]pq[(ωm(ze11 − γ)− tβ)−1]p′q′dµa(t) when N
goes to infinity.
Note that using (4.16), the resolvent identity (5.1) on Ω̃N−1, and the bound (5.6),
(5.40) follows from the result for ρ instead of ρN . The proof of Proposition 5.4 is
complete.

5.3 Basic technical results of negligeability

Lemma 5.4. For any N , let XN =

x1

...
xN

 be random in CN with iid standardized

entries ( E(xi) = 0, E(|xi|2) = 1, E(x2
i ) = 0) and E(|xi|4) < ∞. Let m be a fixed

integer number and α be a Hermitian m × m deterministic matrix. Let B be a
Hermitian mN ×mN independent matrix such that supN ‖B‖ ≤ C. Then

1

N
(Im ⊗X∗N )B (Im ⊗XN )− (idm ⊗ trN )B = oP(1).

Proof. Let us write B =
∑m
p,q=1 epq⊗B(pq) where B(pq) are N×N matrices. Noting

that

1
N (Im ⊗X∗N )B (Im ⊗XN )− idm ⊗ trN B

=
1

N

m∑
p,q=1

epq

{
X∗NB

(pq)XN − TrN (B(pq))
}
,

the result readily follows from Lemma 2.7 in [4].

Lemma 5.5. For any w ∈ H+
m(C),

(idm ⊗ trN−1)E [RN−1(w − γ)]

= (idm ⊗ φ)
(

((w − γ)⊗ 1A − α⊗ x− β ⊗ aN−1)
−1
)

+O(1/N).

This result still holds for w ∈Mm(C) such that =w < 0.
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Proof. By (5.31), it is sufficient to prove that

(idm ⊗ trN−1)E
[
R̂N−1(w − γ)

]
= (idm ⊗ φ)

(
((w − γ)⊗ 1A − α⊗ x− β ⊗ aN−1)

−1
)

+O(1/N).

According to Theorem 5.7 in [11], we have

(idm ⊗ trN−1)E
[
R̂N−1(w − γ)

]
− (idm ⊗ φ)

(
((w − γ)⊗ 1A − α⊗ x− β ⊗ aN−1)

−1
)

+ EN−1(w) = O(
1

N
√
N

),

(5.42)
where EN−1(w) is given by

EN−1(w) =

G̃′N−1(w)·αLN−1(w)α− 1

2
G̃′′N−1(w)·(αLN−1(w)α, αLN−1(w)α)−LN−1(w) (5.43)

with

LN−1(w) =
1

N − 1

N−1∑
j=1

(YN−1(w)Ψ(w))jj ,

Ψ, YN−1 and G̃N−1 being defined in Theorem 5.3 [11], (5.32) and (5.34) respec-
tively. Set

TN = 1
2
√

2(N−1)2
√
N−1

κ3(1−
√
−1)

×
N−1∑
i,j,l=1

(YN−1(w))jl E
{
α(R̂N−1(w))iiα(R̂N−1(w))llα(R̂N−1(w))ij

}
,

where κ3 still denotes the third cumulant of µ. Using Cauchy-Schwartz inequality,
the bounds (5.33), (5.30) and [11, Lemme 8.1, (8.14)], it can be easily proven that

LN−1(w)− TN = O(1/N).

28



Note moreover that, for any m×m matrix B with bounded operator norm

Trm(BTN ) =
1

2
√

2(N − 1)
2√
N − 1

κ3(1−
√
−1)

×
N−1∑
i,j,l=1

Trm E
{
α(R̂N−1(w))iiα(R̂N−1(w))llα(R̂N−1(w))ij

× [(B ⊗ IN−1)YN−1(w)]jl

}
=

1

2
√

2(N − 1)
2√
N − 1

κ3(1−
√
−1)

×
N−1∑
i,l=1

Trm E
{
α(R̂N−1(w))iiα(R̂N−1(w))llα

×
[
R̂N−1(w) (B ⊗ IN−1)YN−1(w)

]
il

}
,

so that

|Trm(BTN )|

≤ |κ3|m‖α‖3

2(N − 1)
√
N − 1

×
∥∥(=w)−1

∥∥2 E


N−1∑
i,l=1

∥∥∥[R̂N−1(w) (B ⊗ IN−1)YN−1(w)
]
il

∥∥∥2

1/2


≤
|κ3|m‖α‖3

∥∥(=w)−1
∥∥4 ‖B‖

2(N − 1)

= O(1/N),

so that
TN = O(1/N)

and therefore, using (5.5),
EN−1 = O(1/N).

Lemma 5.5 follows.

Proposition 5.5.

√
N
{

idm ⊗ trN−1RN−1(ρNe11 − γ)1IΩ̃N−1

−idm ⊗ φ
(

((ρNe11 − γ)⊗ 1A − α⊗ x− β ⊗ aN−1)
−1
)}

goes to zero in probability.

29



Proof. Using (4.1), for N large enough, there exists K > 0 such that

‖(ρNe11 − γ)⊗ 1A − α⊗ x− β ⊗ aN−1‖ ≤ K

and on Ω̃N−1,∥∥∥∥(ρNe11 − γ)⊗ IN−1 − α⊗
WN−1√

N
− β ⊗AN−1

∥∥∥∥ ≤ K.
Moreover, (see (5.8) and (5.6)), for N large enough,

d(0, spect(ρNe11 − γ)⊗ 1A − α⊗ x− β ⊗ aN−1)) > Cε/4

and on Ω̃N−1

d

(
0, spect

(
(ρNe11 − γ)⊗ IN−1 − α⊗

WN−1√
N
− β ⊗AN−1

))
> Cε/4.

Let g : R→ R be a C∞ function with support in {Cε/8 ≤ |x| ≤ 2K} and such that

g ≡ 1 on {Cε/4 ≤ |x| ≤ K}. f : x 7→ g(x)
x is a C∞ function with compact support.

Note that

(idm ⊗ φ)
(

((ρNe11 − γ)⊗ 1A − α⊗ x− β ⊗ aN−1)
−1
)

= (idm ⊗ φ) (f ((ρNe11 − γ)⊗ 1A − α⊗ x− β ⊗ aN−1)) (5.44)

and on Ω̃N−1,

RN−1(ρNe11 − γ) = f

(
(ρNe11 − γ)⊗ IN−1 − α⊗

WN−1√
N
− β ⊗AN−1

)
. (5.45)

According to Lemma 5.5, for any z ∈ C \ R,

√
N (idm ⊗ trN−1)E [RN−1(ρNe11 − γ − zIm)]

=
√
N (idm ⊗ φ)

(
((ρNe11 − γ − zIm)⊗ 1A − α⊗ x− β ⊗ aN−1)

−1
)

+ o(z)(1),

(5.46)
where there exist polynomials Q1 and Q2 with non negative coefficients and (d, k) ∈
N2 such that

‖o(z)(1)‖ ≤ Q1(|=z|−1)(|z|+ 1)d√
N

≤ 1√
N

Q2(|=z|)(|z|+ 1)d

|=z|k
. (5.47)

We recall Helffer-Sjöstrand’s representation formula : let f ∈ Ck+1(R) with compact
support and M a Hermitian matrix,

f(M) =
1

π

∫
C
∂̄Fk(f)(z) (M − z)−1d2z (5.48)
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where d2z denotes the Lebesgue measure on C.

Fk(f)(x+ iy) =

k∑
l=0

(iy)l

l!
f (l)(x)χ(y) (5.49)

where χ : R→ R+ is a smooth compactly supported function such that χ ≡ 1 in a
neighborhood of 0, and ∂̄ = ∂x + i∂y.
The function Fk(f) coincides with f on the real axis and is an extension to the
complex plane.
Note that, in a neighborhood of the real axis,

∂̄Fk(f)(x+ iy) =
(iy)k

k!
f (k+1)(x) = O(|y|k)as y → 0. (5.50)

Therefore, by Helffer-Sjöstrand functional calculus,

√
N (idm ⊗ trN−1)E

(
f

(
(ρNe11 − γ)⊗ IN−1 − α⊗

WN−1√
N
− β ⊗AN−1

))

=
1

π

∫
C\R

∂̄Fk(f)(z)
√
N (idm ⊗ trN−1)E [RN−1(ρNe11 − γ − zIm)] d2z

and

√
N (idm ⊗ φ) [f ((ρNe11 − γ)⊗ I − α⊗ x− β ⊗ aN−1)] =

1

π

∫
C\R

∂̄Fk(f)(z)
√
N (idm ⊗ φ)

(
((ρNe11 − γ − zIm)⊗ 1A − α⊗ x− β ⊗ aN−1)

−1
)
d2z.

Hence, using (5.46) and (5.44), we can deduce that

√
N (idm ⊗ trN−1)E

(
f

(
(ρNe11 − γ)⊗ IN−1 − α⊗

WN−1√
N
− β ⊗AN−1

))

=
√
N (idm ⊗ φ)

(
((ρNe11 − γ)⊗ I − α⊗ x− β ⊗ aN−1)

−1
)

+
1

π

∫
z∈C\R

∂Fk(f)(z)o(z)(1)d2z.

Note that since f and χ are compactly supported, the last integral is an integral on
a bounded set of C and according to (5.47) and (5.50),∥∥∥∥∥ 1

π

∫
C\R

∂Fk(f)(z)o(z)(1)d2z

∥∥∥∥∥ ≤ C√
N
.

Thus,

√
N

{
E (idm ⊗ trN−1)

(
f

(
(ρNe11 − γ)⊗ IN−1 − α⊗

WN−1√
N
− β ⊗AN−1

))
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− (idm ⊗ φ)
(

((ρNe11 − γ)⊗ 1A − α⊗ x− β ⊗ aN−1)
−1
)}
→N→+∞ 0. (5.51)

Now, we are going to study the concentration of

√
N (idm ⊗ trN−1)

(
f

(
(ρNe11 − γ)⊗ IN−1 − α⊗

WN−1√
N
− β ⊗AN−1

))
around its expectation. Define for any (p, q) ∈ {1, . . . ,m}2, hpq : Msa

N−1(C)→ C by

hpq(X)

=
1

N − 1
(Trm⊗TrN−1) [(eqp ⊗ IN−1) f ((ρNe11 − γ)⊗ IN−1 − α⊗X − β ⊗AN−1)] ,

so that

(idm ⊗ trN−1) [f ((ρNe11 − γ)⊗ IN−1 − α⊗X − β ⊗AN−1)] =

m∑
p,q=1

hpqepq.

Define also h̃pq : R(N−1)2 → C by h̃pq = hpq ◦ Ψ−1, where Ψ is defined in (5.28).
Note that ∥∥∥∇h̃pq(Ψ(X))

∥∥∥ = ‖gradhpq(X)‖e .

Applying Poincaré inequality for h̃pq, we get that

E

(∣∣∣∣hpq(WN−1√
N

)− E(hpq(
WN−1√

N
))

∣∣∣∣2
)
≤ C

N
E

(∥∥∥∥gradhpq

(
WN−1√

N

)∥∥∥∥2

e

)
,

with

‖gradhpq(X)‖2e = sup
w∈S1(Msa

N−1(C))

∣∣∣∣ ddthpq(X + tw)|t=0

∣∣∣∣2 .
For w in S1(Msa

N−1(C)), set

∆(t) = f ((ρNe11 − γ)⊗ IN−1 − α⊗ (X + tw)− β ⊗AN−1)

−f ((ρNe11 − γ)⊗ IN−1 − α⊗X − β ⊗AN−1)

and
∆(t) =

∑
p′,q′∈{1,...,m}2

ep′q′ ⊗∆p′q′(t).

Note that ∆(t) = ∆(t)∗ so that ∆q′p′(t) = ∆p′q′(t)
∗ We have∣∣∣∣ ddthpq(X + tw)|t=0

∣∣∣∣2 =

∣∣∣∣limt→0

1

t
trN−1 ∆pq(t)

∣∣∣∣2 .
Moreover, we have

(Trm⊗TrN−1) ∆(t)2 =

m∑
p,q=1

TrN−1 ∆pq(t)∆qp(t)

=

m∑
p,q=1

TrN−1 ∆pq(t)∆pq(t)
∗.
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Therefore TrN−1 ∆pq(t)∆pq(t)
∗ ≤ (Trm⊗TrN−1) ∆2(t). Since f is a Lipschitz func-

tion on R with Lipschitz constant CL, its extension on Hermitian matrices is CL-
Lipschitz with respect to the norm ‖M‖e = (Trm(N−1)M

2)1/2. Thus,

|trN−1 ∆pq(t)|2 ≤ trN−1 ∆pq(t)∆pq(t)
∗

≤ 1

N − 1
(Trm⊗TrN−1) ∆(t)2

≤ C2
L

t2

N − 1
(Trm⊗TrN−1) (α2 ⊗ w2) = t2

1

N − 1
C2
L Trm α

2.

Therefore,

sup
w∈S1(Msa

N−1(C))

∣∣∣∣ ddthpq(X + tw)|t=0

∣∣∣∣2 ≤ C

N
,

and then

E

(∣∣∣∣√N {hpq (WN−1√
N

)
− E

(
hpq

(
WN−1√

N

))}∣∣∣∣2
)
≤ C

N
.

It readily follows that

√
N (idm ⊗ trN−1)

(
f

(
(ρNe11 − γ)⊗ IN−1 − α⊗

WN−1√
N
− β ⊗AN−1

))

−
√
NE (idm ⊗ trN−1)

(
f

(
(ρNe11 − γ)⊗ IN−1 − α⊗

WN−1√
N
− β ⊗AN−1

))
= oP(1). (5.52)

Proposition 5.5 follows from (5.45), (5.51), (5.52) and (5.23).

6 Proof of Theorem 4.1

According to Lemma 2.1, λ ∈ R is an eigenvalue of MN if and only if

det

(
λe11 ⊗ IN − γ ⊗ IN − α⊗

WN√
N
− β ⊗AN

)
= 0

or, since there exist permutation matrices KNm and KmN in MNm such that for
any A ∈MN and B ∈Mm,

A⊗B = KNm(B ⊗A)KmN , (6.1)

equivalently

det

(
IN ⊗ (λe11 − γ)− WN√

N
⊗ α−AN ⊗ β

)
= 0.

Thus, λ is an eigenvalue of MN if and only if

∃V ∈ CNm \ {0},
(
IN ⊗ (λe11 − γ)− WN√

N
⊗ α−AN ⊗ β

)
V = 0. (6.2)
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Set

V =

m∑
i=1

Vi ⊗ ei

where (ei)i=1,...,m is the canonical basis of Cm and

Vi =

(
v

(1)
i ∈ C

V
(2)
i ∈ CN−1

)
.

(6.2) can be rewritten

m∑
i=1


(

v
(1)
i (λe11 − γ)ei

V
(2)
i ⊗ (λe11 − γ)ei

)
−

 (
W11√
N
v

(1)
i + Y ∗√

N
V

(2)
i

)
αei(

Y√
N
v

(1)
i + WN−1√

N
V

(2)
i

)
⊗ αei


−

(
θv

(1)
i βei

AN−1V
(2)
i ⊗ βei

)}
= 0

which leads to the system
(
λe11 − γ − αW11√

N
− βθ

)(∑m
i=1 v

(1)
i ei

)
=
(
Y ∗√
N
⊗ α

)(∑m
i=1 V

(2)
i ⊗ ei

)(
IN−1 ⊗ (λe11 − γ)− WN−1√

N
⊗ α−AN−1 ⊗ β

)(∑m
i=1 V

(2)
i ⊗ ei

)
=
(

Y√
N
⊗ α

)(∑m
i=1 v

(1)
i ei

)
Let τ be defined by (4.9). For any λ ∈ B(ρ, τ), according to Lemma 5.1 and (6.1),
we can define on Ω̃N−1

R̃N−1(λe11 − γ) =

(
IN−1 ⊗ (λe11 − γ)− WN−1√

N
⊗ α−AN−1 ⊗ β

)−1

.

The following lines hold on ΩN (defined by (4.10)).
First, we can deduce from the above system that λ ∈ B(ρ, τ) is an eigenvalue of

MN if and only if there exists (v
(1)
i )i=1,...,m ∈ Cm, (V (2)

i )i=1,...,m ∈ Cm(N−1), such
that:

m∑
i=1

v
(1)
i ei 6= 0, (6.3)

m∑
i=1

V
(2)
i ⊗ ei = R̃N−1(λe11 − γ)

(
Y√
N
⊗ α

)( m∑
i=1

v
(1)
i ei

)
, (6.4)

(
λe11 − γ − α

W11√
N
− βθ − 1

N
(Y ∗ ⊗ α) R̃N−1(λe11 − γ) (Y ⊗ α)

)( m∑
i=1

v
(1)
i ei

)
= 0.

(6.5)
Therefore in particular this implies

det (Xm(N)) = 0, (6.6)
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where

Xm(N) = λ(N, ρ)e11−γ−α
W11√
N
−βθ− 1

N
(Y ∗ ⊗ α) R̃N−1(λ(N, ρ)e11−γ) (Y ⊗ α) ,

with λ(N, ρ) defined by (4.11). Now, noticing that

(Y ∗ ⊗ α) R̃N−1(λ(N, ρ)e11 − γ) (Y ⊗ α)

= (TrN−1⊗idm)
[
(E11 ⊗ Im)

(
Ỹ ∗ ⊗ α

)
R̃N−1(λ(N, ρ)e11 − γ)

(
Ỹ ⊗ α

)]
,

where Ỹ = (Y |0) ∈MN−1(C), and using (6.1), it is easy to see that

(Y ∗ ⊗ α) R̃N−1(λ(N, ρ)e11 − γ) (Y ⊗ α)

= (α⊗ Y ∗)RN−1(λ(N, ρ)e11 − γ) (α⊗ Y ) .

Let ρN be as defined by (4.15). Using the identity

RN−1(ρNe11 − γ)−RN−1(λ(N, ρ)e11 − γ)

= (λ(N, ρ)− ρN )RN−1(ρNe11 − γ) (e11 ⊗ IN−1)RN−1(λ(N, ρ)e11 − γ),

we have
Xm(N) = Hm(N) +X(0)

m (N),

where
X(0)
m (N) = ω(N)

m (ρNe11 − γ)− βθ,

(ω
(N)
m is defined by (4.14)),

Hm(N) = (λ(N, ρ)− ρN )e11 −∆1(N)−∆2(N)

+(λ(N, ρ)− ρN )r1(N)− αW11√
N
− (λ(N, ρ)− ρN )2r2(N)

with

r1(N)

=
1

N
(α⊗ Y ∗)RN−1(ρNe11−γ)1IΩ̃N−1

(e11 ⊗ IN−1)RN−1(ρNe11−γ)1IΩ̃N−1
(α⊗ Y ) ,

r2(N) =
1

N
(α⊗ Y ∗)RN−1(ρNe11 − γ)1IΩ̃N−1

(e11 ⊗ IN−1)RN−1(ρNe11 − γ)1IΩ̃N−1

× (e11 ⊗ IN−1)RN−1(λ(N, ρ)e11 − γ)1IΩ̃N−1
(α⊗ Y ) ,

∆1(N) =
1

N
(α⊗ Y ∗)RN−1(ρNe11 − γ)1IΩ̃N−1

(α⊗ Y )

−α (idm ⊗ trN−1)
((
RN−1(ρNe11 − γ)1IΩ̃N−1

))
α,
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∆2(N) = α (idm ⊗ trN−1)
(
RN−1(ρNe11 − γ)1IΩ̃N−1

)
α

−α (idm ⊗ φ)
(

((ρNe11 − γ)⊗ 1A − α⊗ x− β ⊗ aN−1)
−1
)
α.

First, we have that, according to Lemma 5.4 and using (5.6),

r1(N)−α (idm ⊗ trN−1) (RN−1(ρNe11−γ)1IΩ̃N−1
(e11 ⊗ IN−1)RN−1(ρNe11−γ)1IΩ̃N−1

)α

= oP(1).

From Lemma 5.2, almost surely,

(idm ⊗ trN−1) (RN−1(ρNe11 − γ)1IΩ̃N−1
(e11 ⊗ IN−1)RN−1(ρNe11 − γ)1IΩ̃N−1

)

−→
N→∞

(idm ⊗ φ) (R∞(ρe11 − γ) (e11 ⊗ 1A)R∞(ρe11 − γ)).

Therefore,

r1(N)
P−→

N→∞
α (idm ⊗ φ) (R∞(ρe11 − γ) (e11 ⊗ 1A)R∞(ρe11 − γ))α. (6.7)

Now,

‖r2(N)‖ ≤ m2‖α‖2
∥∥∥RN−1(ρNe11 − γ)1IΩ̃N−1

∥∥∥2 ∥∥∥RN (λ(N, ρ)e11 − γ)1IΩ̃N−1

∥∥∥ ‖Y ‖2
N

.

By the law of large numbers,

‖Y ‖2

N
=

1

N

N∑
j=2

|Wj1|2 = 1 + oP(1).

Moreover, by Lemma 5.1, we have∥∥∥RN−1(ρNe11 − γ)1IΩ̃N−1

∥∥∥ ≤ 2/Cε and
∥∥∥RN−1(λ(N, ρ)e11 − γ)1IΩ̃N−1

∥∥∥ ≤ 2/Cε.

Therefore, there exists C > 0 such that

P (‖r2(N)‖ > C)→N→+∞ 0. (6.8)

By Lemma 5.4,
∆1(N) = oP(1). (6.9)

Now, Proposition 5.5 readily yields

√
N∆2(N) = oP(1). (6.10)

Thus (4.12), (4.16), (6.7), (6.8), (6.9) and (6.10) yield that

Hm(N) = oP(1). (6.11)
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Therefore, according to Lemma A.2 (using (4.16), (5.8) and (6.11)), (6.6) and (4.15),
with a probability going to one as N goes to infinity,

0 = detXm(N)

= det(X(0)
m (N) +Hm(N))

= det(X(0)
m (N)) + Trm

[
B
X

(0)
m (N)

Hm(N)
]

+ εN

= Trm

[
B
X

(0)
m (N)

Hm(N)
]

+ εN ,

where
B
X

(0)
m (N)

=t com(X(0)
m (N)),

εN = O(‖Hm(N)‖2).

Thus, using (4.12), (4.16), (6.7), (6.8), (6.10) and Proposition 5.1,
√
NεN = oP(

√
N(λ− ρN )) + oP(1).

Hence, with a probability going to one as N goes to infinity,
√
N(λ(N, ρ)− ρN )

[
TrmBX(0)

m (N)
e11 + TrmBX(0)

m (N)
r1(N) + oP(1)

]
= TrmBX(0)

m (N)

√
N∆1(N) +W11TrmBX(0)

m (N)
α+ oP(1).

Theorem 4.1 readily follows from Proposition 5.1, the independence of ∆1(N) and

W11 and the fact that ω
(N)
m (ρNe11 − γ) converges towards ωm(ρe11 − γ) when N

goes to infinity (see 3) Lemma 5.2).

Appendix

A probability measure µ satisfies a Poincaré inequality if there exists some constant
CPI > 0 such that for any C1 function f : R→ C such that f and f ′ are in L2(µ),

V(f) ≤ CPI
∫
|f ′|2dµ,

with V(f) =
∫
|f −

∫
fdµ|2dµ.

If the law of a random variable X satisfies the Poincaré inequality with constant
CPI then, for any fixed α 6= 0, the law of αX satisfies the Poincaré inequality with
constant α2CPI .
Assume that probability measures µ1, . . . , µM on R satisfy the Poincaré inequality
with constant CPI(1), . . . , CPI(M) respectively. Then the product measure µ1 ⊗
· · ·⊗µM on RM satisfies the Poincaré inequality with constant C∗PI = max

i∈{1,...,M}
CPI(i)

in the sense that for any differentiable function f such that f and its gradient gradf
are in L2(µ1 ⊗ · · · ⊗ µM ),

V(f) ≤ C∗PI
∫
‖gradf‖2dµ1 ⊗ · · · ⊗ µM

with V(f) =
∫
|f −

∫
fdµ1 ⊗ · · · ⊗ µM |2dµ1 ⊗ · · · ⊗ µM .
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Lemma A.1. Lemma 4.4.3 and Exercise 4.4.5 in [2] or Chapter 3 in [31]. Let P
be a probability measure on RM which satisfies a Poincaré inequality with constant
CPI . Then there exists K1 > 0 and K2 > 0 such that, for any Lipschitz function F
on RM with Lipschitz constant |F |Lip,

∀ε > 0, P (|F − EP(F )| > ε) ≤ K1 exp

(
−K2

ε√
CPI |F |Lip

)
.

Lemma A.2. Let A and H be m×m matrices such that, for some K > 0,

‖A‖ ≤ K, ‖H‖ ≤ K. (6.12)

Then
det(A+H) = det(A) + Trm

(
tcom(A)H

)
+ ε

where com(A) denotes the comatrix of A and there exists a constant Cm,K > 0,

only depending on m and K, such that |ε| ≤ Cm,K ‖H‖2 .

Proof. Denote by a1, . . . , am, resp. h1, . . . , hm, the columns of the matrix A, resp.
H. Since the determinant of a m×m matrix is a m-linear function of the m columns,
we have

det(A+H) = det(A) +

m∑
k=1

det(a1, . . . , ak−1, hk, ak+1, . . . , am) + ε,

where ε is the sum of a number only depending on m of determinants involving at
least two columns of H. Hadamard’s inequality and (6.12) readily yields that there

exists Cm,K > 0 such that |ε| ≤ Cm,K ‖H‖2 . Moreover, denoting by {e1, . . . , em}
the canonical basis of Cm, we have

det(a1, . . . , ak−1, hk, ak+1, . . . , am) =

m∑
i=1

det(a1, . . . , ak−1, Hikei, ak+1, . . . , am)

=

m∑
i=1

Hik(comA)ik

= (t(comA)H)kk.

The result readily follows.
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