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Stabilizing Integral Delay Dynamics and Hyperbolic Systems using a
Fredholm Transformation

Jeanne Redaud1, Jean Auriol1, and Silviu-Iulian Niculescu1

Abstract— In this paper, we design a stabilizing state-
feedback control law for a system represented by a general
class of integral delay equations. Under an appropriate spectral
controllability assumption, an implementable control law is
proposed. The approach is constructive and makes use of
the well-known backstepping methodology. Due to the integral
terms present in the original system, the proposed problem
requires a Fredholm transform, which is not always invertible.
The invertibility of this transformation is proved using an
operator formulation. In particular, we show that this invert-
ibility property is a consequence of spectral controllability. The
existence of the kernels defining the Fredholm transform is
proved similarly by showing that they satisfy an invertible
integral equation. Some test case simulations complete the
paper.

I. INTRODUCTION

In this paper, we design a state-feedback control law
that stabilizes a general type of Integral Delay Equations
(IDE). They can represent a wide variety of systems. Indeed,
numerous engineering or biological models involve transport,
communication, or measurement delays [20]. In particular,
such delays naturally appear when considering networks of
interconnected subsystems. More specifically, IDEs naturally
arise when modeling propagation of electric pulses in the
heart dynamics [10], for instance, population dynamics or
biomedical systems, as epidemics, using transmission delays
in their representation [7].

When analyzing such systems, one of the difficulties to
consider is that they combine pointwise and distributed
delays. In most cases, such delays may induce instabilities
of the closed-loop system or bad performances of output-
feedback control laws. Various problems arise in implement-
ing control laws that include distributed delays [21]. Initially,
various ideas from complex analysis have been used to
find necessary and sufficient stabilizability and controllability
conditions [13], [5]. However, these conditions guarantee the
existence of a stabilizing state feedback control, but are in
most of the cases not operational.

It has been shown in recent contributions that a large
class of hyperbolic systems can be rewritten as difference
equations with distributed delays, for instance in [2], using
a backstepping approach [16]. Delay terms are implied by
the transport phenomena inherent to hyperbolic systems and
to in-domain couplings (convection terms, for instance).
Interestingly, when considering under-actuated systems of
hyperbolic equations [1], such distributed delays also appear
in the actuation, thus emphasizing the existing links between
hyperbolic systems and IDEs. In this context, it is interesting
to explore the cases further when specific methods developed
for hyperbolic systems can be applied to stabilize IDEs.
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In this paper, we propose a constructive approach to
design an implementable control law that stabilizes the
considered class of IDEs. More precisely, the contribution
of the paper is three-fold. First, unlike classical approaches,
we use a Partial Differential Equation (PDE) control-oriented
framework to stabilize the considered class of IDEs. Then,
the proposed approach requires the introduction of an ap-
propriate Fredholm integral transformation. To the best of
the authors’ knowledge, the existence of this transformation
represents a novelty in the literature and corresponds to a
generalization of the constructive backstepping technique.
Finally, it is worth mentioning that our methodology can
be extended to underactuated hyperbolic systems.

The proposed approach can be resumed as follows. We
first define a comparison system1 [20] described by a set
of hyperbolic PDEs including control inputs. We will show
that its closed-loop stability properties imply those of the
original IDE system. Next, the use of the backstepping
methodology allows mapping this hyperbolic system to a
stable target system and the design of a stabilizing control
law. Unlike traditional approaches [15], the specific structure
of the original system requires the use of a Fredholm integral
transform. Contrary to Volterra transformations, the existence
and invertibility of such a transformation are not guaranteed.
Several results in the literature deal with the invertibility of
Fredholm transforms when kernels have a specific structure
[9], [6]. As these conditions are not fulfilled here, we use
an operator framework, as suggested by [8]. More precisely,
we show that the well-posedness and invertiblity of our
transform represent a consequence of a natural spectral
controllability assumption.

Notations: Inspired by [14], for any fixed τ > 0, we denote
Dτ = H1([−τ, 0],R) the Banach space of H1 real-valued
functions mapping the interval [−τ, 0] into R. For a function
φ : [−τ,∞) 7→ R, its partial trajectory φ[t] ∈ Dτ is defined
by φ[t](θ) = φ(t+ θ),−τ ≤ θ ≤ 0. The associated L2 norm

is given by ||φ[t]||L2 =
(∫ 0

−τ φ(t+ θ)2dθ
) 1

2

. We denote
S = [0, 1]2, T − = {(x, y) ∈ [0, 1]2, x ≥ y} and T + =
{(x, y) ∈ [0, 1]2, x ≤ y}.

II. PROBLEM UNDER CONSIDERATION

A. Time-delay formulation

Consider two known positive delays τ0 > 0 and τ1 > 0
and let us define the bounded linear operators Li : Dτi → R,
i ∈ {0, 1}, by

Li : φ[t] 7→ aiφ[t](−τi) +

∫ τi

0

fi(ν)φ[t](−ν)dν, (1)

1see, e.g., [20] and the references therein for some discussions on delay
systems



with a0 ∈ (−1, 1), a1 ∈ R\{0} and f0, f1 two piecewise
continuous functions. Consider the following time-delay
equation defined for all t ≥ 0 by

φ[t] = L0φ[t] + L1V[t], (2)

with initial data given by φ0 = φ0 ∈ Dτ0 . The function V ∈
Dτ1 corresponds to the actuation, with V (t) = 0, ∀ t ≤ 0.

A function φ : [−τ0,∞) → R is called a solution of
the initial value problem (2) if φ0 = φ0, and if (2) is
satisfied for t ≥ 0. Since the coefficient |a0| is strictly
inferior to one, the open-loop system only has a finite number
of unstable roots [14]. More precisely, the principal part
of the system has to be exponentially stable. If such a
condition is not fulfilled, then it is impossible to delay-
robustly stabilize the system (2) [18]. Due to the distributed
delay term (

∫ τ0
0
f0φ(t−ν)dν), the open-loop system may be

unstable. The objective of this paper is to design a control
law V (t) that exponentially stabilizes the system in the
sense of the Dτ0 -norm. More precisely, we want to design
a control law such that ∃ ν > 0, C0 > 0, ∀φ0 ∈ Dτ0 , all
solutions of the closed-loop (2) satisfy ||φ[t]||L2([−τ1,0]) ≤
C0e−νt||φ0||L2([−τ1,0]).
Note that the actuation in (2) appears through both pointwise
and distributed delay terms. It has been seldom studied in
the literature [4], [23], and is a major difference compared
to existing results. However, we assume here that there is
(at least) a pointwise delay on the actuation since a1 6= 0.
Obviously, the difficulties to stabilize equation (2) are related
to the simultaneous presence of a distributed-delay term on
the actuation and on the state. Let us formally take the
Laplace transform of equation (2) (zero initial condition).
We have F0(s)φ(s) = F1(s)V (s), where the holomorphic
function F0 and F1 are defined by

F0(s) = 1− a0e−τ0s −
∫ τ0

0

f0(ν)e−νsdν, (3)

F1(s) = a1e−τ1s +

∫ τ1

0

f1(ν)e−νsdν. (4)

To guarantee the possibility to stabilize system (2), we make
the following (spectral) controllability assumption

Assumption 1: Spectral controllability [19], [22]
For all s ∈ C, rank[F0(s), F1(s)] = 1.
In other words, this assumption says that F0 and F1 cannot
simultaneously vanish.

B. Control strategy

The control strategy we propose is as follows:
• first, we rewrite the integral delay equation (2) as

a hyperbolic system, and prove that this hyperbolic
system shares the same stability properties;

• second, using an invertible Fredholm integral transform,
we map this hyperbolic system to a stable target system.
The invertibility of the backstepping transformation is
shown using an operator framework;

• next, to show the existence of the backstepping trans-
formation, we rewrite the kernel equations as integral
equations. Again, the existence of a solution to these
Fredholm integral equations is shown using an operator
framework;

• finally, this leads to a stabilizing state-feedback control
law for the original system.

III. PDE FORMULATION

In this section, we introduce a simple hyperbolic system
that will be useful to conclude to the stability of the original
system (2). Indeed, its stability properties imply appropriate
stability properties for the ”original” time-delay system (2).
In other words, this system may be seen as a comparison
system for (2). Its well-posedness is shown using an operator
formulation. Finally, we conclude this section by giving some
general results on Fredholm transformations.

A. A new hyperbolic system
In this section, we introduce a new hyperbolic system. It

corresponds to two conservation laws, with integral terms
acting at one boundary.

1) System equations: Define λ = 1
τ0

, µ = 1
τ1

, ρ = a0
and the piecewise continuous functions Nu, Nv by Nu(x) =
1
λf0( 1

λx) and Nv(x) = 1
µa1

f1( 1
µ (1 − x)). Consider the

following hyperbolic system of state (u(t, x), v(t, x))T with
(t, x) ∈ R+∗ × [0, 1]

∂tu(t, x) + λ∂xu(t, x) = 0, (5)
∂tv(t, x)− µ∂xv(t, x) = 0, (6)

with the boundary conditions

u(t, 0) = v(t, 0) + ρu(t, 1)

+

∫ 1

0

Nu(y)u(t, y) +Nv(y)v(t, y)dy, (7)

v(t, 1) = V̄ (t) = a1V (t). (8)

The initial conditions u0 and v0 are defined for all x ∈ [0, 1]
by u0(x) = u(0, x) = φ0(−xλ ) and v0(x) = v(0, x) = 0.
They belong to H1([0, 1],R). System (5)-(8) corresponds to
a balance law system [3] actuated through one boundary.

2) Operator formulation and well-posedness: In order to
motivate the definition of a weak solution for the Cauchy
problem (5)-(6) with the initial condition (u0, v0), we multi-
ply (5)-(6) by smooth test functions (ϕ,ψ) and integrate by
parts. This leads to the following:

Definition 1: Let us consider a time T > 0, V ∈
L2([0, T ]). We say that (u, v) is a (weak) solution to (5)-
(8) if (u, v) ∈ (C0([0, T ];L2(0, 1)))2 and∫ T

0

∫ 1

0

(−ϕt(t, x)− λϕx(t, x)− λNu(x)ϕ(t, 0))u(t, x)

+ (−ψt(t, x) + µψx(t, x)− λNv(x)ϕ(t, 0))v(t, x)dxdt

+

∫ 1

0

ϕ(T, x)u(T, x)− ϕ(0, x)u(0, x) + ψ(T, x)v(T, x)

− ψ(0, x)v(0, x)dx−
∫ T

0

µψ(t, 1)V (t)dt = 0, (9)

for every (ϕ,ψ) ∈ C1([0, T ]× [0, 1])2 such that

ϕ(t, 1) = ρϕ(t, 0), ψ(t, 0) =
λ

µ
ϕ(t, 0). (10)

We can now rewrite the system (5)-(8) in the abstract form

d

dt

(
u
v

)
= A

(
u
v

)
+BV, (11)

where we can identify the operators A and B through their
adjoints by taking formally the canonical scalar product



of (11) with smooth test functions (ϕ,ψ) and comparing
with (9). The operator A is thus defined by

A :D(A) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
u
v

)
7−→

(
−λux(x)
µvx(x)

)
, (12)

with D(A) = {(u, v) ∈ (H1(0, 1))2|u(0) = v(0) + ρu(1) +∫ 1

0
Nu(y)u(y) +Nv(y)v(y), v(1) = 0}.

The operator A is well posed and densely defined. Adjusting
the approach of [3, Appendix A], it is possible to show that
A generates a C0-semigroup. Its adjoint A∗ is

A∗ :D(A∗) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
u
v

)
7−→

(
λux(x) + λNu(x)u(0)
−µvx(x) + λNv(x)u(0)

)
, (13)

with D(A∗) = {(u, v) ∈ (H1(0, 1))2|u(1) = ρu(0), v(0) =
λ
µu(0)}. The operator B ∈ L(R, D(A∗)′) is defined by <

BV,

(
u
v

)
>= µv(1)V . Note that B is well defined since

BV is continuous on H1(0, 1) (due to the trace theorem
and the fact that the graph norm associated to D(A?) is
equivalent to the H1-norm). Its adjoint B∗ ∈ L(D(A∗),R)
is then defined by

B∗
(
u
v

)
= µv(1). (14)

Following the approach of [8], we can show that B
is admissible and consequently that for every V ∈
L2([0, T ]), there exists a unique solution to (5)-(8) (u, v) ∈
C0([0, T ];L2(0, 1)). This is omitted here due to space re-
striction. We will later show that the feedback law V is
actually continuous since it will correspond to a bounded
feedback operator.

B. Stability properties

We now show that the stability of the system (5)-(8)
implies the stability of system (2). We have the following

Lemma 1: Consider (5)-(8) with any feedback law V̄ (t).
If the solution of (5)-(8) exponentially converges to zero
(with L2-norm), then the solution of (2) exponentially con-
verges to zero (with L2([−τ0, 0]) norm).

Proof: Let us define z(t) = u(t, 0). Applying the
method of characteristics, we show that z is the solution
of (2), and that the L2-exponential stability of (u, v) implies
the L2([−τ0, 0]) exponential stability of z.
Due to Lemma 1, it is sufficient to design a feedback law
that stabilizes (5)-(8). Note that such a feedback law will be
expressed as a function of u, v but can be causally expressed
as a function of z and past values of itself using u(t, x) =
z(t−τ0x) and v(t, x) = V̄ (t−τ1(1−x)). As a consequence,
we have the following lemma

Lemma 2: Consider the operators A∗ verifying (13) and
B∗ verifying (14). Under Assumption 1 we have,

∀s ∈ C, ker(s−A∗) ∩ ker(B∗) = {0}. (15)
The proof is omitted due to space restrictions. Note that
condition (15) is a controllability condition that can be found
in [8]. It is also introduced by [12] in a much larger setting.

C. Invertibility of some Fredholm integral operators
The stabilization of the PDE system (5)-(8) will be done

using a backstepping transformation of Fredholm type, since
it offers more degrees of freedom than the traditionally used
Volterra transforms. More precisely, we will consider an
integral operator T : (L2(0, 1))2 → (L2(0, 1))2 defined by

T
(
α(x)
β(x)

)
=

(
α(x)
β(x)

)
−
∫ 1

0

K(x, y)

(
α(y)
β(y)

)
dy, (16)

where K is a bounded function defined on the unit square
S = {(x, y) ∈ [0, 1]2}. Unlike Volterra integral transfor-
mation, Fredholm transformations are not always invertible
[26]. The following lemma (adjusted from [8, Lemma 2.2,
Proposition 2.6]) guarantees their invertibility under several
conditions.

Lemma 3: Consider a Fredholm integral operator T :
(L2(0, 1))2 → (L2(0, 1))2 as defined by (16). Assume that

1) ker(T ) ⊂ D(A∗),
2) ker(T ) ⊂ ker(B∗),
3) ∀z ∈ ker(T ), T A∗z = 0
4) ker(s−A∗) ∩ ker(B∗) = {0}, for every s ∈ C.

Then, the operator T is invertible.
Proof: The proof follows the steps of [8, Lemma 2.2,

Proposition 2.6], and can be directly derived from [24].

IV. DESIGN OF A STABILIZING CONTROL LAW

In this section, we use a Fredholm integral operator of
form (16) to map the initial hyperbolic system to an expo-
nentially stable target system. First, we define the candidate
target system. Then, we give the equations satisfied by its
kernels. Finally, proving the invertibility of the Fredholm
integral operator, we can define a full-state feedback control
law stabilizing the initial hyperbolic system.

A. Presentation of the target system
We define a target state (α, β), that satisfies

∂tα+ λ∂xα = 0, ∂tβ − µ∂xβ = 0, (17)
with b.c α(t, 0) = β(t, 0) + ρα(t, 1), β(t, 1) = 0. (18)

It is obviously exponentially stable in the sense of the L2-
norm. It can be rewritten using an abstract formulation

as
d

dt

(
α
β

)
= A0

(
α
β

)
where A0 satisfies (12), and is

defined on D(A0) = {(α, β) ∈ H1(0, 1)2| α(0) = β(0) +
ρα(1), β(1) = 0}. Its adjoint A∗0 is defined by

A∗0 :D(A∗) ⊂ (L2(0, 1))2 → (L2(0, 1))2(
α
β

)
7−→

(
λαx(x)
−µβx(x)

)
. (19)

B. Kernel equations
To map the original system (5)-(8) to the target system

(17)-(18), we use a Fredholm integral operator P of the

form (16), such that
(
u(x)
v(x)

)
= P

(
α(x)
β(x)

)
. The corre-

sponding kernels are denoted Kij = (K)ij , where (i, j) ∈
{1, 2}2. They are piecewise-continuous fucntions defined on
S. Deriving the transformation with respect to time and space
and integrating by parts, we obtain the following kernel
equations,

∂ξK
11(x, ξ) + ∂xK

11(x, ξ) = 0, (20)



µ∂ξK
12(x, ξ)− λ∂xK12(x, ξ) = 0, (21)

λ∂ξK
21(x, ξ)− µ∂xK21(x, ξ) = 0, (22)

∂ξK
22(x, ξ) + ∂xK

22(x, ξ) = 0, (23)

with the boundary conditions

λK11(x, 0) = µK12(x, 0), K11(x, 1) = ρK11(x, 0), (24)
µK22(x, 0) = λK21(x, 0), K21(x, 1) = ρK21(x, 0), (25)
K12(x, 1) = 0, K22(x, 1) = 0. (26)

The two boundary conditions (26) are necessary to guarantee
the invertibility of P . Evaluating (16) in x = 0, we also have

Nu(ξ)−
∫ 1

0

Nu(ν)K11(ν, ξ) +Nv(ν)K21(ν, ξ)dν

= −K11(0, ξ) +K21(0, ξ) + ρK11(1, ξ), (27)

Nv(ξ)−
∫ 1

0

Nu(ν)K12(ν, ξ) +Nv(ν)K22(ν, ξ)dν

= −K12(0, ξ) +K22(0, ξ) + ρK12(1, ξ). (28)

Theorem 1: The set of equations (20)-(26) admits a
unique bounded solution on the unit square S.
Since the kernels are defined by a complex set of equations
(b.c (27)-(28)) we cannot apply classical methods [11] to
prove the well-posedness. The proof of Theorem 1 requires
technical computations, and is deferred to Section V.

C. Invertibility of the Fredholm transform
We now show the invertibility of the Fredholm integral

backstepping transform P . We have the following theorem.
Theorem 2: Consider the Fredholm integral operator P of

the form (16), whose kernels are defined by (20)-(26). Then
P is invertible.

Proof: The adjoint operator P ∗ associated to P , is also
of the form (16). We have

P ∗(

(
α(x)
β(x)

)
) =

(
α(x)
β(x)

)
−
∫ 1

0

KT (y, x)

(
α(y)
β(y)

)
dy.

Since P maps the original system (5)-(8) to the target
system (17)-(18), we have for all z ∈ ker(B∗), P ∗A∗z =
A∗0P

∗z [8]. Direct computations show that P ∗ satisfies the
conditions of Lemma 3. It is therefore invertible, and so is
P .
Since the kernel equations are well-posed by Theorem 1, the
inverse operator P−1 associated to P is uniquely defined by

P−1
(
u(x)
v(x)

)
=

(
u(x)
v(x)

)
+

∫ 1

0

L(x, y)

(
u(y)
v(y)

)
dy, (29)

where L verifies L(x, y) = K(x, y) +
∫ 1

0
K(x, ν)L(ν, y)dν.

D. Stabilizing control law
Using the inverse transform (29), evaluated in x = 1, we

can design a full-state feedback controller V̄ (t):

V̄ (t) = −
∫ 1

0

L21(1, ν)u(ν, t) + L22(1, ν)v(ν, t)dν. (30)

Theorem 3: The state-feedback control law V̄ (t) defined
by (30) exponentially stabilizes the hyperbolic system (5)-(8)
in the sense of the L2-norm. Thus, the control law V (t) =

1
a1
V̄ (t) exponentially stabilizes the integral delay dynamics

(2) in the sense of the Dτ0 -norm.
Proof: With the control law V̄ (t) defined by (30), the

hyperbolic system (5)-(8) is equivalent to the target system
(17)-(18). The target system is exponentially stable in the
sense of the L2-norm, and so is the initial system (5)-(8).
Lemma 1 allows us to conclude the proof.

V. WELL-POSEDNESS OF THE KERNEL EQUATIONS

In this section, we prove the existence of a unique solution
to the kernels equations (20)-(26). We rewrite these equations
as two integral equations. Using Lemma 3, we show that the
associated integral operator is invertible. This guarantees the
existence and uniqueness of a solution. In what follows, we
only consider the case λ > µ. The case λ ≤ µ can be done
following the same ideas. Due to space restrictions, we only
give a sketch of the different proofs.

A. Kernels reduction
The first step of our proof consists in showing that the

existence and uniqueness of K12(0, ξ) and K21(0, ξ) on
[0, 1] implies the one of all the kernels on S. We have

Lemma 4: For all (x, ξ) ∈ S, (i, j) ∈ {1, 2}2, Kij(x, ξ)
can be expressed as functions of K12(0, ·) and K21(0, ·).

Proof: Applying the method of characteristics on
(20)-(23), we can express Kij(x, ξ) as functions on the
corresponding boundary values. Using the boundary condi-
tions (24)-(26), and iterating the procedure, we can express
all the kernels as functions of K12(x, 0) and K21(x, 0).
Direct computations give

K11(x, ξ) =
µ

λ
(1[0,ξ](x)ρK12(x− ξ + 1, 0)

+ 1[ξ,1](x)K12(x− ξ, 0)), (31)

K22(x, ξ) =
λ

µ
1[ξ,1](x)K21(x− ξ, 0). (32)

To deal with the remaining kernels, we need to have a closer
look to their definition domain and to the corresponding
characteristic lines. Define p as the unique integer verifying
pµλ ≤ 1 < (p + 1)µλ . We can divide S into different sub-
domains Dk, k ∈ J0, p+ 1K, as illustrated on Figure 1. More
precisely, we have:
• D0 = {0 ≤ ξ ≤ 1, 0 ≤ x ≤ µ

λ (1− ξ)},
• ∀k ∈ J1, p − 1K, Dk = {0 ≤ ξ ≤ 1, µλ (k − ξ) ≤ x <

µ
λ (k + 1− ξ)},

• Dp = {0 ≤ ξ ≤ 1, µλ (p− ξ) ≤ x < min(1, 1− µ
λξ)},

• Dp+1 = {0 ≤ ξ ≤ 1,min(1, 1− µ
λξ) ≤ x ≤ 1}.

Fig. 1. Different domains in the expression of K21



Using the fact that K21(x, 1) = ρK21(x, 0) and integrating
along the characteristic lines, we obtain by iteration ∀(x, ξ) ∈
Dk,k≤p+1, K21(x, ξ) = ρkK21(0, ξ − k + λ

µx).
Similarly, we have
K12(x, ξ) = 1[0,λµ (1−ξ)]

(x)1[0,1](x)K12(0, ξ + µ
λx).

This concludes the proof.

B. Integral formulation
We can now rewrite (27)-(28) as two integral equa-

tions. Henceforth, the existence and uniqueness of K12(0, ξ)
and K21(0, ξ) will guarantee the well-posedness of the
kernel equations according to Lemma 4. Notice first that
K11(0, ξ) − ρK11(1, ξ) = 0. Using the expressions of the
different kernels obtain in Section V-A, we have

K21(0, ξ) =Nu(ξ)−
∫ 1

0

I11(ξ, ν)K12(0, ν)

+ I12(ξ, ν)K21(0, ν)dν, (33)

K12(0, ξ) =−Nv(ξ) + 1[0,1−µλ ](ξ)ρK
12(0, ξ +

µ

λ
) (34)

+

∫ 1

0

I21(ξ, ν)K12(0, ν) + I22(ξ, ν)K21(0, ν)dν,

where

I11(ξ, ν) = 1[0,µλ (1−ξ)](ν)Nu(ξ +
λ

µ
ν)

+ 1[µλ (1−ξ),
µ
λ ]

(ν)ρNu(ξ − 1 +
λ

µ
ν), (35)

I12(ξ, ν) =
µ

λ
[1[ξ,1](ν)Nv(

µ

λ
(ν − ξ))

+

p∑
k=1

1[0,λµ−k+ξ]
(ν)ρkNv(

µ

λ
(ν − ξ + k)) (36)

+ 1[p+1+
µ
λ
,1](ξ)1[0,λ

µ
−(p+1)+ξ]

(ν)ρp+1Nv(
µ

λ
(ν − ξ + p+ 1))],

I21(ξ, ν) = 1[ξ,ξ+µ
λ ]

(ν)1[0,1](ν)
λ

µ
Nu(

λ

µ
(ν − ξ)), (37)

I22(ξ, ν) =
∑p
k=0 1[0,λµ (1−ξ)−k]

(ν)ρkNv(ξ + µ
λ (ν + k)). (38)

The expressions of Iij are obtained using Fubini’s theorem,
and the computations are quite technical. Due to space
restrictions, we could not give the intermediate steps.

C. Operator formulation
1) Change of variable: We aim to rewrite (33)-(34) using

an integral operator of form (16). To do so, we need to get
rid of the term 1[0,1−µλ ](ξ)ρK

12(0, ξ + µ
λ ) in (34). Let y be

a bounded function, and define ȳ, s.t ∀ξ ∈ [0, 1] we have

ỹ(ξ) = y(ξ)− 1[0,1−µλ ](ξ)ρy(ξ +
µ

λ
). (39)

This yields the following lemma
Lemma 5: The operator .̃ defined by (39) is invertible.

More precisely, we have

y(ξ) =

p∑
k=0

ρk1[0,1−k µλ ](ξ)ỹ(ξ + k
µ

λ
) (40)

Using this change of variables, we can rewrite (34)-(33) as

K21(0, ξ) = Nu(ξ)−
∫ 1

0

Ĩ11(ξ, ν)K̃12(0, ν)

+ I12(ξ, ν)K21(0, ν)dν, (41)

K̃12(0, ξ) = −Nv(ξ) +

∫ 1

0

Ĩ21(ξ, ν)K̃12(0, ν)

+ I22(ξ, ν)K21(0, ν)dν. (42)

with Ĩj1, j ∈ {1, 2} defined by

Ĩj1(ξ, ν) =

p∑
k=0

ρk1[µλk,1]
(ν)Ij1(ν − µ

λ
k). (43)

To show that the integral equations (41)-(42) have a unique
solution, we use an operator formalism.

2) Definition of the integral operator Q: Introduce the
Fredholm integral operator Q acting on L2(0, 1)2 by

Q :

(
f
g

)
7−→

(
f
g

)
−R

(
f
g

)
, (44)

where R is the integral operator defined by

R

(
f(ξ)
g(ξ)

)
=

(∫ 1
0 −I12(ξ, ν)f(ν) + Ĩ11(ξ, ν)g(ν)dν∫ 1
0 −I22(ξ, ν)f(ν) + Ĩ21(ξ, ν)g(ν)dν

)
, (45)

s.t (41)-(42) rewrites Q
(
K21(0, ·)
−K̃12(0, ·)

)
=

(
Nu
Nv

)
. Thus, if

we prove that Q is invertible, we will get that (41)-(42)
admits a unique solution.

3) Invertibility of operator Q:
Lemma 6: The operator Q defined by equations (44)-(45)

is invertible.
Proof: The proof is done by showing that assumptions

1) to 4) of Lemma 3 are verified for the operator Q. Indeed,
due to the regularity of the kernels, Q can be seen as
an operator acting on the space L2(0, 1)2. Assumption 4)
derives from the spectral controllability of the system, and
was proven in Lemma 2. Assumptions 1), 2) are proved by
evaluating the four coupling terms in ξ = 0 and ξ = 1.
To prove that ker(Q) is stable by A∗ (Assumption 3), we
compute the derivative of functions (f, g) ∈ ker(Q) on one
side, and we integrate by parts in the integral terms on the
other side. The complete proof is technical as we need to be
careful to correctly define the integration domains due to the
presence of characteristic functions in the integral terms. It
is omitted here due to space constraints. Since Nu and Nv
are piecewise-continuous, so are K21(0, ·) and K̃12(0, ·).

D. Conclusion: well-posedness of the kernel equations
We have all elements to give the proof of Theorem 1.

Proof: The invertibility of operator Q given by Lemma 6 im-
plies the existence and uniqueness of K̃12(0, ξ),K21(0, ξ).
Their regularity is a consequence of the regularity of the
functions Nu and Nv . Using Lemma 5 and (40), we have
access to the boundary values K12(0, ξ) for all ξ ∈ [0, 1].
According to Lemma 4, the four kernels Kij are then
uniquely defined on S. This concludes the proof.

VI. SIMULATION RESULTS

In this section, we give some simulation results to illustrate
our approach. Consider the hyperbolic system (1), with
coefficients τ0 = 0.5, τ1 = 1, a0 = 0.7 < 1, a1 = 1, and
constant integral coupling terms f0 = 0.8, f1 = −0.35. The
control strategy is implemented using Matlab. We simulated
our system on a time scale of 5s, with 51 space-discretization
points in [0, 1]. The initial condition is a constant functions
φ0 = 1. We choose to work on the equivalent PDE system,



since analyzing the L2-norm of this system will show the
Dτ0 -stability of z but also the convergence to zero of the
control law (which is crucial for implementation and which
would not be guaranteed if the actuator dynamics were
directly compensated in (1)). First, the kernels Kij and
Lij are computed offline using the fixed-point algorithm
(successive approximation technique). The integral terms
are approximated using the trapezoidal method. Then, the
evolution of the hyperbolic system (5)-(8) is computed using
a Godounov Scheme [17]. The control effort is computed
at each time step using (30). In Figure 2, we pictured the

Fig. 2. Evolution of the L2-norm of system (5)-(8).

evolution of the L2-norm of system (5)-(8), in open-loop and
closed-loop. As illustrated by the blue curve, the coefficient
values were chosen such that the system is unstable in open
loop. As expected, in presence of the control law (30), the
system becomes exponentially stable (red curve).

VII. CONCLUDING REMARKS

In this paper, we proposed a new approach to stabilize
a general class of integral delay equations, under a spectral
controllability condition. In the proposed methodology, we
have first rewritten the delay equation as a scalar hyperbolic
system that shares the same stability properties (comparison
system). We then used the backstepping approach to map
this PDE system to a simple (exponentially stable) target
system. However, the configuration considered in this paper
required a Fredholm transform, which is not always invertible
(contrary to Volterra transforms ordinarily used). We proved
the invertibility of the Fredholm transform using an operator
framework inspired by [8]. The well-posedness of the kernels
defining the Fredholm transform was proved using similar
tools. It appeared that invertibility was a consequence of
the assumed spectral controllability condition. Finally, some
simulations illustrated the relevance of this approach to
stabilize the integral delay dynamics. The proposed approach
could be extended to the stabilization of underactuated PDE
systems [1] and underactuated networks of interconnected
PDE systems with actuation only available at the in-between
boundary. However, the proposed strategy could not be used
for industrial applications, since control law (30) requires the
knowledge of all the state. We believe that an observer could
be design for such systems using a similar approaches.
More generally, this paper paves the way for future contribu-
tions on networks with actuation inside the graph structure.
We believe that this approach could be combined with [25] to

tackle a wider diversity of physical systems with an arbitrary
number of PDEs or ODEs. In future contributions, we will
try to extend our results to non-scalar systems. This will lead
us to a general methodology for stabilizing integral delay
dynamics and underactuated hyperbolic systems.
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