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NON UNIVERSALITY OF FLUCTUATIONS OF OUTLIERS FOR
HERMITIAN POLYNOMIALS IN A COMPLEX WIGNER MATRIX
AND A SPIKED DIAGONAL MATRIX

MIREILLE CAPITAINE~

Abstract

We study the fluctuations associated to the a.s. convergence of the outliers es-
tablished by Belinschi-Bercovici-Capitaine of an Hermitian polynomial in a complex
Wigner matrix and a spiked deterministic real diagonal matrix. Thus, we extend the
non universality phenomenon established by Capitaine-Donati Martin-Féral for ad-
ditive deformations of complex Wigner matrices, to any Hermitian polynomial. The
result is described using the operator-valued subordination functions of free proba-
bility theory.

Key words: Random matrices; Free probability; Outliers; Fluctuations; Nonuniver-
sality; Linearization; Operator-valued subordination.
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1 Introduction

There is currently a quite precise knowledge of the asymptotic spectral properties
(i.e. when the dimension of the matrix tends to infinity) of a number of “classical”
random matrix models (Wigner matrices, Wishart matrices, invariant ensembles...).
This understanding covers both the so-called global regime (asymptotic behavior
of the spectral measure) and the local regime (asymptotic behavior of the extreme
eigenvalues and eigenvectors, spacings...). We refer to the monographies [2, 5, 26,
28, 34, 37] for a thorough introduction to random matrix theory.

Practical problems (in the theory of statistical learning, signal detection etc.)
naturally lead to wonder about the spectrum reaction of a given random matrix
after a deterministic perturbation. For example, in the signal theory, the determin-
istic perturbation is seen as the signal, the perturbed matrix is perceived as a noise,
and the question is to know whether the observation of the spectral properties of
signal plus noise can give access to significant parameters on the signal. Theoretical
results on these “deformed” random models may allow to establish statistical tests
on these parameters. A typical illustration is the so-called BBP phenomenon (after
Baik, Ben Arous, Péché [7]) which put forward outliers (eigenvalues that move away
from the rest of the spectrum) and their Gaussian fluctuations for spiked covariance
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matrices.

Péché [38] established Gaussian fluctuations for any outlier of a low rank additive
deformation of a G.U.E. matrix. Fluctuations of outliers for additive finite rank de-
formations of non-Gaussian Wigner matrices have been studied in [20, 21, 27, 39, 40].
It turns out that the limiting distribution depends on the localisation/delocalisation
of the eigenvectors associated to the non-null eigenvalues of the perturbation. Note
that in the G.U.E. case investigated by Péché [38], the eigenvectors of the pertur-
bation are irrelevant for the fluctuations, due to the unitary invariance in Gaussian
models. Let us illustrate this dependence on the eigenvectors of the perturbation
in a very simple situation. Let Wx = (W;;)1<i j<n be a N x N Hermitian Wigner
matrix where {W;;, \/iRWij, ﬂIWij}ng ; are independent identically distributed
random variables with law p, p is a symmetric distribution, with variance 1, and
satisfies a Poincaré inequality (see the Appendix). Note that when p is Gaussian,
Wy is a G.U.E matrix. Consider two finite rank perturbations of rank 1, with one
non-null eigenvalue # > 1. The first one Ag\}) is a matrix with all entries equal to
0/N (delocalized eigenvector associated to 6). The second one AS\Q,) is a diagonal
matrix (localized eigenvector associated to #). The limiting spectral distribution of

each matrix M 1(\;) = ij\vf + Ag\i,) (1 = 1,2) is the semi-circular distribution

1
dpsc(t) = 5 V- 21 o9y (t)dt.

Nevertheless the largest eigenvalue A1 of each matrix M ](\f) (i = 1,2) separates from
the bulk and converges towards py := 0 + %(> 2). The fluctuations of A\ around pg
are given as follows :

Proposition 1.1. 1. Delocalized case [27]: The largest eigenvalue Al(M](vl)) have
Gaussian fluctuations,

VNO(MY) = po) > N(0,1 - 1/6%). (1.1)
2. Localized case [20]: The largest eigenvalue )q(M](\?)) fluctuates as

1
VN(L = ) (My) = po) = 1% N (0, vg). (1.2)
where the variance vy of the Gaussian distribution depends on 6 and the fourth
moment of L.

Hence, for localized eigenvectors of the perturbation, the limiting distribution
depends on the distribution of the entries of the Wigner matrix and thus, this un-
covers a non universality phenomenon. This paper wants to extend such a non
universality phenomenon for an additive deformation, to general polynomials in a
Wigner matrix and a diagonal deterministic matrix. Free probability is a main tool
to achieve this purpose.



Free probability theory was introduced by Voiculescu around 1983 motivated by
the isomorphism problem of von Neumann algebras of free groups. He developped
a noncommutative probability theory, on a noncommutative probability space, in
which a new notion of freeness plays the role of independence in classical probabil-
ity. Around 1991, Voiculescu [43] threw a bridge connecting random matrix theory
with free probability since he realized that the freeness property is also present
for many classes of random matrices, in the asymptotic regime when the size of
the matrices tends to infinity. Since then, several papers aimed at developing the
contribution of free probability theory to the analysis of the spectral properties of
deformed ensembles and polynomials in random matrices. In particular, the main
principle of subordination in free probability is emphasized as a main tool in the
understanding of the localization of the outliers and the corresponding eigenvectors
of many matricial models. It was the purpose of [19] to put forward an unified
understanding based on subordination in free probability for studying the spectral
properties of full rank deformations of classical Hermitian matrix models. This
investigation relies notably on [22, 16, 17, 10, 18]. This universal understanding
culminates in [12] dealing with noncommutative polynomials in random Hermitian
matrices; this investigation is achieved by an even more general methodology based
on a linearization procedure and operator-valued subordination properties.

The aim of this paper is to study the fluctuations associated to the a.s. con-
vergence of the outliers described in [12] of an Hermitian polynomial in a Wigner
matrix and a spiked deterministic Hermitian matrix (spiked means that the matrix
has a fixed eigenvalue outside the support of its limiting spectral measure). Capi-
taine and Péché [23] established Gaussian fluctuations for any outlier of a full rank
additive deformation of a G.U.E. matrix using scalar-valued free probability theory.
We generalize this result to any polynomial in a G.U.E. matrix and a deterministic
Hermitian matrix which has a spike with multiplicity one, using operator-valued
free probability theory. Moreover, considering any Hermitian polynomial in a non-
Gaussian Wigner matrix and a deterministic real diagonal matrix which has a spike
with multiplicity one, we establish that the limiting distribution of outliers is the
classical convolution of a Gaussian distribution and the distribution of the entries of
the Wigner matrix; thus, this extends the non universality phenomenon (1.2) estab-
lished in [20] for additive deformations of Wigner matrices. The result is described
in terms of operator-valued subordination functions related to a linearization of the
noncommutative polynomial involved in the definition of our model. Therefore, we
start by describing the necessary terminology and results concerning linearization
procedure and free probability theory in Sections 2 and 3. In Section 4, we present
our matrix model and main results (Theorem 4.1 and Corollary 4.1). Section 5
gathers several preliminary results that will be used in Section 6 to prove Theorem
4.1. An Appendix recalls some basic facts on Poincaré inequalities and concentra-
tion phenomenon that are used in some proofs, as well as a basic development of
the determinant of a perturbation of a matrix.

To begin with, we introduce some notations.

e M,(C) is the set of p x p matrices with complex entries, M;*(C) the subset of



self-adjoint elements of M, (C) and I, the identity matrix. In the following, we
shall consider two sets of matrices with p = m (m fixed) and p=N or N —1
with NV — oo.

Tr, denotes the trace and tr, = I%Trp the normalized trace on M,(C).

||.|| denotes the operator norm on M, (C).

id, denotes the identity operator from M, (C) to M,(C).

(Eij)=1 (resp. (Eij)f\fj;ll) denotes the canonical basis of My (C) (resp.
My —1(C)) whereas (epq);,—1 denotes the canonical basis of M,,(C).

For any integer number k, we will say that a random term in some M,(C), de-
pending on N and w € M,,(C) such that Sw is positive definite, is O () if its
QI(sw) ) Ullwll+1)*

NE

operator norm is smaller than for some deterministic polyno-
mial @) whose coefficients are nonnegative real numbers and some integer number d
(which may depend on m).

For a family of random terms I;, i € {1,..., N}?, we will set I; = OZ(") (ﬁ) if for
each i, I; = O (ﬁ) and moreover one can find a bound of the norm of each I; as
above involving a common polynomial () and a common d, that is not depending

on 7.

Throughout the paper, K, C' denote some positive constants that may depend
on m and vary from line to line.

2 A Linearization trick

A powerful tool to deal with noncommutative polynomials in random matrices or
in operators is the so-called “linearization trick” that goes back to Haagerup and
Thorbjgrnsen [29, 30] in the context of operator algebras and random matrices (see
[35]). We use the procedure introduced in [1, Proposition 3].

Given a polynomial P € C(X;y,...,Xy), we call linearization of P any Lp €
M,,(C) ® C(Xq,...,X) such that

Lp:= <S 5) € M, (C)® C(X1,..., X))

where
1. meN,
2. Q€ My_1(C)®C(Xy,..., X)) is invertible,

3. uis a row vector and v is a column vector, both of size m — 1 with entries in
C(X1,..., Xk),



4. the polynomial entries in @, v and v all have degree < 1,

P =—uQ ‘v

It is shown in [1] that, given a polynomial P € C(X3,..., Xj), there exist m € N
and a linearization Lp € M,,(C) ® C(Xy,...,Xk). The algebra of polynomials
in noncommuting indeterminates Xi,..., Xy becomes a x-algebra by anti-linear
extension of (X“Xm cee X”)* = Xil . 'Xi2XZ‘1, (i17 PN ,il) S {1, ey k}l,l S N\{O}
It turns out that if P is self-adjoint, Lp can be chosen to be self-adjoint.

The well-known result about Schur complements (see [35, Chapter 10, Proposition
1]) yields then the following invertibility equivalence.

Lemma 2.1. Let P = P* € C(Xy,...,Xy) and let Lp € M,,,(C) ® C(X71, ..., Xk)
be a linearization of P with the properties outlined above. Let y = (y1,...,yr) be
a k-tuple of self-adjoint operators in a unital C*-algebra A. Then, for any z € C,
ze11 ® 14 — Lp(y) is invertible if and only if 214 — P(y) is invertible and we have

(ze11 @14 — Lp(y) ™' = ((zh‘ _*P(y))fl :) . (2.1)

Beyond the equivalence described above, we will use the following bound.

Lemma 2.2. [12] Let zy € C be such that z9l 4 — P(y) is invertible. There exist
two polynomials Th and Ts in k commutative indeterminates, with nonnegative co-
efficients, depending only on Lp, such that

[|(z0€11 @ 14 — Lp(y) |

< T (lyally- - llyelD [[(zola = P () 7] + T2 (lyal, - el -

Moreover, if the distance from zy to the spectrum of P(y) is at least § > 0, and for
any i € {1,...,k}, lluill < C, for some positive real numbers § and C, then there
exists a constant € > 0, depending only on Lp,d,C such that the distance from 0 to
the spectrum of (zoe11 ® 14 — Lp(y)) is at least €.

3 Free Probability Theory

3.1 Scalar-valued free probability theory

For the reader’s convenience, we recall the following basic definitions from free
probability theory. For a thorough introduction to free probability theory, we refer
to [47].

e A C*-probability space, resp. a W*-probability space, is a pair (A, ¢) consist-
ing of a unital C*-algebra A, resp. of a unital von Neumann algebra, and a
state ¢ on A (i.e a linear map ¢ : A — C such that ¢(14) =1 and ¢(aa*) >0



for all a € A), resp. a normal state. ¢ is a trace if it satisfies ¢(ab) = ¢(ba)
for every (a,b) € A% A trace is said to be faithful if ¢(aa*) > 0 whenever
a # 0. An element of A is called a noncommutative random variable.

The *-noncommutative distribution of a family a = (ay,...,ax) of noncom-
mutative random variables in a C*-probability space (A, ¢) is defined as the
linear functional p, : P — ¢(P(a,a*)) defined on the set of polynomials
in 2k noncommutative indeterminates, where (a,a*) denotes the 2k-tuple
(a1,...,ax,af,...,a}). For any self-adjoint element a; in A, there exists a
probability measure v,, on R such that, for every polynomial P, we have

o (P) = / P(t)dv, (1)

Then, we identify p,, and v,,. If ¢ is faithful then the support of v,, is the
spectrum of a; and thus ||a1]| = sup{|z|, z € support(va,,)}.

A family of elements (a;);es in a C*-probability space (A, ¢) is free if for all
k € N and all polynomials pi,...,p; in two noncommutative indeterminates,
one has

¢(pr(ai,az,) - - pr(aiy, a5, ) =0 (3.1)
whenever iy # 4,4y # 43,...,in—1 7 ix and ¢(pi(a;,,a;)) =0for I =1,... k.

A noncommutative random variable z in a C*-probability space (A, ¢) is a
standard semicircular variable if x = x* and for any k£ € N,

o(a*) = / dpae ()

where dpis(t) = 5=v/4 — t21]_9.9)(t)dt is the semicircular standard distribu-
tion.

Let k& be a nonnull integer number. Denote by P the set of polynomials
in 2k noncommutative indeterminates. A sequence of families of variables
(an)n>1 = (a1(n),...,ax(n)),>1 in C*-probability spaces (A, ¢,,) converges,
when n goes to infinity, respectively in distribution if the map P € P
&n(P(an,ak)) converges pointwise and strongly in distribution if moreover
the map P € P — ||P(an, a)| converges pointwise.

Proposition 3.1. [25, Proposition 2.1] Let x, = (z1(n),...,zr(n)) and
x = (x1,...,x%) be k-tuples of self-adjoint variables in C*-probability spaces,
(An, &n) and (A, @), with faithful states. Then, the following assertions are
equivalent.

— x, converges strongly in distribution to x,

— for any self-adjoint variable h, = P(x,), where P is a fized polynomial,
Ln, converges in weak-* topology to ppn, where h = P(x). Moreover, the



support of pp, converges in Hausdorff distance to the support of un, that
is: for any € > 0, there exists ng such that for any n > ng,

supp(ih, ) C supp(pn) + (=€, +e).

The symbol supp means the support of the measure.

Additive free convolution arises as natural analogue of classical convolution in
the context of free probability theory. For two Borel probability measures p and v
on the real line, one defines the free additive convolution B v as the distribution
of a + b, where a and b are free self-adjoint random variables with distributions p
and v, respectively. We refer to [14, 33, 42] for the definitions and main properties
of free convolutions. Let us briefly recall the fundamental analytic subordination
properties [15, 44, 46] of this convolution. The analytic subordination phenomenon
for free additive convolution was first noted by Voiculescu in [44] for free additive
convolution of compactly supported probability measures. Biane [15] extended the
result to free additive convolutions of arbitrary probability measures on R. A new
proof was given later, using a fixed point theorem for analytic self-maps of the
upper half-plane [9]. Note that such a subordination property allows to give a new
definition of free additive convolution [24]. Let us define the reciprocal Cauchy-
Stieltjes transform F),(z) = 1/g,(z), which is an analytic self-map of the upper
half-plane, where g, : z € C\R — [ —=dpu(t). Given Borel probability measures 1
and v on R, there exist a unique pair of analytic functions wy,ws: Ct — C* such
that

F,(w1(2)) = F,(w2(2)) = Fum,(2), z€CT. (3.2)
Moreover lim,_, 4 w;(iy)/iy =1, j = 1,2 and
w1 (2) 4+ we(2) — 2z = Fm,(2), z€Ct.

In particular (see [9]), for any z € Ct UR so that w; is analytic at z, wy(z) is the
attracting fixed point of the self-map of C* defined by

w= F(Fy(w) —w+ 2z) — (F,(w) —w).

A similar statement, with u, v interchanged, holds for ws.
In particular, according to (3.2), we have for any z € C*,

g (2) = gu(wi(2)) = gu(w2(2))- (3-3)

3.2 Operator-valued free probability theory

There exists an extension, operator-valued free probability theory, which still shares
the basic properties of free probability but is much more powerful because of its
wider domain of applicability. The concept of freeness with amalgamation and some
of the relevant analytic transforms were introduced by Voiculescu in [45].

Definition 3.1. Let M be an algebra and B C M be a unital subalgebra. A linear
map E : M — B is a conditional expectation if E(b) = b for all b € B and



E(biabs) = b1E(a)by for all a € M and by,bs in B. Then (M, E) is called a B-
valued probability space. If in addition M is a C*-algebra, B is a C*-subalgebra of
M and E is completely positive, then we have a B-valued C*-probability space.

Example: Let (A, ¢) be a noncommutative probability space. Define

Ms(A) ::{(Z 2),a,b,c,d€A}, F :=idy ® ¢ that is

e (2 )] (50 )
(My(A), E) is an My(C)-valued probability space (C ~ C1 4).

As in scalar-valued free probability, one defines [45] freeness with amalgamation
over B via an algebraic relation similar to freeness, but involving F and noncom-
mutative polynomials with coefficients in B.

Definition 3.2. Let (M, E : M — B) be an operator-valued probability space.
The B-valued distribution of a noncommutative random variable a € M is given by
all B-valued moments E(abiaby - -+ by,_1a) € B, n € N, by, ..., b,—1 € B.
Let (Aj)icr be a family of subalgebras with B C A; for all i € I. The subalgebras
(A;)icr are free with respect to E or free with amalgamation over B if E(ay -+ - a,) =
0 whenever aj € Ay, ij € I, E(aj) =0, for all j and iy # is # - # in.

Random variables in M or subsets of M are free with amalgamation over B if
the algebras generated by B and the variables or the algebras generated by B and the
subsets, respectively, are so.

A centred B-valued semicircular random variable s is uniquely determined by
its variance 7: b — E(sbs); a characterization in terms of moments and cumulants
via 7 is provided by Speicher in [41].

The previous results of free subordination property in the scalar case are ap-
proached from an abstract coalgebra point of view by Voiculescu in [46] and this
approach extends the results to the B-valued case. In [13], Belinschi, Mai and Spe-
icher develop an analytic theory. In order to describe operator-valued subordination
property, we need some notation. If A is a unital C*-algebra and b € A, we denote
by Rb = (b+ b*)/2 and Ib = (b — b*)/2i the real and imaginary parts of b, so
b = Rb+ i3b. For a self-adjoint operator b € A, we write b > 0 if the spectrum of b
is contained in [0, +00) and b > 0 if the spectrum of b is contained in (0,4o00). The
operator upper half-plane of A is the set H(A) = {b € A: Sb > 0}.

Proposition 3.2. [46],[13](see Theorem 5 p 259 [35]) Let (M, E : M — B) be an
operator-valued C*-probability space. Let x1,x2 € M be self-adjoint variables which
are free with amalgamation over B.

There exist a unique pair of Fréchet analytic maps wi,ws: HT(B) — HT(B) such
that, for all b € H™(B),

Sw;(b) > b, j=1,2; (3.4)



E [(b — (.271 + .232))_1] =F [(wl(b) - Il)_l] =F [(WQ(b) — .272)_1] R

{E [(wa(b) —22) "]} " +b
= wl(b)—l—wz(b).

{E[(@i(®) —2) "]} +b

Moreover, if b € HT(B), then wi(b) is the unique fized point of the map
fo :HY(B) = HT(B), fy(w) = hey(he, (w)+b)+b

where hy, (b) = E[(b—2:)"']" —b

and wi(b) = kgrfoo R (w), for any w € HY(B).

The following result from [36] explains why the particular case B = M,,(C),
M = M, (A), E =id,, ® ¢, where (A, ¢) is a noncommutative probability space,
is relevant in our work using linearizations of polynomials.

Proposition 3.3. Let (A, ¢) be a C*-probability space, let m be a positive integer,
and let xq,...,x, € A be freely independent. Then the map id,, ® ¢: My, (A) —
M, (C) is a unit preserving conditional expectation, and oy ® x1,...,0, @ Ty, are
free over M,,(C) for any a; € M,,,(C).

Now, if x is a standard scalar-valued semicircular centred noncommutative ran-
dom variable which is free from a self-adjoint variable a in some W*-probability
space (A, ¢), then, for any Hermitian matrices «, 8 in M,,(C), a ® x is a M,,(C)-
valued semicircular of variance n: b — aba which is free over M,,(C) from S ® a
and the subordination function has a more explicit form (see [35, Chapter 9] and
the end of the proof of Theorem 8.3 in [3]): for b € H'(M,,(C)),

(idpm © 6) [(b® 14 fa®zfﬁ®a)_1} = (idp ® ¢) [(wm(b)@ou —B@a)"t|,

where
wm(b):b—a(idm®¢)[(b@lA—a(@x—B@a)_l}a. (3.5)

Denote by A the unital von Neumann algebra generated by M,,(C) and 8 ® a
and by Ej the unique trace preserving conditional expectation of M,,(A) onto N.
Actually the following strengthened result [46, Theorem 3.8] holds:

Ex|0@la-ae- 800" = @a®)@1a-Bea) .  (36)



4 Assumptions and main results

Assumptions on the Wigner matrix.

We consider a N x N Hermitian Wigner matrix Wy = (W;;)1<i,j<n such that
the random variables {W;;, ﬂRWZj, \/iIWij}lSi< ; are independent identically dis-
tributed with law u, p is a centered distribution, with variance 1, and satisfies a
Poincaré inequality (see the Appendix). We set

N Wit Y™
WN - ( Y WNI) )
where Y* = (Wia, .-+ ,Win) and Wy_1 € My_1(C).

Assumptions on the deterministic matrix.
We consider a deterministic real diagonal matrix Ay:

Ay = diag(0, An—1)

where 6 € R is independent of N and Ay_1 isa N —1 x N — 1 deterministic diag-
onal matrix such that for any i =1,... N —1, (Ay_1)s = d;(IN). We assume that
An_1 € (My_1(C), = Tr) converges strongly in distribution towards a noncom-
mutative self-adjoint random variable a in some W*-probability space (A, ¢), with
¢ faithful (see Section 3.1 for the definition of strong convergence). Note that this
implies that

sup [|An - | < +oo, (4.1)

and, by Proposition 3.1, that, for all large N, all the eigenvalues of Ax_; are
in any small neighborhood of the spectrum of a. We assume that 6 is such that
0 ¢ supp(pa) = spect(a). Note that the previous assumptions yield that Ay €
(My(C), % Tr) converges in distribution towards the noncommutative random vari-
able a and that, for NV large enough, 6 is an eigenvalue of multiplicity 1 of Ay.

Matrix model.
Fix a self-adjoint polynomial P € C < X3, X9 >. The matrix model we are inter-
ested in is -

My =P (\/% AN> :

Denote by A\;(My),i=1,..., N, its eigenvalues and by

1 N
Py = 5 > Ai(My)

i=1

its empirical spectral measure. According to (2.10) in [11] and [2, Theorem 5.4.5],
we have

]\}gnoo UMy = HP(z,a)

almost surely in the weak™ topology, where x is a standard semicircular noncom-
mutative random variable in (A, ¢) (i.e du, = 53=v4 — 221/_59)(2)), a and x are

10



freely independent, and p1p(,,4) denotes the distribution of P(x, a).

The set of outliers of My is calculated in [12] from the spike § of Ay using
linearization and Voiculescu’s matrix subordination function [46] as follows. Choose
a linearization Lp of P where Lp = 7® 1+ a® X1 + ® Xa, «, B, are self-adjoint
matrices in M,,(C), and let w,, be the subordination function associated to the
semicircular operator-valued random variable o ® 2 with respect to 8®a, as defined
by (3.5). According to Lemma 2.1, w,,, extends as an analytic map z — w,(ze11—7)
to C\ supp(ptp(s,a)). For any p & supp(pip(s,q)), define m(p) as the multiplicity of
p as a zero of det(wy,(pe11 — ) — 08). [12] establishes the following.

Proposition 4.1. [12] There exists 09 > 0 such that, for any 0 < § < Jp, a.s
for large N, there are exactly m(p) eigenvalues of P (W—\/%,AN) inlp—0d;p+ 9],

counting multiplicity.

Assumptions on p.
In this paper, we assume that there exists some real number

p & supp(fip(z,a)) = spect(P(z,a))
such that p is a zero with multiplicity one of
det(wm (pe1r — ) —608) =0, (4.2)
that is such that
m(p) = 1. (4.3)
Assumptions on e.
Throughout the paper € > 0 is fixed such that
d(p,spect(P(z,a))) > € (4.4)

and
det(wm (ye1r —v) —06) #0, for any y €]p — € p+€[\{p}.

Main result.
We first introduce events and objects needed to state our main result.
By strong asymptotic freeness of [12] and Proposition 3.1, almost surely for all large

N, spect (P (W\}Vﬁfl,AN_l)> C {y € R;d(y, spect(P(z,a)) < €/2}. Thus,

Whi—
almost surely for all large N, d (p, spect (P (\;VNI, AN_1)>) >e€/2. (4.5)

Define the event

s = fa (psweet (P (2t an1 ) ) ) > o2 H s

11

< 3} . (4.6)



Note that according to Lemma 2.2, there exists C¢ > 0 such that
d(0,spect((pe11 —7)®@ 14 —a®@z— B ®a)) > C. (4.7

and on Qn_1

d (07spect ((peu —Y)®IN_1—a® W\;Vf\;l - 8® AN1>> > C.. (4.8)

Let §p be as defined in Proposition 4.1. Set
7 = min(do, €/4,C./4). (4.9)
Define the event
Qn = Qn_1 N {card(spect(My)N]p — 5 p+7[) = 1} . (4.10)

It readily follows from Proposition 4.1, (4.5) and Bai-Yin’s theorem (see Theorem
5.1 in [5]) that

lim 1o, =1, a.s.
Notoo W ’

and then
P(QN) = No1o0 1.
Now, define

| pifspect(Mn)Np—T;p+7[=10
MN, p) = { max{spect(My)N]p — 7;p + 7[} else. (4.11)

On Qpn, A(N, p) is the unique eigenvalue of My which is located in |p—7; p+ 7[. In
this paper, we study the fluctuations of A(XV, p). Note that Proposition 4.1 readily
implies that

AN, p) = Notoo P AS.. (4.12)

Let ay—_1 be a self-adjoint noncommutative random variable in (A, ¢) whose dis-
tribution is pa, , (meaning that Vk € N, 15 Tr(AK_;) = ¢((a%_;)) and which
is free with the semicircular variable z. Since Ay_; (and thus ay_1) converges

strongly to a, we have, for all large N,
spect(P(x,an—_1)) C spect(P(x,a))+] — €/4,€¢/4],

and thus, using (4.4), for any z € B(p,7) :={z € C,|z — p| < 7},

(214 — P(z, aN_l))_1H < 2/e. (4.13)

Define for any x € HT (M,,(C))

wM (k) = Kk — a(idm, ® ¢) [(k®1la—a®z—B®an_1)"']a. (4.14)
wgnN) is the subordination function associated to the semicircular operator-valued
(N)

random variable o ® & with respect to 8 ® ay_1. According to Lemma 2.1, wy,

12



extends as an analytic map z — wi) (ze11—7) to C\supp(ip(z,ay_,)). Using (4.13)

and Lemma 2.2, it is straightforward to see that (z — det(w,(nN) (ze11 —7) — 96))

N>1
is a bounded sequence in the set of analytic functions endowed with the uniform
convergence on compact subsets of B(p,7); therefore, using moreover (5.16) and
Vitali’s theorem, by Hurwitz’s theorem, (4.2) yields that for any 0 < 7 < 7, for all

large N, there exists one and only one py in B(p, 7'/), such that
det(w™ (pyerr —v) —68) =0, (4.15)

and we have
PN —7N—+4o0 P- (416)

Moreover, necessarily py is real since (4.15) implies that det(w&N) (Pvein—y)—05) =

0.
Here is our main result. (For a matrix X, com(X) denotes the comatrix of X.)

Theorem 4.1. Define

Ci =" com(wp,(pe1r — ) — 80), (4.17)
Roo(peir —7) = ((per1 —7)® 1y —a®@z — f®a)”!, (4.18)
C;gl) = Tr,, (Cp, [611 +a(idy, ® ¢) (Roo(peir —7) (€11 @ 14) Roo(perr — ’Y))O‘D )
(4.19)
C? =T, [Cial (4.20)

vp = (E(|Wal!) - 2) / [Tt (aComar (n(pens ) — 18) )] dnalt)

+6 ([(Trm ©id.a) {Roo(per1 — 7)(aCma) @ La}*) (4.21)

with wy, defined by (3.5).
C;l)\/N(A(N, p) — pN) converges in distribution to the classical convolution of the

distribution of CéQ)WH and a Gaussian distribution with mean 0 and variance v,,.

Using the unitarily invariance of the distribution of a G.U.E. matrix, we can
readily deduce the following result.

Corollary 4.1. Assume that Wy is a G.U.E. matriz. Let Ay be a determin-
istic Hermitian matriz such that its spectral measure pa, weakly converges to-
wards a compactly supported measure o, 0 ¢ supp(ua) is a spiked eigenvalue
of An with multiplicity one whereas the other eigenvalues of An converge umi-
formly to the compact support of pia. Then, under the assumptions (4.2) and (4.3),
C,(;l)\/N(A(N, p) — pn) converges in distribution to a Gaussian distribution with
mean 0 and variance

5 = (C1) + 6 ((Tom @ida) {Reopers = 7)(@Cma) © La}?)

where \(N, p), pN, C'f(;l), C’,(,2), C,, and R (pe11 —7) are defined by (4.11), (4.15),
(4.19), (4.20), (4.17) and (4.18) respectively.
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Example
As an illustration, consider the random matrix

fA %+m
N N\/N \/N

where Wy is a Wigner matrix of size N such that du(x) = %1[7\/&\@ (z)dz and

Wi

ANJFT’

Ay = Diag(6,0,...,0), 6cR\{0}.

According to [8, (4.6.6)],  satisfies a Poincaré inequality. In this case, Ay has rank
one, and thus a = 0. It follows that the limit spectral measure II of My is the
same as the limit spectral measure of W3 /N. Thus, II is the Marchenko-Pastur
distribution with parameter 1:

4—1t)t

an(y = Y=t

27t ’
The polynomial P is P(X1, X2) = XoX; + X1 X2+ X?, a = 0 and z is the standard
semi-circular distribution. An economical linearization of P is provided by L =
Y1+ a® X1+ 8 ® X, where

0 0 0 01 1 00 1
y=10 0 —1|, a=|1 0 0|, B=10 0 0
0 -1 0 100 1 00
Thus, here m = 3. Denote by
4
1 —V22 14
Gn(z):/ dri() = 2=V 4 e\ (0,4),
0 Z2—t 2z

the Cauchy transform of the measure II. This function satisfies the quadratic
equation zGr(2)? — 2Gri(2) + 1 = 0. Suppose now that t ¢ [0,4]. Denoting by
E =id3 ® ¢ : M3(A) — M3(C) the usual expectation, since a = 0, the function ws
is computed as follows:

w3(t€11 —’y) :E((t611 —7-(1@.1‘)_1)_1, tER\[O,4].

The inverse of te;; — v — a ® z is then calculated explicitly and application of the
expected value to its entries yields

1
Gn(t) 1 0 1 0 1

wi(ten —v) =1 0 Teroi 11 %G (D + 2
0 2tGn(t) +3 4CGn(t) 4

The equation det[80 — w(te;; — v)] = 0 is easily seen to reduce to

02Gr(t)? — (1 — Gr(t)) = 0. (4.22)
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Thus, the matrix My exhibits one (negative) outlier when 0 < |0 < v/2
204

Po = T2 1) VAR F L2 1 1)

and two outliers (one negative and one > 4) when || > /2:
+ _ 26" .
Po = T3 1) £ VAR F L2 1 1)

note that )
1 —(0*4+1)+v462+1
+
95 = Cmlop) =3+ 202 '

Let p be any of the two solutions p;’ and p, and set

9p = Gul(p)-
Note that since here ay_1 = a = 0, we have py = p. After computations
099 -1 g(glp -2) _1909 )
Cy=|309,-2 —(3+6%) o T2,
—g,0 —i + 3 -1
(p—a®)t  La(p—a?)! 2(p — a2)!
Roo(perr —v) = | 3z(p — 2%) ™! 172 (p — 2?) 1+ 32%(p—a?)~ 1|,
2(p—a2)~t 1+ %xQ(p 2)-1 22(p — 22)~1
and then
) = 20,

o = —p? 2<1+/
P 9 (p—y)?

and
3 2
Up = —g (929p + 2)
2
Yy
+ 949;}/ oo y)zd/m(y) +20%(2 + 6°g), —&-gp)/mdun(y)
1 1 Y
+—+9“/7d +2944/ d
(gp ) (p—y)? pn(y) P | o=y #a(y)
+6%92(0%g, + 26°g, + 2),
with
Yy
dpmn(y) = =1+ pgp,
/(p_y) NH( ) PYp

y ’
/@_y)gdﬂn(y) = 790 = PYp;
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2
y ’
/ 97 y)Qdun(y) =1-2pg, — p°g,,

and g;) = Gylp) = z’é;_f’ig (after differentiating the equation tGr(t)2—tG,(t)+1 =
0). Thus,

’

g
Cl) = —g*gs + g—g(g,, +1), CP = —20,
P

v, = —= (09, + 2)2 — g—’; (1 +—+ 92> —46%g,
95 p
Now, set
_ @ 2 _ Y
o B (e L

According to Theorem 4.1, VN (AN, p) — p) converges in distribution to the prob-
ability measure with density function

1 Ve 2 /0 2
flx) = m/_ﬁcexp (—(z —1)*/207) dt.

5 Preliminary results

5.1 Basic bounds and convergences

We start with straightforward bounds and convergences involving resolvents and
that will be of basic use for the proof of Theorem 4.1. For any w € M,,(C) such
that w® Iy_1 —a® W\I/VN*I —BRAN_1,Tesp. w® 14 —a®xz— B R a, is invertible,
define

Whn_1 )_1
Ry 1(w)=lw®Iy_1—a® — B8R AN_ ,
N-1(w) ( N-1 N B N-1

Ro(w)=(w®ly—a®z—F®a) .

Note that we have the following resolvent identities for any wy and wsy in M,,(C)
such that the resolvents are defined:

resp.

Ry—1(w1) — Ry—1(w2) = Ry—1(w1) [(we —w1) @ IN—1] Ry—1(w2), (5.1)
Roo(wl) — Roo(wg) = Roo(wl) [(w2 — wl) X 1_,4] ROO(U)Q). (52)
Lemma 5.1. e For any w € M, (C) such that Sw > 0, wRIn_1—a® W\J/Vﬁ’l -
BRIAN_1, wRlg—a®R®r—FRa and w14 —a®®x—LFRan_1 are invertible

and
[Rn—1(w)]| < [[(Sw)~], (5.3)
| Roo (w) | < [[(Sw) ™, (5.4)
|weti-ass-poavn)™| <lGuw) L (5.5)
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o Let Qn_y be as defined by (4.6) and C. be as in (4.7) and (4.8). Let z be in
R such that |z — p| < Ce/4 and zy be in C such that |z| < C./4.
Then, (ze11 +20lm —7) @14 —a®@x—B®a, (ze11 + 20l —7)R14—aQ@x —
B@ay-1 and (ze11 + 20Im — ) ® In_1 —a @ "2 — 3@ An_y on Qy_1,

VN
are invertible and we have
HRN—l(Zell + zolm — FY)IQN—I H < Q/CE, (56)
[ Roo(2€11 + 20Lm — Y)I| < 2/C, (5.7)
H((zen + 20l —7) Q14 —a®z— R aN_l)le <4/C.. (5.8)

Moreover, for any t in the spectrum of a, wy,(ze11 +z0Lm —7y) —t8 is invertible
and

|wmzers + 201n =) - 18)7" || < 2/, (5.9)

and, for anyt in the spectrum of Ay_1, wﬁnN) (ze11420lm—~)—10 is invertible
and

H (wgnN)(zen + 20Lm — ) — tﬁ)il

< 4/C.. (5.10)

Proof. (5.3), (5.4) and (5.5) come from Lemma 3.1 (i) of [29]. Now, according to
[32], since Ay_1 (and thus ay_1) converges strongly to a, we have, for all large N,

spect((pe11 —7)®@1la—a®z—FRan-1)
C spect((pe11 —7)®@1la—a®x — Ra)+] — C/4,C. /4] (5.11)

(5.6), (5.7) and (5.8) easily follow from (4.7), (4.8), (5.11) and the following facts: if
y is a self-adjoint element in a C*-algebra and Ag € C\spect(y), then d(Ag, spect(y)) =
1/||(Mo — )71 and for any other element 7, the distance between any element in
the spectrum of § and the spectrum of y is smaller than ||y — ||

Using the analyticity on the set {w € M,,(C),w® 14 —a®x — B ® a invertible}
of the functions Exr [Roo(+)] and w,,, one can easily deduce from (3.6) that,

I, ®14

(wm(ze11 + 20Im —7) ® 14 — B® a) Ex [Roo (2€11 + 20Im — 7)]
= En[Roo (ze11 + 20Lm — )] (W (ze11 4+ 20Lm —7) ® 14 — B ® a) .(5.12)

Let ¢ be in the spectrum of a. Choose a character y of the commutative C*-algebra
C < a > such that x(a) = ¢ and denote by xpm : Mn(C < a >) — M, (C) the
algebra homomorphism obtained by applying x to each entry. Applying x,, to
(5.12), we deduce that

(win(ze11 + 20Lm — ) = tB) ™" = Xm(En [Roo (2€11 + 2oL — 7))

so that (5.9) readily follows from (5.7). (5.10) can be proven similarly. O
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The following convergence results are quite straightforward consequences of
asymptotic freeness of Wy _1/ V/N and Ay_;.

Lemma 5.2. For any X, ¥1, Y2 in M, (C) such that 3C > 0, ||X]| < C, |4 <
C, |1Z2]] < C, almost surely,

1)
(idm @ try—1) (Rv-1(pnve1rr —7) (B @ In—1) Ry-1(pneir — 7)) 1g, |
—Notoo (idm @ ¢) [Roo(perr —7) (X ® 1) Roo(perr — )] (5.13)
2)
1g, , < try—1 {(Trm ®idy-1) [Rn-1(pne1r —7) (E1 ® In-1)]
X (Trp @idy—1) [Ry—1(pyenn —7) (B2 @ In—1)]}
—Notoo @ {(Trm ®ida) [Roc (perr —7) (51 @ 14)]
X (Trm ®ida) [Roc (perr —7) (B2 @ 14)]}, (5.14)
3)
Yw € My, (C), Sw > 0, w™N) (0) — N 400 win(w). (5.15)
VzeR, |z —p| <7, wi¥)(ze11 — ) — Nostoo Wm (211 — 7). (5.16)
wﬁnN)(pNen =) = N-stoo Wm(pe1r — 7). (5.17)

Proof. We have for any self-adjoint operators u and v, for any w € M,,(C) such
that Sw > 0, for any non null integer p,

(w@l-—a®u-—Bev)"!

p—1
= Zwil @ 1llaw ™ @u+ fwt @v)k
k=0

Fwol—a®u—B0v) " (aw ' @u+ fw ' @ v)P. (5.18)
For any K > 0, define
Ok ={w € M,,(C),3(w) > KI,}.

According to Lemma 3.1 (i) of [29], for any w € O, we have ||w™!|| < 1/K. Let
0 < C < 1. For any k > 0, there exists K = K(k,«,3) > 0 such that if w € O,
for any v and v such that ||u]| < k and ||v|| < k then

[(cw™ @u+pwtov)| <C, (5.19)

so that (using once more Lemma 3.1 (i) of [29])

_ cP
sup H(w@l—a@u—ﬂ@v) "oaw ' @ u4 fw ! @ )P §?—>ZH+OOO.

weO gk
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Fix K > 0 such that (5.19) holds for (u,v) = (z,a) and (u,v) = (W\I/"N‘l,AN,l) on

Qn_1. Therefore, for any § > 0, we can find a polynomial Q,, with coefficients in
M, (C) depending on w, a and S such that:

weOk
Wn_1
Ry_1(w) — Qu [ 2221 An_y ) 115 <. 5.21
wseu(gKH N 1(w) Q ( \/N N 1>|| Qn-_1 ( )

Now, by the asymptotic freeness of W\}VN” and Ax_1 (see [2, Theorem 5.4.5]), we
have that almost surely

(idy © try_1) {Qw (VTNﬁNl AN1> (£ In)Qu (VYNﬁNl AN1>}

—Noroo (dm ® ) {Qu(,0) (2 ® 14)Qu(z,a)} . (5.22)
Using (5.22), (5.20), (5.21), (5.3), (5.4) and

lim 15 ~=1las, (5.23)

N—+4oo **N-1
we can deduce that for w € Ok, (idy @ try—1) (Ry—1(w)(Z ® In_1)Ry_1(w))
converges almost surely towards (id, ® ¢) (Reo(w)(X ® 14)Roo(w)), when N goes
to infinity.

Let O = {w € M,,(C),¥(w) > 0}. The two functions

Oy (w) = (1dy, @ try—1) [Ry-1(w) (X R In_1) Ry_1(w)]
and
Poo(w) = (Idin ® @) [Roo(w) (¥ ® 1a) Roo(w)]

are holomorphic on @. Moreover, using (5.3), we have
185 (w)I] < [[(Sw) T PIZ] < Cll(Sw) 7%

It readily follows that ®y is a bounded sequence in the set of analytic functions
on O endowed with the uniform convergence on compact subsets. Since moreover,
almost surely, for any ¢t > K, t € Q, ®n(itl,,) converges towards ®(itl,,), we
can apply Vitali’s theorem to conclude that almost surely the convergence of @y
towards ®,, holds on O. Of course, this convergence still holds on —O.

Let z € R be such that |z — p| < C./4. For any ¢ > 0, such that % < C./4, define
w(q) = ze1y —’y—i—z%[m. Almost surely, for any such g, ® 5 (w(q)) converges towards

® o (w(q)). Using (5.23), the resolvent identities (5.2) and (5.1) on Qy_1, and the
bounds (5.6) and (5.7), we easily deduce by letting q goes to infinity that a.s.

(idp @ try—1) [Ry-1(ze11 —7) (E®@ In-1) Bn-1(ze1r — 7)1, |

—Nortoo (idm ® @) [Rec(2e11 —7) (2 ® 14) Roo(ze11 — )] (5.24)

Note that using (4.16), the bound (5.6), and the resolvent identity (5.1) on Qn_i1,
(5.13) readily follows from (5.24) applied to z = p.
(5.14), (5.15), (5.16) and (5.17) can be proven using similar ideas. O
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The proof of Theorem 4.1, that will be presented in Section 6, is based on the
writing of the outlier in terms of a quadratic form involving the resolvent Ry _1.
Section 5.2 presents the central limit theorem for random quadratic forms involved
in the proof whereas Section 5.3 gather results that will be used to prove that some
terms are negligible.

5.2 Central limit theorem for random quadratic forms

Proposition 5.1. For any Hermitian m X m matrix H,

VN (117 Try, {H(Q®Y*)RN71(0N€11 g, (a® Y)}

— %Trm {aHa [(idm ® Try_1) (RN_1(pN€11 - V)IQNﬂ)} })

converges in distribution to a Gaussian variable with mean 0 and variance
2
(& (Wizl") ~2) [ [T, (atfa @n(oer =) - 18)") | dia(t)

+¢ ([(Trm ®ida) {(pe11 —7) @ 1la—a@z - f®a)" " ((eHo) ® 1A)}]2) .

Proof. We apply the following Proposition 5.2 to B = Ry_1(pnenn —7)1g, , by
using (4.16), (5.6) and Proposition 5.4 below. O

Proposition 5.2. Let m be a fized integer number and o« be a Hermitian m X m
deterministic matrixz that does not depend on N. Let B be a random Hermitian
mN x mN matriz such that there exists C > 0 such that |B|| < C. Let us write
B = ijzl B;; ®E;; where B;; are mxm matrices. Assume that, for any p,q,p’, ¢
in {1,...,m}*,

N . .
* % > im1(Bii)pg(Bii)pr g — N—s+oo Wip.q),(p',q') 1 probability,

N . -
° % Zi7j:1(B’ij)pq(Bji)p/q' —N-—+o0 e(p,q),(p’,q’) m p’I"ObCLbZl’Lty.

Let *X = (z1,...,zN) be an independent vector of size N which contains i.i.d.
complez standardized entries with bounded fourth moment and such that E(z?) = 0.
Let H be a m x m deterministic Hermitian matriz that does not depend on N.
Then, when N goes to infinity,

1

VN

converges in distribution to a Gaussian variable with mean 0 and variance

Try, {H[(a® X*)B(a® X) — a(id, @ Try) (B)a]}

m

(E (|x1|4) - 2) Z (aH ) gp(aH o) gy wip,q), (0 a7

p,q,p’,q'=1

+ Z (aHa)gp(aHa) g p b p,q). (0 ,q)-

p,q,p',q'=1
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Proof. Note that

1 1
—Tr {H[(a® X*)B(a® X) — a(id,, ® Try) (B)a|} = —
\/N m { [( ) ( ) ( m N) ( ) ]} \/N
where B = (Bij)1<ij<N and B;; = Tr,,, aHaB;;.

Thus, the result follows from [6] or Theorem 5.2 in [20].

{X*BX — Try B}

O
Proposition 5.3. When it is defined, let us rewrite
N-1
Ry_1 = Z (Rn-1)ij ® Eyj,
i,j=1
where (Rn—-1)ij € My, (C). For any w € H;, (C), we have that, almost surely,
N-1
1
Fy(w) = 5 D [(Ry-1(w = 9))ilpg[(Rn—1(w = 7)ii) Lo (5.25)
i=1

7 N—+oo /[(wm(w -7) - tﬁ)il]pq[(wm(w -7) - tﬂ)il}p’q/dua(t) (5.26)

Proof. First we are going to prove that almost surely,

N—-1
N1 Z [(By—1(w = 7))ilpg[(Rn—1(w = 7))ic]pr e
1 N-1
N7 2o EEBN-1(w = 7))iilpg[B(BN-1(w = 7))iilyrq —FNot00 0. (5.27)
=1

Set a; = [(RNfl(w — '7))ii]pq and bi = [(RNfl(w — '7))ii]p’q’- We have

2

-1

1 = 1

i=1

1 N-—-1 1 -1
= N_1 : a;b; — N_1 ' E(a;b;)
i=1 i=1
1 N—-1
51 2 E{(ar —E(a))(bi — E(b))}
i=1

Consider the linear isomorphism ¥ between M3 |(C) and R —1 given by

U((ar)i<ki<N-1) = ((akk)lgngfh (V2Rap)1<k<i<N—1, (\/ﬁgakl)lgk<l§N71)
(5.28)
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for (ar)1<ki<n—1in M3 (C). My_1(C)** is an Euclidean space with inner prod-
uct given by (A, B) = Try_1(AB) and with norm
|Alle = (Try—1 4%)"2.

We shall identify M3 ,(C) with RN=1? via the isomorphism ¥. Note that under
this identification the norm || - ||c on M3* ;(C) corresponds to the usual Euclidean

2
norm on RV-1~,

Define fn : M3* (C) — C by
N-1
1 -1
W) = = >~ Ty [((w —N®In—a@W —B@ Ay_1) " (egp ® E)]
=1

X Trm(N-1) {((w —N @Iy —a®W —B@AN_1) " (egy ® Eu):| .
Using the resolvent identity, for Hy, Hy € ana(N_l)(C),
(W Iy —H) "= (w® Iy, — Hy) ™"
=(w®In_1—H) " (H — Hy) (w® Iny_1 — Hy) ", (5.29)

and [29, Lemma 3.1 (i)], one can easily prove that fyoW = is Lipschitz with constant
[|(Sw)~Y|®. Therefore, according to Lemma A.1,

L N
P ( N_1 > (aibs — E(aiby))

i=1

> s) < K, exp (—K2N1/2||(%w)’1||’35> .

By Borell-Cantelli lemma, we deduce that, almost surely, when N goes to infinity,
| Zf;}l aib; — v Zfi}l E(a;b;) goes to zero.
Now define gn : M3* ,(C) — C by

gn (W) = Trpy(n—1) [((w —N@In1—a@W -8R An_1)"" (egp ® Eu):| .

Define also gy : RV 5 C by gy = gy o1, where U is defined in (5.28). Note
that
IVgn (W) = [lgradgn (W)l

and

d
lgradgy (W)||> = sup %QN(W + tw)
weS1(MZ* (C))

le=o| >

where S1(M3* ;(C)) denotes the unit sphere of M3* ;(C) with respect to || - ||e-
Applying Poincaré inequality for gy, we get that

2)

€

(b (%) 2 () = 32
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Using (5.29) and (5.3), it readily follows that, there exists C' > 0, such that for any
i=1,...,N—1,

Cll(Sw)~
Ela; — E(a)) < =22 1L
Jas — B(ar)F < T
and similarly
Gy} — 1114
E[b —E(,)? < IO I

N
so that —— Ji_l E{(a; — E(a;))(b; — E(b; goes to zero as N goes to infinity.
N—-1 =1

Thus, the proof of (5.27) is complete.

Lemma 5.3. For any w € H} (C), for any j € {1,...,N — 1},
E{(By—1(w —7))j} = @i (w =) = d;p) 7" + 0/ (1/VN).

Proof. First set

. W -1
RNl(w)=<w®IN1—Oé® ]\][V 11—5®AN1> .

Using Lemma 3.1 (i) of [29], we have

1By -1 (w)] < [[(Sw) ™. (5.30)
Note that,
RN71(U)) = RNfl(w)
1
TN SIW/N+ YN =)

X (I ® In—1 — Ry—1(w) (w® In_1 — B® An_1)) Ry_1(w).

Thus, using (5.30), (5.3) and (4.1), it readily follows that for any w € H (C), for
any j € {1,...,N — 1},

E{(Ry-1(w—7));;j} =E {(RN—l(w - 7))jj} +0 (1/N). (5.31)
Therefore, in the following, we will prove that
E{(fn-1(w = 7)) | = @ (w = 5) = d;8)7* + 0" (1)),

Denote by k3 the classical third cumulant of p. According to Corollary 5.5 in [11],
for any j € {1,...,N — 1},

E {(éN—l(w - 7))jj}
= (Yn-1(w))j;

N-—-1
/id(l — \/jl)
+§::1 2v2(N —1)y/N — 1

<B{(Ryaw =)} + 0§ 1/),

(Yn-1(w))jie(Yn-1(w))iza(Yy—1(w))nex
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where
Yv_1(w) = (w—v—aGn_1(w)a) @ In_1 — R Ax_1)"" (5.32)
with .
Gr_1(w) = (idm @ try_1) (RN_l(w - 7)) .
Note that according to [11, (5.7)], S[(w — v — aGn_1(w)a)] > Sw so that, indeed,
by Lemma 3.1 of [29], (w — v — aGny—_1(w)a) ® INn_1 — B ® An_1 is invertible and

we have

V-1 ()l < (Sw)~"]. (5.33)

Now set
CGro1(w)=idm @ (w—7)@1lg—a@z—BRan_1) . (5.34)

Similarly, (w —vy — ozCNT’N,l(w)a) Q@ In_1— B ® An_1 is invertible, we can define

Py () = ((w — 5~ aly_1(w)a) ® Iy ~ f© Ax_, ) B (5.35)
and we have ~
[V -1 (w)]| < [|(Sw) ). (5.36)

Using the resolvent identity, (5.33), (5.36) and [11, (5.48)], one can easily deduce
that there exists a polynomial () with nonnegative coefficients such that, for any
w € M,,(C) such that Sw > 0,

Q(I(Sw) 1|
T

Note that ?N,l(w) = (wﬁi\') (w—)RIN_1—® AN,1> . Now

[Ya-2(w) = Vv ()| <

N—1
rs(1—v=1) A
gz:l 2\/5(?}\[ —1)WN -1 (Yn—1)jia(Yn—1)io(Yn—1)uoE {(RNﬂ(w _ 7))”}

1/2

- 12 /N-1
C %w 12 N 2
S (Z 10t ) <Z & { Brortw =)} )
i=1
Cm||(xﬂU) P2
VN
Cml|(Sw)~H*
— ,\/N )
where we used [11, Lemma 8.1], (5.33) and (5.3). It readily follows that, for any
je{l,...,N -1},
X —1
E{(Rya(w =)} = (- oiva-soaya)” )
7

+0\"(1/VN).

IN

¥l [ (B (w0 =)
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Now, note that there exist two permutation matrices IT; and Il in M(N_l)m((C)
such that, for any matrices A € M,,(C), B € My_1(C), A® B = II;(B ® A)Ils.
Therefore

l((wﬁnzv)(w N ®In_1—B® AN1>_1>J

-1
= Tryv-1 (Wy(nN)(w ) ®IN-1-B® AN—l) (eqp ® Ejj)}

pq

-1
= Trpw-1 |13" (IN—l R (w—7) - AN_1 ® ﬁ) I (B @ egp) Hz}

-1
= Trm(N_l) <IN,1 X W'SnN)(w — ’y) - AN,1 X 5) (Ejj &® €qp):|

— (@8- - 48)"]

Thus,

pq

E {(RNA(U) - 7))jj} = (W&N)(w —7) - djﬁ)_l +0{(1/VN).

Lemma 5.3 follows.
O

Note that, using (3.4) and [29, Lemma 3.1 (i)], we have that for any w € H,},(C)

@ ) = di) | < lSw) ), (5.37)
| om(w) = i)~ < 1(Sw) ) (5.39)

and then

H(w,(nN)(w) — diB) " — (wm(w) — diﬁ)_lH

< @) = dg) 7 wnw) = o) @)] @n(w) - d.68) 7
< 1w TP ) (w) — wnw) | (5.30)

Recall that Fy was defined by (5.25). Lemma 5.3 and (5.27) yield that for any
w € H}(C), almost surely,

N-1
Fyw) = ﬁ D@ (w =) = dif))pgl (@ (w = 7) = diB) g + 0(1)
=1
- ﬁ - [(win (w =) = dif) ™ pgl(wm(w = 7) = diB) " prg + 0(1),

1

(3
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using (5.37) in the first line and (5.37), (5.38), (5.39) and (5.15) in the last line.
Thus

Fy(w) = /[(wm(w —) - tﬁ)_l]pq[(wm(w -7) = tﬁ)_l]p’q’dﬂAwfl(t) +o(1)

where fiay_, = ¥ ZZI\SI Ox;(Ax_,) is the empirical spectral measure of Ax_i.
Since pa,_, weakly converges towards p,, Proposition 5.3 follows. O

Proposition 5.4. When it is defined, let us rewrite

N-1
Ryn_1 = Z (Rn-1)ij ® Eij,

ij=1
where (Rn—1)ij € M,,,(C). We have that, almost surely,

N-—1
> [(Ry-1lpvenr —7))iilpg (Ry-1(pnvers = Vi)lpala,

i=1

b
N-1

7 N—+oo /[(wm(foell - ’7) - t6>_1]pq[(wm(p€11 - 7) - t6>_1]p’q’dﬂa(t) (5-4())

and

1

N
N-1.

—1
> [(Ry-1lpven = )ijlpg (By-1(pners = 9))jilpra da,, —N-stoo
7,7=1

0] {(Trm ®idA) [Roo (Pell - '7) (eqp ® 1A)] (Trm ®idA) [Roo (Pell - ’V) (eq’p’ ® 1{\)]4} )
5.41

Proof. First, with w = pyej1 — 7, let us rewrite

o o AR (W) e {[Ry—1(w)]ji by =
try—1 {(Try, ®idy-1) [Ry-1(w) (egp ® In—1)] (Trm, ®idn—1) [Ry-1(w) (eqpr @ In-1)]}
Thus (5.41) readily follows from Lemma 5.2.

Now, according to Lemma 5.1, on Qn_1, Fy defined by (5.25) is well defined at
the points w = ze11, ze1y +i1, for any r € Q\ {0}, 0 < 1/r < 7 and any z € R such
that |z — p| < 7. Using the bounds (5.6), (5.7), (5.9) and the resolvent identities
(5.1), (5.2), one can easily prove that
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[Fn(zen)lg, , = [l@n(ze1 =7) = t8) pal(wm(zens = 7) = 8) "y dta®)
< & {ie Gl + Gt
+ ‘FN(ZGM + i%Im)
~ [(wnzen + i1 =) = t8)

X (em(zens + i I =) = 18) ygdpa)|.

We deduce by letting N go to infinity, using Proposition 5.3, and then r go to
infinity that for any 2 € R such that for |z — p| < 7, almost surely, Fiy(ze11)lg, |
converges to [[(wm(ze11 —7) — tB) Hpgl(wm(ze1r — ) — ¢8)~Hpgrdpa(t) when N
goes to infinity.

Note that using (4.16), the resolvent identity (5.1) on Qn_1, and the bound (5.6),
(5.40) follows from the result for p instead of py. The proof of Proposition 5.4 is
complete. O

5.3 Basic technical results of negligeability

T
Lemma 5.4. For any N, let Xy = be random in CN with iid standardized
TN
entries (E(x;) = 0, E(|lz;|?) = 1, E(z?) = 0) and E(|z;|*) < co. Let m be a fized
integer number and « be a Hermitian m X m deterministic matriz. Let B be a
Hermitian mN x mN independent matriz such that supy || B|| < C. Then

1

N (Im @ Xxn) B (I, ® Xn) — (idy, @ try) B = op(1).
Proof. Let us write B = Z:q:l epq @ BPD where BP9 are N x N matrices. Noting
that

L (I ® X3) B(In © X)) — id,y, @ try B

1 m
=~ Z €pq {X]’:[B(P(I)XN _ TTN(B(M))}7

p,q=1

the result readily follows from Lemma 2.7 in [4]. O

Lemma 5.5. For any w € H,"(C),
(idm X t’I“Nfl) E [RNfl(’w — ’y)]
= (id;, ® ¢) (((w —NRlg—a®r—F& aN,l)fl) + O(1/N).

This result still holds for w € M,,(C) such that Sw < 0.

27



Proof. By (5.31), it is sufficient to prove that
(i @ try-1) E [ Ry 1 (w =)
= (id;, @ ¢) (((w—'y) RIpg—a®@z— B@aN,l)fl) + O(1/N).
According to Theorem 5.7 in [11], we have

(id,, @ try_1)E [RN—l(w - ’Y)]

~ (i ©6) (=)@ La—a o= BOax-1) ") + By-a(u) = O,
(5.42)

where En_1(w) is given by
ENfl(’LU) =

N’N,l(w)-aLN,l(w)a—% e (w)-(aLy—1(w)o, aLy_1(w)a)—Ly_1(w) (5.43)
with

N—-1
Ly_1( ~_1 ; (Yn—1( (w)) ;s

W, Yy_1 and G_; being defined in Theorem 5.3 [11], (5.32) and (5.34) respec-
tively. Set

Ty = WHSO -v-1)
3 (sl B {aly el r(nalR ()}
i,7,l=1

where k3 still denotes the third cumulant of . Using Cauchy-Schwartz inequality,
the bounds (5.33), (5.30) and [11, Lemme 8.1, (8.14)], it can be easily proven that

LN_l(w) - TN = O(I/N)
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Note moreover that, for any m x m matrix B with bounded operator norm

1

Tr,,(BTn) = Qﬂ(N_l)angu—ﬁ)
N1
X Z Trm]E{Oz(RN_l(w))iiOé(RN—l(w))lla(RN—l(w))z’j
i =1
X [(B & Iy-1) Y1 (w)]; )
1
= 2\[( — )2 N_lﬁg(l—\/jl)
X ZTTm { (Rn—1(w)) i Ry—1(w))na
i,l=1
X [ENfl(w) (B®IN-1) YN,l(w)} u} ;
so that
| Tr,, (BTw)|
_ el
- 2IN-1)VN -1
2 . , 1/2
x[[(Sw) 7| E H{RN 1 B®IN—1)YN—1(7«U)]“
i,l=1

[realmal|? || (Sw) || 1 Bl
= 2(N —1)
= O(1/N),

so that
Tn = O(1/N)

and therefore, using (5.5),
Enx_1=0(1/N).

Lemma 5.5 follows.

Proposition 5.5.

\/N{idm ®@trnv—1 Ry—1(pnveir — 7)1

QN-1

—id,, ® ¢ <((PN€11 —N®la-—a®r—B® aN_l)_l>}

goes to zero in probability.
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Proof. Using (4.1), for N large enough, there exists K > 0 such that
[(pnern =)@ 1la—a®z—Ban| < K

and on Qn_1,

Whn_
H(PN611—7)®IN1—04® \;Vﬁl - B®AN_1

<K.

Moreover, (see (5.8) and (5.6)), for N large enough,
d(0,spect(pyerr —7) ®1la—a®@r—B®an_1)) > Cc/4

and on Qn_1

d (O,spect ((pNen -7 Iy —a® MZVN_I -8® AN_l)) > C./4.

Let g : R — R be a C* function with support in {C./8 < |z| < 2K} and such that
g=lon{C/4<|z| <K} f:axw— @ is a C* function with compact support.
Note that

(id,, ® ¢) (((PN€11 -7y —a®z—-F® aN—l)_l)

= (idm ® @) (f ((pnve11 —7) @ 1lu—a®@x - B®an_1)) (5.44)

and on QNfl,

Ry_1(pnerr —y)=f <(,0N611 —Y) Q1IN —a® V[:}VN_l —B® AN_1> . (5.45)

According to Lemma 5.5, for any z € C\ R,
VN (idy, @ try—1) E[Ry_1(pneir — v — z1n)]

= VN (id,, ® ¢) (((PNeu —y=2lp)®1lp—a®@r - B® aN71)71) + 03 (1),
(5.46)

where there exist polynomials @)1 and Q2 with non negative coefficients and (d, k) €
N2 such that

Qu(IS2l D2l + DT _ 1 Q2(S2)(I2] +1)?
VN " VN el '

We recall Helffer-Sjostrand’s representation formula : let f € C*+1(R) with compact
support and M a Hermitian matrix,

lo® (1) <

(5.47)

100 = < [ oR(1)(e) 01 =) (5.45)
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where d2z denotes the Lebesgue measure on C.

k
Fp(f)(z+iy) =

x(y) (5.49)
1=0

where x : R — RT is a smooth compactly supported function such that y =1 in a
neighborhood of 0, and 9 = 9, + i0,,.

The function Fj(f) coincides with f on the real axis and is an extension to the
complex plane.

Note that, in a neighborhood of the real axis,

5 = DR ey ok
IE(N)w + i) = L f0 ) < Oyl as y 0. (550)

o son)
1

= — C\R 5Fk(f)(z)\/ﬁ(1dm ® t?“Nfl)E [RNfl(pNell i Z[m)] dZZ

Therefore, by Helffer-Sjostrand functional calculus,

VN (idy, ® try_1) E (f ((PNen -7)

and

VN (idm © @) [f (pvenn =) @ T —a®@z - B@an_1)] =
L[ OBV (i @ 0) (((pNen —y—z2lp)®la—a@r— B aN_1>‘1) dz.
T JC\R

Hence, using (5.46) and (5.44), we can deduce that

\/N(ldm ®tI‘N_1)E (f <(pN€11 —’}/) RIN_1—a® V[f;vﬁ_l _ﬁ@AN—l))

= VN(idn @) ((pvens —) @1 —a@z—Foay 1))

1 o (1)d22
+ /ZGC\RaFk(f)() (1)d2.

™

Note that since f and x are compactly supported, the last integral is an integral on
a bounded set of C and according to (5.47) and (5.50),

L[ R ()0 (1)

C\R

< @
VN

Thus,

\/N{E(idm ®try_1) (f ((pNeH —Y)®IN1—a® W\/}VN_I - ®AN1>>
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— (idm ® ¢) (((pNeu —V)RIly—a®@xr—F8 aN,l)fl)} Nt 0. (5.51)

Now, we are going to study the concentration of

VN (id,, ® try_1) (f <(pN€11 - N®In-1—a® W\;Vﬁ_l -8® ANI))

around its expectation. Define for any (p,q) € {1,...,m}?, hyy : M3* ,(C) — C by
hipq(X)

1
= N1 (Try, ® Try—1) [(eqp ®@In_1)f((pye11 —7) @ INc1 —a® X — F® An_1)],
so that

(idm @ trn—1) [f ((pvenn —7) @ In1 —a®@ X =@ An_1)] = Z hpqaepq-
p,q=1
Define also hyg : RV=D* — C by hpy = hpg o U=, where W is defined in (5.28).
Note that }
Vg (w(0) | = llgradhyg (X)),

Wn-1

Whn—
hpq(W)*Eh it

(o=

)

2
e (%52

Applying Poincaré inequality for h,,, we get that
with
d
hpg(X + tw)

2
C
E < —E
weS; (M, (C)) ‘dt

ngadhpq(X)Hi = sup
For w in S1 (M3 ,(C)), set
Alt) = f((pverr —7)®@In—1 —a® (X +tw) — R An_1)
—flpne1r1 —7)®@Inc1 —a®@ X — B An-1)

le=0

and
A(t) = Z epq @ Dprg (b).
p,q'€{1,....m}?
Note that A(t) = A(t)* so that Ay () = Ap g (£)* We have

2 2

d

.1
%hpq(x Ftw), | = %g% n try—1 Apg(t)
Moreover, we have
(Trm @ Try—1) A1) = ) Trn1 Apg(t)Agy(t)
p,q=1
= Z Try—1 Apg(t)Apg(t)”
P,q=1
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Therefore Try—1 Apg () Apy(t)* < (Trp, @ Try—1) A2(t). Since f is a Lipschitz func-
tion on R with Lipschitz constant Cp,, its extension on Hermitian matrices is Cf.-
Lipschitz with respect to the norm || M|l = (Tr,,,n—1) M?)'/2. Thus,

[trv1 Dpg (D < trn1 Apg(8) g (1)
1
S ﬁ (TI'm & Terl) A(t)2
< ey ) (@ o) = 02 T
- EN—1+ ™ N_1 L—m
Therefore,
d e
sup —hpg (X +tw),_,| < —,
wESl(vaal((C))‘dt pa( )\ 0 N
and then
Wn_1 Wn_1 ? C
E N<h ——— | —-E(h —_— < =,
(v () = (o (I ) = 5

It readily follows that

VN (idy, @ try_1) (f <(PN€11 —NR®IN1—a® W1 _ B8® ANI))

VN
Wi
—VNE (id,, ® try— (( e —7) @Iy —a@ =t ®A_)>
( ~n-1) | f | (pnverr —7) N-1 VN B N-1
= op(1). (5.52)
Proposition 5.5 follows from (5.45), (5.51), (5.52) and (5.23). O

6 Proof of Theorem 4.1

According to Lemma 2.1, A € R is an eigenvalue of My if and only if

W
det(/\(fn@IN’Y@INOé@\/%ﬂ@AN) =0

or, since there exist permutation matrices Ky,, and K,,ny in Mp,, such that for
any A € My and B € M,,,

A®B=Kynm(B® A)KnnN, (6.1)

equivalently

w
det (IN®()‘611_'7)_\/%®04—AN®/6> =0.

Thus, A is an eigenvalue of M if and only if

HVE(CNm\{O},<IN®()\€11—’Y)—%@a—AN(@,B)V:O. (62)
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Set
m
V=) Vige
i=1

where (€;);=1,....m is the canonical basis of C™ and

v — Ugl) cC
4 V;(z) eCN-1 )

(6.2) can be rewritten

m Wi, (1) | Y* 1,(2)
Z )\611 —-vei ) (\/]1\717% + ﬁVz ) oe;
V( ) ® (/\611 — ) (

i=1

which leads to the system

()\611—’)/—04‘\/‘//5 69) (21”1 1(1) ) (\ﬁ®0‘) (2111 Vi(2)®ei)
Iva@Qen—7) - B2 ga— Ay @8) (T, VP @)

= (J5 @) (Zinie)

Let 7 be defined by (4.9). For any A € B(p, 7), according to Lemma 5.1 and (6.1),
we can define on Qy_1

—1
Ry_1(Xei1 —7) = (IN—l ® (Ae1r —7) AN ® 5) .

W1
VN

The following lines hold on Qy (defined by (4.10)).

First, we can deduce from the above system that A € B(p,7) is an eigenvalue of

My if and only if there exists (fugl))i:lywm cCm, (Vi(g))i:l’_”m e C™(V-1) such
that:

S oiVe #£0, (6.3)
=1

iVi@) ©ei = Ry 1(herr —7) ( 2 a) (Z (1) > (6.4)

i=1

W . ) N ()
Xep—y—a— —fB0— —=(Y"®a)R eyl — Y ®a« v, ’e; | =0.
(117 mﬁ N( )N1(11 ) ( )<;1

(6.5)
Therefore in particular this implies
det (X, (N)) =0, (6.6)



where

Xon(N) = A(N, p)eu—v—a%—ﬁe—% (V* @) Ry 1(A(N, pless —7) (¥ @),

with A(IV, p) defined by (4.11). Now, noticing that
(V" @ a) Ry -1 (AN, p)ens —7) (Y @ @)
= (Try_1 ®id,,) [(E11 ® I,n) (Y* ® a) Ry_1(A(N, p)err — ) (? ® a)} :

where Y = (Y|0) € My_1(C), and using (6.1), it is easy to see that
(Y* ®a) Ry-1(A(N, p)ers —7) (Y ® a)

= (@®Y")Ry_1(A(N,plen —7) (a®Y).
Let pn be as defined by (4.15). Using the identity

Ry-1(pnerr —7) — Ry—1 (AN, p)ern — )

= (AN, p) = pn)Rn-1(pnerr —7) (en1 ® In—1) Rn—1(AM(N, p)err — ),

we have

where
XW(N) = (pnen =) — B9,

(wgnN) is defined by (4.14)),

Hp(N) = (AN, p) = pn)enn — Ai(N) — Az(N)
WY, ) — o) (N) — a% — (AN, ) — p)?ra(N)
with
Tl(N)

1 X
= (@®@Y") Ry-1(pnern—7)1g,  (e11 ® In—1) Rv—1(pne1r—7)1g,  (@®Y),

1
ro(N) = N (@@ Y™)Ry-1(pneir —7)1g,_, (€11 ® In—1) Ry—1(pvenn — ) 1g,

x (e11 ®@ In—1) RN—1(A(N, plenr —7)1g,  (@a®Y),

-1

1
Ai(N) = N (@®@Y")Ry-1(pneir —7)1g,  (a®Y)

—a(idy, ® try-1) ((RN—l(pNell - ’Y)IQN,I)) @,
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AQ(N) =« (ldm X tI‘Nfl) (RNfl(pNell — ’Y)]QN71> «
— (ldm ® ¢) (((pN€11 — ’7) X 1_,4 —a®r— B (39 G,Nfl)il) Q.
First, we have that, according to Lemma 5.4 and using (5.6),
r1(N)—a (id,, ® try—_1) (RN—I(PNEH_'Y)]QA_I (e11 ® In—1) RN—l(pNell_V)lﬁN,l)a

= O]}»(l).

From Lemma 5.2, almost surely,
(idy @ try—1) (Rv-1(pverr —Y)1g,  (e11 @ In—1) Rn-1(pnerr —7)1g, )

— (id;m ® ¢) (Roo(pe1r — ) (€11 @ 14) R (perr —7))-

N—o00
Therefore,
ri(N) = a(idm © 6) (Roo(pers =) (11 @ 1a) Roc(pers = 7). (6.7)
Now,
M| < m?|al? |R —)1s 2RAN fyw
[r2(N) || < mZ[lall” || Rn-1(pnerr — 7)1, | NAWN, plert — 7)1, | N

By the law of large numbers,
Y2 1
B S WP =14 0n(1).
j=2

Moreover, by Lemma 5.1, we have
HRN—I(pNell — 7)1QN71 H S 2/06 and HRN_l()\(N, p)ell - W)IQN—I H S 2/05-
Therefore, there exists C' > 0 such that

P([[r2(N)[| > C) =N 400 0. (6.8)

By Lemma 5.4,
A1(N) = op(1). (6.9)

Now, Proposition 5.5 readily yields
VNAS(N) = op(1). (6.10)
Thus (4.12), (4.16), (6.7), (6.8), (6.9) and (6.10) yield that

Ho(N) = op(1). (6.11)
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Therefore, according to Lemma A.2 (using (4.16), (5.8) and (6.11)), (6.6) and (4.15),
with a probability going to one as N goes to infinity,
0 = detX,,(N)
det(X\) (N) + Hyn(N))

= det(X[O(N)) + Trm [Byor ) Hn (V)] + en
= Tr,, [BX,(,?)(N)H"L(N)} + €N,

where

By ) =" com(XO(N),

en = O(||Hum(N)|?).
Thus, using (4.12), (4.16), (6.7), (6.8), (6.10) and Proposition 5.1,

VNen = op(VN(A = pn)) + op(1).

Hence, with a probability going to one as N goes to infinity,
VNN, p) — pn) [TrmBXg?) €11+ Trm By 1 (N) + o]p(l)]

:TT’mB \/NAl(N) +W11TTmBX£,?)(N)a+OP(1)'

X (N)
Theorem 4.1 readily follows from Proposition 5.1, the independence of A;(N) and

W11 and the fact that wq(,]LV) (pve1r — ) converges towards wy,(pe1; — v) when N
goes to infinity (see 3) Lemma 5.2).

Appendix

A probability measure s satisfies a Poincaré inequality if there exists some constant
Cpr > 0 such that for any C! function f: R — C such that f and f’ are in L?(u),

V(f) < CPI/\f'|2d/L7

with V(f) = [1f — [ fdpl?dp.

If the law of a random variable X satisfies the Poincaré inequality with constant
Cpy then, for any fixed o # 0, the law of X satisfies the Poincaré inequality with
constant a>Cpy.

Assume that probability measures puq, ..., uy on R satisfy the Poincaré inequality
with constant Cpr(1),...,Cpr(M) respectively. Then the product measure p; ®

---®@upr on RM satisfies the Poincaré inequality with constant Cp; = {max ) Cpr(i)
ie{l,....M

in the sense that for any differentiable function f such that f and its gradient grad f
are in L?(u1 @ - @ pag),
V() < C;s,/ lgradf||2dp ® - ® pas

with V(f) = [|f = [ fdp1 ® -+ & par|?dpn @ -+ @ p.
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Lemma A.1. Lemma 4.4.3 and Ezercise 4.4.5 in [2] or Chapter 3 in [31]. Let P
be a probability measure on RM which satisfies a Poincaré inequality with constant
Cpy. Then there exists K1 > 0 and Ko > 0 such that, for any Lipschitz function F
on RM with Lipschitz constant |F|Lp,

€
Ve > 0, P(|F —Ep(F)| > ¢ gKexp(K>.
(‘ P( )‘ ) 1 2\/(7713[‘F|L7;p

Lemma A.2. Let A and H be m X m matrices such that, for some K > 0,
Al < K, [H|| < K. (6.12)

Then

det(A + H) = det(A) + Try, (‘com(A)H) + €
where com(A) denotes the comatriz of A and there exists a constant Cy, g > 0,
only depending on m and K, such that |e| < Cy, i || H|* .

Proof. Denote by ay,...,an, resp. hi,...,hy,, the columns of the matrix A, resp.
H. Since the determinant of a m x m matrix is a m-linear function of the m columns,
we have

det(A+ H) = det(A) + Zdet(al, ey Q=1 Ry Qg 1y - ey Q) F €,
k=1

where € is the sum of a number only depending on m of determinants involving at
least two columns of H. Hadamard’s inequality and (6.12) readily yields that there
exists Cy, ¢ > 0 such that |e] < C, i ||H||>. Moreover, denoting by {e1,...,en}
the canonical basis of C™, we have

det(ay,...,ap—1, K, Qpt1y- - am) = Zdet(al, coy 1, Hig€sy Qpg1y - ooy Q)
=1
= Z H;(comA)g
i=1
= ("(comA)H ).
The result readily follows. O
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