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Abstract: In this paper, we design an observer for a system represented by a general class
of Integral Delay Equations (IDE). This class of equations encompasses various systems, from
chemical or biological processes to the propagation of electric pulses on excitable media. The
available measurement corresponds to a discrete and distributed-delayed value of the state.
Under an appropriate spectral observability assumption, an implementable observer is proposed.
Inspired by the fact that first-order hyperbolic Partial Derivative Equations (PDE) and time-
delay systems are closely related, we use a PDE formulation and the well-known backstepping
methodology for the design. However, due to integral terms in the dynamics, the use of a
Fredholm integral transform is required. We prove its existence and invertibility by using an
operator framework. Both proofs derive from the spectral observability assumption. Some test
case simulations end the paper.

Keywords: infinite dimensional systems; observer design; backstepping methodology.

1. INTRODUCTION

In this paper, we design an observer for a dynamical sys-
tem represented by a general class of Integral Delay Equa-
tions (IDEs). Such systems are encountered in a wide range
of engineering applications, where transport phenomena
occur. Delays also naturally appear when considering in-
terconnected and/or networked systems. They are often
sources of instabilities in the closed-loop system and can
induce poor performance for the resulting feedback control
laws Gu and Niculescu (2003). Time-delay systems have
then been the object of many research works Niculescu
(2001).
With the objective of designing efficient output-feedback
(and thus implementable) control laws for such systems,
interest for observers has grown significantly in the last
decades. For an overview on the subject, the reader is
referred to Sename (2001). Even though time-delay sys-
tems are inherently infinite-dimensional systems, results
on finite-dimensional systems can still be a relevant source
of inspiration. Conversions between different representa-
tions are of great use to take advantage of analysis tools
or algorithms built for one formulation Peet (2021). More
specifically, a duality between observation and output feed-
back for general classes of linear systems with distributed
and pointwise delays has been studied Sun (2007). How-
ever, it led to restrictive stability assumptions. Though,
the control law design framework can still inspire observer
designs. In particular, Redaud et al. (2021) used an ap-
proach based on a comparison with a hyperbolic PDE
system. Indeed, such systems can be seen as neutral dif-
ferential equations Hale and Verduyn Lunel (1993); Auriol
and Di Meglio (2018) that present a structure similar to
one of the classes of IDEs under consideration. This rep-
resentation allows the use of the well-known backstepping

methodology that has been proved to be an efficient tool
to design observers Krstic and Smyshlyaev (2008).
More precisely, the contribution of the paper is two-fold.
First, unlike classical observer design approaches for time-
delay systems Klamka (1982), we use a PDE framework.
Then, we introduce an appropriate Fredholm integral
transform, similar to the one used in Redaud et al. (2021).

To the best of the authors’ knowledge, the operator
framework used to prove the existence of the observer gains
is a novelty in the literature. It gives a constructive way
to design implementable observers.
The proposed approach can be resumed as follows. First,
we use a new representation of the delay system based on
the state interpretation. This infinite-dimensional linear
system class will allow us to use an operator framework.
We then define a hyperbolic system and show that its
boundaries satisfy the same equations as our initial delay
system.

Next, we define an observer state and the resulting error
system associated with this hyperbolic system. We use the
backstepping methodology to map it to a stable target sys-
tem. However, the integral terms in the delay system lead
to coupling terms in the hyperbolic comparison system,
and a Fredholm integral transform must be used. Unlike
Volterra transforms traditionally used, the invertibility of
such transforms is not guaranteed Yoshida (1960). Utiliz-
ing an operator theory framework Coron et al. (2016), we
show that the invertibility of the Fredholm transform and
the well-posedness of the kernel equations naturally derive
from a spectral observability assumption. The existence
of observer gains making the estimated state converging
towards the actual state is then guaranteed.
The paper’s layout is as follows: in Section 2, we present
the general class of time-delay equations considered herein



and describe our strategy relying on a spectral observ-
ability assumption. Then we show in Section 3 that this
equation can be reformulated as a hyperbolic system, for
which we design an observer. We use the backstepping
methodology with a Fredholm transform to map the error
system to a stable target system. Next, we introduce the
operator framework and show the well-posedness of the
kernel equations. We use the same approach to prove
that the Fredholm transform is invertible. Then, we define
the observer gains to guarantee the convergence of the
estimated state towards the actual state. We illustrate this
result by simulations in Section 5. Finally, we end this
paper with some concluding remarks in Section 6.
Notations : In this paper, we denote Dτ = H1([−τ, 0],R)
the Banach space of H1 real-valued functions taking values
in the compact [−τ, 0], for any fixed time-delay τ > 0. For
any function φ : [−τ,∞) 7→ R, we define an associated par-
tial trajectory φ[t] ∈ Dτ by φ[t](θ) = φ(t+ θ),−τ ≤ θ ≤ 0.
We use s as the Laplace variable. For all a, b, ν ∈ [0, 1], the
characteristic function is denoted by 1[a,b](ν)(equals 1 if
ν ∈ [a, b], 0 else).

2. PROBLEM UNDER CONSIDERATION

2.1 Presentation of the system

Time-delay formulation Consider the neutral type equa-
tion defined for all t ≥ 0 by

z(t) + az(t− τ1) +

∫ τ1

0

N1(ν)z(t− ν)dν = 0, (1)

where τ1 is a strictly positive delay, and N1 a piecewise
continuous. The parameter a is a constant that belongs
to ] − 1, 1[. The initial data is given by z0 ∈ Dτ1 . A
function z : [−τ1,∞) → R is called a solution of the
initial value problem (1) if z(0) = z0, and if (1) is satisfied
for t ≥ 0. System (1) corresponds to a difference equation
with a pointwise-delay term and a distributed-delay term.
The class of system (1) can model a wide variety of
systems in biology, chemistry, epidemiology, physics, or
engineering sciences Niculescu (2001). The condition |a| <
1 guarantees that the open-loop system has a finite number
of unstable roots Hale and Verduyn Lunel (1993). If |a| >
1, any arbitrary small delay would destabilize the potential
estimation Logemann et al. (1996). Thus, it would not be
possible to implement the resulting observer.

Our objective is to design an observer for the time-delay
system (1) using the measurement

y(t) = z(t− τ2) +

∫ τ2

0

N2(ν)z(t− ν)dν, (2)

with τ2 > 0 and N2 a piecewise continuous func-
tion. More precisely, using the delayed output y(t),
we want to design an observer ẑ such that ||z(t) −
ẑ(t)||L2([−max{τ1,τ2},0] −−−→t→∞

0. The measurement (2) cor-

responds the knowledge of a diffuse value of the state
(distributed delay). An application example can be found
with complex systems, whose control is ensured by mul-
tiple sensors. Measurements of each sensor are in most
cases available after a specific acquisition, processing, and
transportation time that varies from one sensor to an-
other. Moreover, all sensors do not acquire data at the
same frequency. One challenge is then to synchronize the

different outputs Bak and et al. (1998). Multiple outputs
processing could result in a measurement of form (2),
where a sum approximates the integral term for high-
frequency acquisition.

2.2 Spectral observability assumption

To guarantee the possibility to design an observer for
(1)-(2), we need an observability assumption Mounier
(1998). This condition is obtained considering the spectral
properties of the system. Taking the Laplace transform of
(1)-(2), we have

z(s)(1 + ae−τ1s +

∫ τ1

0

N1(ν)e−νsdν) = F(s)z(s) = 0

y(s) = (e−τ2s +

∫ τ2

0

N2(ν)e−νsdν)z(s) = O(s)z(s). (3)

Therefore, we obtain the following observability condition.

Hypothesis 1. Spectral observability
For all s ∈ C, rank[F(s),O(s)] = 1.

It guarantees that F andO are not simultaneously equal to
0. A parallel can be drawn with the spectral controllability
condition given in Redaud et al. (2021), since observability
and controllability are dual problems.

2.3 Observer design strategy

The strategy to design the observer states as follows:

• first, we rewrite the integral delay equation (1) as
a hyperbolic PDE system. The distributed measure-
ment (2) corresponds to a boundary measurement for
this new hyperbolic system;

• second, we propose an observer for this PDE system
as a copy of the original dynamics with some tunable
output injection gains;

• then, we use a Fredholm backstepping integral trans-
form that maps the associated error system to a stable
target system. This transformation gives a suitable
choice for the observer gains;

• next, we show that the existence of this backstepping
transform is equivalent to the existence of a solution
for some integral equations. We use an operator
framework to establish the existence of a solution for
this set of equations;

• finally, the invertibility of the backstepping transform
is shown using the same operator framework.

3. PDE FORMULATION

This section introduces a simple hyperbolic system that
will be used as a comparison system Niculescu (2001), to
simplify the design of the observer. For this PDE system,
the measurement (2) rewrites as a pointwise boundary
measurement. We show that the estimation of the PDE
state implies the estimation of the initial state z.

3.1 Comparison system

Consider the following hyperbolic system, defined by

∂tu(t, x) + λ∂xu(t, x) = h1(x)u(t, 1), (4)

∂tv(t, x)− µ∂xv(t, x) = h2(x)u(t, 1), (5)



where (u(t, x), v(t, x))T is the state of the system, the dif-
ferent arguments evolving in {(t, x) s.t. t > 0, x ∈ [0, 1]}
with the boundary conditions

u(t, 0) = au(t, 1), v(t, 1) = u(t, 1), (6)

and where λ = 1
τ1
, µ = 1

τ2
, and ∀ν ∈ [0, 1], h1(ν) =

N1(τ1(1 − ν)), h2(ν) = N2(τ2ν). The initial conditions u0
and v0 belong to H1([0, 1],R). They are defined for all
x ∈ [0, 1] by u0(x) = u(0, x) = z0(− 1−x

λ ) and v0(x) =
v(0, x) = 0. We consider that we have access to the
measurement y1(t) = v(t, 0). We will show below that y1(t)
corresponds to y(t). We now rewrite the system (4)-(6) in

the abstract form
d

dt

(
u
v

)
= A

(
u
v

)
, where the operator A

is defined by

A :D(A) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
u
v

)
7−→

(
−λux(x) + h1(x)u(1)
µvx(x) + h2(x)u(1)

)
, (7)

with D(A) = {(u, v) ∈ (H1(0, 1))2|u(0) = au(1), v(1) = u(1)}.
The operator A is well posed and densely defined Bastin
and Coron (2016) (the solution remains in H1 and the
trace operator is properly defined). We now show that
the system (4)-(6) is a comparison system and that the
measurement y1 corresponds to y. Indeed, defining z(t) =
u(t, 1) and applying the method of characteristics to (4)-
(6), we obtain

u(t, 1) = z(t) = az(t− 1

λ
) +

∫ 1
λ

0

h1(1− λs)z(t− s)ds,

y1(t) = z(t− 1

µ
) +

∫ 1
µ

0

h2(µs)z(t− s)ds.

Thus, u(., 1) is solution of (1), while y1 satisfies (2).

3.2 Observer and error systems

Let us design an observer for the hyperbolic system (4)-
(6). The observer state (û(t, x), v̂(t, x)) satisfies the same
dynamics as the original hyperbolic system (4)-(6), in
which we add output injection gains. We have

∂tû(t, x) + λ∂xû(t, x) = h1(x)û(t, 1)− g1(x)(v̂(t, 0)− y(t)),

∂tv̂(t, x)− µ∂xv̂(t, x) = h2(x)û(t, 1)− g2(x)(v̂(t, 0)− y(t)),

with the boundary conditions

û(t, 0) = aû(t, 1) v̂(t, 1) = û(t, 1), (8)

where the observer gains g1 and g2 are two real-value
functions defined on [0, 1] that will be determined later.
They belong to H1([0, 1]) The initial conditions û(0, ·) and
v̂(0, ·) are arbitrarilyH1 functions. We now define the error
between the observer and the state as ũ = u− û, ṽ = v− v̂.
The error state satisfies the set of equations

∂tũ(t, x) + λ∂xũ(t, x) = h1(x)ũ(t, 1)− g1(x)ṽ(t, 0), (9)

∂tṽ(t, x)− µ∂xṽ(t, x) = h2(x)ũ(t, 1)− g2(x)ṽ(t, 0), (10)

with the boundary conditions

ũ(t, 0) = aũ(t, 1) ṽ(t, 1) = ũ(t, 1). (11)

The objective is to design the observer gains g1, g2, so
that the error system is exponentially stable in the sense
of the L2-norm. More precisely, we want to show that
∃ν > 0, C > 0, ||(ũ, ṽ)||L2(0,1) ≤ Ce−νt||(ũ0, ṽ0)||L2(0,1).
Indeed, denoting ẑ(t) = û(t, 1), we will show that the
convergence of (ũ, ṽ) to zero implies the convergence of

ẑ to z. We can rewrite the error system (9)-(11) using the
operator abstract form

d

dt

(
ũ
ṽ

)
= A

(
ũ
ṽ

)
+ GC

(
ũ
ṽ

)
, (12)

where G = (g1, g2)T corresponds to the product with the
observer gains and where the operator C is the trace
operator defined on D(A) by

C :D(A) ⊂ (L2(0, 1))2 → R

(ũ ṽ)
T 7−→ ṽ(0). (13)

3.3 Observability properties

The following lemma is a consequence of Hypothesis 1

Lemma 2. Under Hypothesis 1, consider the operators A
and C respectively defined by (7) and (13). Then, for any
s ∈ C, we have

ker(s−A) ∩ ker(C) = {0}. (14)

The proof is omitted due to space restrictions.

3.4 Insights on Fredholm integral operators

The stabilization of the error system (9)-(11) will be done
using a backstepping transform of the Fredholm type.
Indeed, only a transformation of the Fredholm type gives
enough degrees of freedom to map the error system to
a stable target system. More precisely, we consider an
integral operator T : (L2([0, 1]))2 → (L2([0, 1]))2 defined
by

T
(
u(x)
v(x)

)
=

(
u(x)
v(x)

)
−
∫ 1

0

N(x, ν)

(
u(ν)
v(ν)

)
dν, (15)

where N is a bounded function defined on the unit
square S = {(x, y) ∈ [0, 1]2}. Unlike Volterra integral
transformations, Fredholm transformations are not always
invertible Yoshida (1960). The following lemma (adjusted
from (Coron et al., 2016, Lemma 2.2, Proposition 2.6)
guarantees (under several conditions) the invertibility of
such an integral operator.

Lemma 3. Consider a Fredholm integral operator T :
(L2([0, 1]))2 → (L2([0, 1]))2 as defined by (15). Assume
that

(a) ker(T ) ⊂ D(A),
(b) ker(T ) ⊂ ker(C),
(c) ∀z ∈ ker(T ), T Az = 0,
(d) ∀s ∈ C, ker(s−A) ∩ ker(C) = {0}.

Then, the operator T is invertible.

Proof. The proof follows the steps of (Coron et al.,
2016, Lemma 2.2, Proposition 2.6). Since the integral
part of T is a compact operator, the Fredholm alterna-
tive Brezis (2010) implies that dim ker(T ) < ∞. Suppose
that ker(T ) 6= {0}. Due to assumption (a), Az is well-
defined, and assumption (c) implies that ker(T ) is stable
by A, that is to say, for all z ∈ ker(T ), Az ∈ ker(T ). Since
ker(T ) is finite-dimensional and not reduced to {0}, the
restriction A| ker(T ) of A to ker(T ) has at least one eigen-
value ν ∈ C. Let ζ be the corresponding eigenfunction.
Thus, ζ ∈ ker(ν − A) and ζ ∈ ker(C) (due to assumption
(b)). This is in contradiction with assumption (d). Thus,
ker(T ) = {0} and T is injective. Using the Fredholm
alternative, we obtain that T is invertible. �



4. OBSERVER DESIGN

In this section, we design the observer gains g1, g2 to
stabilize the error system (9)-(11). First, we use a Fred-
holm integral transform to map (9)-(11) to a stable target
system. We show that the existence of such a transform
is implied by the existence of solutions for some integral
equations. Finally, using the operator framework intro-
duced in Section 3, we prove that the proposed Fredholm
integral operator is invertible.

4.1 Presentation of the target system

We now follow the backstepping methodology to map (9)-
(11) to a stable target system with equivalent stability
properties. Consider the candidate target system

∂tα̃(t, x) + λ∂xα̃(t, x) = 0, (16)

∂tβ̃(t, x)− µ∂xβ̃(t, x) = 0, (17)

with the boundary conditions

α̃(t, 0) = aα̃(t, 1) β̃(t, 1) = α̃(t, 1). (18)

This target system (16)-(18) is exponentially stable in the
sense of the L2-norm, since |a| < 1 Bastin and Coron
(2016). Let us define

α̃(t, x) = ũ(t, x)−
∫ 1

0

L11(x, ν)ũ(t, ν) + L12(x, ν)ṽ(t, ν)dν,

β̃(t, x) = ṽ(t, x)−
∫ 1

0

L21(x, ν)ũ(t, ν) + L22(x, ν)ṽ(t, ν)dν,

with Lij , i, j ∈ {1, 2} four bounded functions defined on
S. We want to prove that the existence of some kernels
such that this transform maps the original system (9)-(11)
to the target system (16)-(18). Then, if this transform is
invertible, the exponential stability of (16)-(18) will imply
the one of (9)-(11).

4.2 Kernel equations

Let us define the kernels Lij by

∂xL
11(x, ξ) + ∂ξL

11(x, ξ) = 0, (19)

λ∂xL
12(x, ξ)− µ∂ξL12(x, ξ) = 0, (20)

µ∂xL
21(x, ξ)− λ∂ξL21(x, ξ) = 0, (21)

∂xL
22(x, ξ) + ∂ξL

22(x, ξ) = 0, (22)

where we have

h1(x) + λ(L11(x, 1)− aL11(x, 0))− µL12(x, 1)

=

∫ 1

0

L11(x, ν)h1(ν) + L12(x, ν)h2(ν)dν, (23)

h2(x) + λ(L21(x, 1)− aL21(x, 0))− µL22(x, 1)

=

∫ 1

0

L21(x, ν)h1(ν) + L22(x, ν)h2(ν)dν, (24)

and the boundary conditions

L11(0, ξ) = aL21(1, ξ), L12(0, ξ) = aL12(1, ξ), (25)

L11(1, ξ) = L21(1, ξ), L22(1, ξ) = L12(1, ξ), (26)

L21(0, ξ) = 0, L22(0, ξ) = 0. (27)

These two additional boundary conditions (27) are neces-
sary to guarantee the invertibility of the Fredholm integral

transform. Finally, let us define the observer gains as the
solutions of the integral equations(
g1(x)
g2(x)

)
−
∫ 1

0

(
L11(x, ν) L12(x, ν)
L21(x, ν) L22(x, ν)

)(
g1(ν)
g2(ν)

)
dν = µ

(
L12(x, 0)
L22(x, 0)

)
(28)

If (19)-(27) admit a solution, then, following the back-
stepping approach, we prove that (9)-(11) can be mapped
to (16)-(18). Then, if the transformation is invertible,
the two systems will have equivalent stability properties.
Finally, note that the existence of the functions g1 and g2
defined by (28) will be a consequence of the invertibility
of the integral operator.

4.3 Well-posedness of the kernel equations

In this section, we prove the existence and uniqueness of
a solution to the kernels equations (19)-(27). We have the
following theorem

Theorem 4. The set of equations (19)-(27) admits a
unique bounded on the unit square S.

The proof of this theorem will be given in the rest of this
section and requires several intermediate results. First, we
show that the knowledge of the two functions L12(., 1) and
L21(., 1) is sufficient to properly define the four kernels
on S. Next, we rewrite the integral equations (23)-(24)
using an integral operator acting on these two boundary
functions. Then, we show that this integral operator is
invertible using Lemma 3. Consequently, it will imply
that (19)-(27) admit a unique bounded solution. In what
follows, we will only consider the case λ ≤ µ. The case
λ > µ can be done following the same ideas. Due to space
restrictions, we will not give computational details.

Kernels reduction First, we show that the existence and
uniqueness of all the kernels on S is implied by the one of
L12(x, 1) and L21(x, 1) on [0, 1].

Lemma 5. For all (x, ξ) ∈ S, (i, j) ∈ {1, 2}2, Li,j(x, ξ) can
be expressed as functions of L12(·, 1) and L21(·, 1).

Proof. We apply the method of characteristics to the
transport equations (19)-(22) to express the kernels as
functions of their boundary values. We obtain

L11(x, ξ) =

 L21(1− µ

λ
(x− ξ), 1) if ξ ≤ x

aL21(1− µ

λ
(1 + ξ − x), 1) else

(29)

L12(x, ξ) =


L12(x− λ

µ
(1− ξ), 1)

if max{0, 1− µ
λx} ≤ ξ ≤ 1

aL12(1 + x− λ

µ
(1− ξ), 1) else

(30)

L21(x, ξ) =

{
0 if 0 ≤ ξ ≤ min{1− λ

µx, 1}
L21(x− µ

λ
(1− ξ), 1) else

(31)

L22(x, ξ) =

 L12(1− λ

µ
(x− ξ), 1) if 0 ≤ ξ ≤ x

0 else
(32)

In particular, we get L21(1, ξ) = 0 ∀ξ ≤ 1 − λ
µ , as illus-

trated on Figure 1. Thus, we can compute Lij(x, ξ), (i, j) ∈
{1, 2}2on S from the values of L12(x, 1) and L21(x, 1) on
[0, 1]. �



Fig. 1. Representation of kernels Lij on S
Operator formulation We now rewrite the integral
equations (23)-(24) as functions of L12(x, 1) and L21(x, 1).
First, we notice that (19) and the boundary condition (25)
imply that L11(x, 1)− aL11(x, 0) = 0. Thus, (23) rewrites

µL12(x, 1)+

∫ 1

0

L11(x, ν)h1(ν)+L12(x, ν)h2(ν)dν = h1(x).

Using the different kernel equations, we finally obtain(
µL12(x, 1)
−λL21(x, 1)

)
+

∫ 1

0

I(x, ν)

(
L12(ν, 1)
L21(ν, 1)

)
=

(
h1(x)
h2(x)

)
(33)

where the four components (I(x, ν))ij are defined by

I11(x, ν) = 1[0,λµ ](x)(1[x+1−λ
µ ,1]

a
µ

λ
h2(1 +

µ

λ
(ν − 1− x))

+ 1[0,x](ν)
µ

λ
h2(1 +

µ

λ
(ν − x)))

+ 1[λµ ,1]
(x)1[x−λ

µ ,x]
(ν)

µ

λ
h2(1 +

µ

λ
(ν − x)) (34)

I12(x, ν) = 1[0,λµ ](x)(1[0,1−µ
λx]
a
λ

µ
h1(1− x− λ

µ
(1− ν))

+ 1[1−µ
λx,1]

(ν)
λ

µ
h1(x− λ

µ
(1− ν)))

+ 1[λµ ,1]
(x)

λ

µ
h1(x− λ

µ
(1− ν)) (35)

I21(x, ν) = 1[1−λ
µx,1]

(ν)
µ

λ
h2(x− µ

λ
(1− ν)) (36)

I22(x, ν) = 1[0,x](ν)
λ

µ
h1(1− λ

µ
(x− ν)) (37)

To rewrite (33) as an integral operator Q of the form (15),

we define the new variables

(
f(x)
g(x)

)
=

(
µL12(x, 1)
−λL21(x, 1)

)
.

With kernels

N(x, ν) =

−
1

µ
I11(x, ν)

1

λ
I12(x, ν)

− 1

µ
I21(x, ν)

1

λ
I22(x, ν)

 (38)

the Fredholm operator Q satisfies Q
(
f
g

)
=

(
h1
h2

)
. Thus,

by proving that Q is invertible, we will show that the
integral equations (23)-(24) admit a unique solution.

Invertibility of the operator Q

Lemma 6. The Fredholm integral operator Q of form (15),
with kernels defined by (38) is invertible.

Proof. We only need to prove that assumptions (a) −
(d) of Lemma 3 are satisfied for the operator Q. By
evaluating the coupling terms (34)-(37), we immediately
get assumptions (a)−(b). Assumption (d) is satisfied under
the spectral observability Hypothesis 1. In order to prove
that assumption (c) holds, we use assumptions (a) − (b),
integration by parts and changes of variables. �

It is straightforward to show that (f, g) belongs to
H1([0, 1]) (due to the regularity of the functions h Coron
et al. (2016)). We can now conclude the proof of Theorem
4. The boundary functions L12(x, 1) and L21(x, 1) exist
and are unique on [0, 1] by Lemma 6. They define the four
kernels Lij , (i, j) ∈ {1, 2}2 on their definition domain S by
Lemma 5. �

4.4 Invertibility of the Fredholm transform and existence
of the observer gains g1 and g2

Following the same operator framework, we now show

Theorem 7. The Fredholm integral transform P with ker-
nels defined by (19)-(27) is invertible. Consequently, the
observer gains g1 and g2 are properly defined in (28).

Proof. Since the operator P is of form (15) with

N(x, ν) =

(
L11(x, ν) L12(x, ν)
L21(x, ν) L22(x, ν)

)
, (39)

we can use Lemma 3 to show its invertibility. As before,
assumption (d) derives from the spectral observability
hypothesis 1. The boundary conditions (25)-(27) imply
that assumptions (a)−(b) hold. Assumption (c) is a direct
consequence of (19)-(24) and assumptions (a)− (b). Using
equations (28), the gain observers g1, g2 satisfy

P
(
g1(x)
g2(x)

)
=

(
µL12(x, 0)
µL22(x, 0)

)
. (40)

Since P is invertible, the observer gains exist and are
uniquely defined on [0, 1]. Moreover, it is straightforward
to show that they belong to H1. �

4.5 Convergence of the observer

We can now end this section with the design of an observer
for the initial system (1)-(2).

Theorem 8. Any solution (ũ, ṽ) of (9)-(11) converges to-
wards 0 in the sense of the L2−norm.

Proof. First, system (16)-(18) is exponentially stable
in the sense of the L2−norm. Since the backstepping
transform is invertible by Theorem 7, system (9)-(11)
shares equivalent stability properties. Indeed, the inverse
transform is of form (15) with bounded kernels. �

Thus, the error system (9)-(11) is exponentially stable.
The observer state defined with gains g1, g2 converges
towards the initial state (u, v). More precisely, we can show
that ũ(t, 1) converges towards 0. Thus, z̃(t) exponentially
converges towards zero. We can thus compute an observer
ẑ(t) for (1)-(2) as ẑ(t) = û(t, 1) that converges towards z.



5. SIMULATION RESULTS

In this section, we give some simulation results to illustrate
the performance of our observer design for the time-delay
system (1). Following the PDE approach presented in
this paper, we simulate system (1) on Matlab using the
hyperbolic comparison system (4)-(6). The evolution of the
initial and observer states are computed using a Godounov
scheme LeVeque (2002). We chose the parameter values
τ1 = 1 > τ2 = 0.5, a = 0.8, and N1 = 0.4, N2 = −0.5 con-
stant functions. They were selected such that the system
is slightly unstable, as illustrated on Figure 2. One can
verify that Hypothesis 1 is satisfied for these parameter
values. We compute the evolution of the time-delay system
over 10s, with a time-discretization of 0.01s. The initial
conditions are z(0) = 1, ẑ(0) = 0.5. The kernels Lij and
the observer gain functions g1, g2 are previously computed
using a fixed-point algorithm (successive approximation
technique). Their definition domains are discretized with
a space mesh equal to 0.02. The integral terms are numer-
ically approximated by the trapezoidal method. Plotting
the evolution of the norm of the error state z̃, we observe
that it towards zero, the observer (red curve) converges
towards the real value (blue curve) as expected.
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Fig. 2. Evolution of the time-delay system (1) z(t), ẑ(t).

6. CONCLUDING REMARKS

This paper proposed a new approach to design an observer
for a general class of integral delay equations under a
spectral observability condition. Following the methodol-
ogy proposed in Redaud et al. (2021), we used a scalar
hyperbolic system (sharing the same observability prop-
erties) as a comparison system. We designed an observer
for this PDE system using the backstepping approach to
map the resulting error system to a stable target system.
Since the existence of distributed delay terms required the
backstepping transform to be of Fredholm type, invertibil-
ity needed to be proven. To do so, we used an operator
framework inspired by Coron et al. (2016). Interestingly,
the existence of solutions to the kernels equations de-
pended on the invertibility of a similar operator. The well-
posedness of the kernels defining the Fredholm transform
was thus proved using the same results. The invertibility of
both integral operators was a consequence of the assumed
spectral observability condition. Finally, some simulations
illustrated the relevance of this approach to design an
observer for a time-delay system with delayed output.
In future contributions, we will try to extend our results

to non-scalar systems. It will lead us to a general method-
ology for designing observers for integral delay dynamics
and underactuated hyperbolic systems.
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