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Abstract A local and flexible definition of the monsoon season based on hydrological evidence is
important for the understanding and management of Himalayan water resources. Here, we present an
objective statistical method to retrieve seasonal hydrometeorological transitions. Applied to daily rainfall
data (1951-2015), this method shows an average longitudinal delay of ~15 days, with later monsoon onset
and earlier withdrawal in the western Himalaya, consistent with the continental progression of wet air
masses. This delay leads to seasons of different length along the Himalaya and biased precipitation amounts
when using uniform calendric monsoon boundaries. In the Central Himalaya annual precipitation has
increased, due primarily to an increase of premonsoon precipitation. These findings highlight issues
associated with a static definition of monsoon boundaries and call for a deeper understanding of
nonmonsoonal precipitation over the Himalayan water tower.

Plain Language Summary Precipitation in the Himalayas determines water availability for the
Indian foreland with large socioeconomic implications. Despite its importance, spatial and temporal
patterns of precipitation are poorly understood. Here, we estimate the long-term average and trends of
seasonal precipitation at the scale of individual catchments draining the Himalayas. We apply a statistical
method to detect the timing of hydrometeorological seasons from local precipitation measurements,
focusing on monsoon onset and withdrawal. We identify longitudinal and latitudinal delays, resulting in
seasons of different length along and across the Himalayas. These spatial patterns and the annual variability
of the monsoon boundaries mean that oft-used, fixed calendric dates, for example, 1 June to 30 September,
may be inadequate for retrieving monsoon rainfall totals. Moreover, we find that, despite its prominent
contribution to annual rainfall totals, the Indian summer monsoon cannot explain the increase of the
annual precipitation over the Central Himalayas. Instead, this appears to be mostly driven by changes in
premonsoon and winter rainfall. So far, little attention has been paid to premonsoon precipitation, but
governed by evaporative processes and surface water availability, it may be enhanced by irrigation and
changed land use in the Gangetic foreland.

1. Introduction

The Indian summer monsoon (ISM) is the dominant climatological phenomenon in large parts of Asia, with
intense continental rainout from wet oceanic air masses. Precipitation rates are especially high across the
orographic gradient of the Himalayas (Bookhagen & Burbank, 2006, 2010). There, monsoon precipitation
modulates the intensity of hazardous geophysical processes such as landsliding, debris flows, and flooding
—with associated erosional and depositional dynamics (e.g., Gabet et al., 2008; Marc et al., 2019; Struck
et al., 2015)—and governs the availability of water sustaining food, energy, and biodiversity in the densely
populated piedmont regions and adjacent plains (e.g., Immerzeel et al., 2020). Efficient management of these
hazards and resources requires location-specific knowledge of the onset and end of ISM precipitation, in
addition to its intensity and amount.
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Water stable isotope signatures suggest that the Himalayan hydroclimate has three distinct rainfall seasons:
premonsoon, monsoon, and winter (Brunello et al., 2019; Tian et al., 2020; Yao et al., 2013), reflecting differ-
ent moisture sources and/or transport and condensation mechanisms (Galewsky et al., 2016). However,
without isotopic data, finding the transition between these seasons is challenging. Especially, the timing
of monsoon onset in the Himalayas and its variability remain poorly understood. One issue is that a nonne-
gligible amount of precipitation falls in the preceding period, during intermittent convective storms fed by
evaporation of surface water in the Indo-Gangetic plains (Tuinenburg et al., 2012). The transition to a synop-
tic system with an offshore moisture source, the monsoon onset, and the transition from monsoon to the
mostly dry postmonsoon season, monsoon withdrawal, are not synchronous across the region, nor do they
occur at the same time every year.

Synoptic atmospheric precursors have been used to develop diagnostic indices for the regional monsoon
onset and withdrawal dates (e.g., Ananthakrishnan & Soman, 1988; Boos & Emanuel, 2009; Fasullo &
Webster, 2003; Joseph et al., 2006; Ordofiez et al., 2016; Taniguchi & Koike, 2006; Xavier et al., 2007).
These indices report a considerable temporal variability of the regional monsoon onset, but none of them
accounts for the progressive migration of monsoon rainfall. Meanwhile, spatial variability in the monsoon
timing has been constrained by averaging rainfall patterns over decades to obtain climatological mean
onset and withdrawal dates for specific regions (e.g., Lau & Yang, 1997; Misra et al., 2018; Murakami
& Matsumoto, 1994). Only few studies have investigated the local, interannual variability of onset and
withdrawal in Asia (Bombardi et al., 2020). They have considered deviations from the climatological
mean (e.g., Noska & Misra, 2016) or implemented user-defined thresholds (e.g., Moron et al., 2017;
Wang & LinHo, 2002). However, climatological constraints are poor in the Himalayas, and complex ter-
rain impedes the use of given thresholds. Using an alternative approach, Cook and Buckley (2009) fitted a
two-phase regression model on annual cumulative rainfall. Unfortunately, this data-driven method is less
efficient where the annual cycle is not well defined or includes multiple wet seasons. Hence, an objective,
local, and precipitation-based definition of the monsoon season in the Himalayas is lacking. To date,
hydrological and geomorphic processes are mostly interpreted through the lens of the ISM, but in absence
of objective monsoon demarcation, the large majority of studies relies on simplistic fixed calendric bound-
aries (e.g., 1 June to 30 September), applied uniformly throughout the vast ISM domain. This hampers
our ability to capture the complexity of the Himalayan hydroclimate, its past variability, current state,
and future development.

Here, we propose a straight-forward approach to overcome semiarbitrary, consensus-based calendric bound-
aries, which are commonly used in studies focusing on the consequences of rainfall. First, we present a
hydrometeorologically based definition of the monsoon season over the Himalayas and an explicit local
criterion for its demarcation. Then, we apply this method to estimate seasonal precipitation amounts,
map their offset from calendric estimates, and examine seasonal precipitation trends.

2. Methods

2.1. Statistical Definition of Monsoon Boundaries

The monsoon season is characterized by intense and sustained rainfall during several months. In contrast,
the premonsoon and postmonsoon seasons are drier with more erratic, often convective precipitation. To
detect the transition between these seasons, we used two statistical tests for differences in precipitation
amount and intensity distribution in time series measurements: the Kolmogorov-Smirnov (KS) and
Wilcoxon-Mann-Whitney (WMW) tests. The former characterizes the difference between the empirical dis-
tribution functions of two samples, and the latter determines whether two independent samples have the
same median value. Importantly, these two tests are nonparametric; they do not require the sample to follow
any specific probability distribution. As they address different characteristics of time series, we combined
the two tests into an integrated index reflecting the (dis)similarity of time series rainfall measurements
(hereafter WiKS).

The KS and WMW tests were applied over moving windows with half width of 20, 30, and 40 days. The
p values for the different window lengths, giving the likelihood that the two halves of the window have
the same empirical cumulative distribution (KS) and median (WMW), were averaged to minimize the
dependence on a specific time scale. While the KS test is sensitive to both monsoon onset and withdrawal,
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the WMW test must be run twice, testing for increase (onset) and decrease (withdrawal) in median precipi-
tation. Concatenating statistical tests, a continuous time series of p values (pwamw and pxs) was obtained,
reflecting the significance of the difference between the precipitation occurring before and after a given date.
This analysis was carried out for all days between 1 May and 31 October (Figure 1a). For more than 50% of all
cases, the two tests yielded identical results (section S1 in the supporting information). In the other cases we
defined WiKS as their normalized sum:

10g;o(Pks) 10g1o(Pwarw) 1)

WIKS = — - .
min(log,o(pxs))  min(logyo(Pwaw))

The monsoon onset and withdrawal dates are defined as the dates when WiKS is highest, with pym tested
for an increase or decrease in median, respectively. Due to insufficient data, the start and end of the winter
season could not be defined in the same dynamical manner. Therefore, we defined premonsoon (1 March to
onset), monsoon (onset to withdrawal), postmonsoon (withdrawal to 30 November), and winter
(1 December to 28 February).

2.2. Data Set and Spatiotemporal Analysis

We used the APHRODITE-MA (Asian Precipitation Highly Resolved Observational Data Integration
Towards Evaluation of Water Resources—Monsoon Region; Yatagai et al., 2012) product. With daily data
from 1951-2015, APHRODITE-MA is the longest running precipitation data set available for the
Himalayas. It has been shown to capture correctly the seasonal rainfall patterns in the Himalayas
(Andermann et al., 2011), and the length of the record allows for systematic analysis of spatiotemporal
patterns in monsoon onset and withdrawal. The version used here (V1801_R1 MA) has a spatial resolu-
tion of 0.25°.

To assess the sensitivity of WiKS to the chosen precipitation product, analyses were also conducted on the
GPM IMERGHHV6B data set This is the most recent remotely sensed precipitation product, delivering
satellite-based rainfall estimates with an ~10 km spatial and 30 min temporal resolution compiled to daily
data (Skofronick-Jackson et al., 2017).

To analyze changes in precipitation within their hydrological context, we divided the Himalayan domain,
excluding the Indus and Yarlung-Tsangpo-Brahmaputra rivers, into 24 Trans Himalayan Catchments
(THCs) (Figure 1b; Table S1). Acknowledging the first-order effect of the orographic barrier, the THCs were
partitioned into two subcatchments: a wet, monsoon exposed part south of the High-Himalayan peaks and a
leeward, dryer part to the North. For this purpose, we used the 500 mm/year isohyet, extracted from the
TRMM 2B31 climatology of Bookhagen and Burbank (2010), which traces the High-Himalayan ridgeline.
This definition yields some very small northern subcatchments, where rainfall estimates may be more
uncertain due to a paucity of precipitation gauges. However, precipitation errors for some single catchments
should not bias the overall conclusions at the regional scale, which is the focus of our study.

Seasonal precipitation amounts were obtained within dynamic WiKS monsoon boundaries, for individual
years and catchments. The presence and magnitude of long-term linear trends in annual and seasonal pre-
cipitation totals were explored using the nonparametric Mann-Kendall test and Sen's slope test (Sen, 1968)
respectively. To compare catchments with different rainfall amounts, we report the total change over
1951-2015 normalized by the long-term mean. We limited this trend analyses to 10 catchments in Nepal,
where the APHRODITE gauge network is most dense, stable, and long-lived (section S2).

3. Spatial Variability of Climatological Monsoon Timing
3.1. Spatial Variability of Monsoon Boundaries

Spatial patterns in the average monsoon onset and withdrawal dates reflect the distance of the monsoon
front to its principal moisture source, the Bay of Bengal.

The long-term mean onset date of monsoon in the 24 THCs exhibits both longitudinal and latitudinal varia-
tions. The earliest onset (30 May, Day 150) occurs in the southern part of the easternmost basin and the latest
(24 June, Day 175) in the northern part of the westernmost basin (Figure 2a). Both the southern and the
northern subcatchments exhibit a delay of 15 days along the length of the range. An average lag time of
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Figure 1. (a) One-year time series of daily precipitation, p values of Kolmogorov-Smirnoff and Wilcoxon-Mann-Whitney
tests, and the normalized sum of these two tests (WiKS). Black lines show monsoon boundaries, picked at the WiKS
maxima. (b) Map of mean annual precipitation with outlines of 24 Trans-Himalayan Catchments (see names in

Table S1). (c) Time series of daily GPM precipitation and rainfall 580 in the upper Kali Gandaki valley (08n).
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Figure 2. Long-term (1951-2015) mean monsoon onset (a) and withdrawal (b) dates in Julian days and distribution of
monsoon length over the 24 THCs (c).

~6 days (min = 1, max = 11) is observed between southern and northern subcatchments. It is larger in the
east (~10 days) and smaller in the west (~2 days), with intermediate values in the center. Similar but spatially
reversed results were found for the mean monsoon withdrawal dates. Withdrawal occurs first in the
northwestern catchments (16 September, Day 259) and last in the southeast (7 October, Day 280)
(Figure 2b). Monsoon withdrawal starts ~2 days (min = —2, max = 6.6) earlier in the northern
subcatchments, without a clear longitudinal trend in the north-south delay.

The lack of independent data sets describing the arrival and withdrawal of monsoon rainfall at local scale
hampers the benchmarking of our results. However, similar delays are observed for GPM monsoon bound-
aries, although the details often differ and interannual correlation values are low (section S3). Moreover, the
large-scale longitudinal gradients retrieved by our method are in general agreement with the reported
normal dates of Southwest monsoon onset over India (IMD, 2020). Our observations match the regional pro-
gression of moisture evident in the long-term mean daily rainfall through the year (Movie S1). Additional
independent validation of the WiKS monsoon definition comes from a comparison with rainfall §'*0
(Figure 1c), in the High Himalayas of Central Nepal for May 2016 to September 2017 (sampling details in
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Brunello et al., 2019). Premonsoonal isotopic values are relatively high (~0%o), reflecting the contribution of
continentally recycled moisture. They drop abruptly (approximately —15%.) when the precipitation intensi-
fies, which, in turn, is identified by WiKS as the monsoon onset. In 2017, the coincidence of the isotopic shift
and the WiKS monsoon onset on 23 June suggests that our statistically derived monsoon boundaries are
indeed linked to the inflow of isotopically depleted oceanic air masses.

The regional-scale atmospheric monsoon onset is often assumed to manifest in a substantial local-scale
increase of rainfall. To test this, we have assessed the correlation between our catchment-wide onset dates
and several published monsoon onset indices (Ananthakrishnan & Soman, 1988, AS; Joseph et al., 2006,
IMD; Fasullo & Webster, 2003; Taniguchi & Koike, 2006; Xavier et al., 2007). These correlations reach only
moderate values (r = 0.3-0.5) and are nonuniform across the Himalayan domain (section S4). Although bet-
ter matches are achieved in specific subregions, no agreement is found across the mountain belt. Indices
based on synoptic atmospheric precursors better match the local precipitation patterns in the western
Himalaya, while the local increase in rainfall in southernmost India (AS, IMD) has a better correlation with
the southeastern THCs. Moreover, regional onset estimates may correlate with the local onset in southern
subcatchments, but more rarely in northern ones. This is consistent with our estimated delays across the
orographic barrier. Our results indicate that regional-scale monsoon indices do not systematically relate to
rainout over the Himalayan catchments, as also found by Moron and Robertson (2014) and Bombardi
et al. (2020). Therefore, we suggest that even if regional-scale monsoon onset can start local-scale monsoon
rainfall, the latter results from smaller scale processes, which are poorly reproducible from one year to
another.

3.2. Spatial Variability of Monsoon Length

Monsoon rain is delivered earlier in the east, closer to the predominant source in the Bay of Bengal, and later
farther west. This reflects the migration of the monsoon front along the Himalayan range. During monsoon
withdrawal, the inflow of the oceanic air masses weakens, first in the west and then farther east. Over
its length, the mountain belt retards the monsoon migration at the onset, while the withdrawal of the mon-
soon is not affected by orography, with minimal north-south delays. Central Nepal, where the ridgeline com-
prises the highest mountains, has the strongest S-N onset delays. Onset delays are also relatively large in
Bhutanese catchments (20-22) leeward of the Shillong Plateau, which blocks the northward progression
of moisture (e.g., Grujic et al., 2006). Thus, on top of the well-described effect on precipitation distribution
(e.g., Anders et al., 2006), Himalayan orography determines the timing of precipitation.

The observed regional monsoon dynamic results in meteorological seasons with different length along the
Himalayas (Figure 2c). The average length of the monsoon season in the THCs is 110 days, with a maximum
deviation of 37 days. The monsoon is shortest in the west, around 90 days, with little difference in season
length across the orographic barrier. In the central Himalayas (84°-87°E) the monsoon lasts around
100-110 days, and in the east (87°-94° E) the contrast between north and south is the strongest, the mon-
soon season lasting around 110 days in the north and >120 days south in the south.

4. Spatiotemporal Precipitation Estimates
4.1. Seasonal Precipitation Estimates

WiKS is a data-driven method to allocate precipitation to the relevant hydrometeorological seasons. It facil-
itates investigation of seasonal precipitation budgets. To assess the relative bias introduced by fixed bound-
aries, we compute the difference between seasonal precipitation estimates for WiKS and the most common
calendric boundaries (1 June to 30 September), normalized by annual rainfall. Interannual correlations are
reported in section S5. Calendric partitioning is common practice in the assessment of spatiotemporal varia-
bility of monsoon amounts by end-users; here, we illustrate the magnitude and distribution of errors asso-
ciated with this approach. Given the minor significance of postmonsoon and the static definition of
Winter, we focus on premonsoon and monsoon precipitation estimates.

The normalized difference in monsoon precipitation is shown in Figure 3. In the northern subcatchments,
differences range from —34% to +30%. Calendric seasons yield larger monsoon precipitation amounts, with
negative average differences during 1951-2015 in all basins except THCs 12 and 13. This difference increases
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westward. Some years had spatially consistent positive differences (e.g., 1999 and 1973); in others differences
were uniformly negative (e.g., 1988 and 1972).

In the southern subcatchments, normalized differences range from —37% to +32%. In the eastern catch-
ments, WiKS monsoons have, on average, more rain than calendric monsoons. In the central Himalayas,
values are similar, and in the west, the differences are mostly negative, because the WiKS monsoon is shorter
than the calendric one. In terms of temporal evolution, in the first decades of record, calendric seasons
consistently yield smaller rainfall totals, by up to 10% compared to WiKS; cases with WiKS rain estimates
lower than the calendric estimates are sparse with small deviations, less than~5%.

Normalized premonsoon precipitation differences are computed using calendric (1 March to 31 May) and
mixed calendric-WiKS (1 March to onset) seasonal bounds. In northern subcatchments, WikS-based esti-
mates are, on average, higher (2.6%, min = —17%, max = 28%). No significant spatial patterns are observed,
and all basins show positive time-averaged differences ranging from 1.2% to 4.7%. However, a progressive
increase of WiKS values compared to calendric estimates is observed since 1951, with differences frequently
>7% in the last two decades.

For the southern subcatchments, the spatially averaged differences between mixed calendric-WiKs and
purely calendric estimates are minor, less than +6%. However, individual differences range from —20.5%
to 26%, with negative differences in the early part of the record (~1960-1995) in the eastern catchments,
grading progressively to proportionally higher WiKS rainfall westward.

Only in the Central Himalayas the long-term mean calendric- and WiKS-based estimates of monsoon rain
totals are similar (+1%). Elsewhere, calendric season bounds do not permit an adequate attribution of pre-
cipitation to the correct season. Systematic differences between calendric- and WiKS-based monsoon preci-
pitation estimates reflect the important longitudinal gradient in the season length. Notably, in specific
catchments and years, the difference between precipitation estimates exceeds 40% of the annual total.
Thus, the use of calendric monsoon precipitation estimates can be a major source of error in studies of
precipitation-driven processes at seasonal time scales. The lack of a systematic change in time of the offset
between calendric- and WiKS-based monsoon estimates suggests that from 1951 monsoon length variations
oscillated around a stable mean. Meanwhile, the difference of premonsoon precipitation estimated with
mixed and calendric bounds has risen from —3% to 4%, indicating strengthening and/or lengthening of
the WiKS-based premonsoon.

4.2. Seasonal Precipitation Trends

We have demonstrated a significant variability of monsoon onset and withdrawal dates (Figure 2) and cal-
culated long-term average seasonal rainfall totals (Figure 3). Next, we perform trend analysis of seasonal pre-
cipitation amounts in 10 Nepalese catchments (Figure 4a), where the dense and long-lived gauging network
maximizes Aphrodite's reliability.

Long-term trends were obtained by applying Mann-Kendall and Sen's slope tests on annual and seasonal
precipitation totals (1951-2015) (Figure 4b). Annual rainfall in Nepal has increased by 8-30 mm, on both
sides of the orographic barrier, except Catchments 7 and 8, where precipitation decreased north of the
barrier (8-11 mm). This trend in annual rainfall is primarily due to spatially consistent changes during
the premonsoon. Premonsoon precipitation totals have increased by 54-124 mm relative to 1951,
complemented by an ~11-70 mm increase in winter precipitation, especially in northern subcatchments.
Meanwhile, monsoon precipitation in northern Subcatchments 6-10 decreased by 110-153 mm.

Long-term trends in mean premonsoon rainfall intensity (in mm/day) and premonsoon seasonal length sug-
gest that intensification of daily precipitation dominates (~80%) the augmented rainfall depth during the
premonsoon period, while season lengthening plays subsidiary role (Figure 4c). These proportions were
obtained by computing how much of the long-term total rainfall increase would be caused by each of these
terms, as derived from their Sen's slope, assuming the other constant.

We note that the significance of the long-term premonsoon trend is due to a ramp-like increase of reported
precipitation during the first 30 years of the record. The first decade, 1951-1961, has a low observation den-
sity, and trends computed only for the better monitored interval 1961-2015 are not statistically significant
(section S2; Figure S3). However, Kamiguchi et al. (2010) and Hofstra et al. (2010) demonstrated that
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temporal changes in the gauge network coverage have no effect on the seasonal precipitation amounts but
only on frequency-intensity distribution. Still, caution is needed when interpreting precipitation data from a
variable number of stations, and any premonsoon precipitation changes remain to be validated (section S2).

Our results highlight an important and previously unreported aspect of the Himalayan hydroclimate: the
dominant role of rainfall during nonmonsoonal seasons in driving the evolution of the annual precipitation
amount, in spite of their minor absolute contribution (from west to east, 25-15% for premonsoon and 20%
to 5% for winter). Most studies of Himalayan precipitation focused on the monsoon season, which dominates
the regional water budget (e.g., Bookhagen & Burbank, 2010). However, for water availability and manage-
ment, the premonsoon period may have considerable importance, especially because it coincides with the
start of the vegetative season. Previous work relates premonsoon rain to surface water availability and eva-
poration in the Indo-Gangetic plain (Pradhan et al., 2019; Tuinenburg et al., 2012), consistent with the rela-
tive isotopic enrichment of premonsoon rainfall (Figure 1c). This has increased substantially in recent
decades due to extensive irrigation (Cook et al., 2015; Rodell et al., 2009; Tuinenburg et al., 2014).
Confirmation of their causal relationship would demonstrate human manipulation of the Himalayan water
cycle. More work is needed to identify the underlying mechanisms of premonsoon rainfall and the coupling
of these mechanisms with the ISM system.

5. Conclusions

To resolve the timing of monsoon on an annual scale and to assign precipitation to the correct season, we
have designed an objective season delineation method (WiKS), combining two nonparametric statistical
change point tests. Tailored for the Himalayas, where climatological constraints are scarce and hydroclimatic
contributions complex, WiKS can be applied to any dataset with daily resolution over monsoon-dominated
regions. With this method, we determined the spatiotemporal distribution of the onset and withdrawal of
monsoon precipitation over the period 1951-2015 across the Himalayas. Coincidence with a drop-in rainfall
8'®0 values in the Nepalese Himalaya suggests that WiKS monsoon onset dates are mechanistically
meaningful. Ultimately, depending on the application, combining different diagnostics may provide addi-
tional insights.

WiKS monsoon boundary dates corroborate the longitudinal delay of the long-term mean monsoon onset
along the Himalayan range, which results in substantially shorter monsoon duration in the west and behind
the orographic barrier. Further, they enable for the first time to identify exceptional years or spatial anoma-
lies in monsoon timing, the analysis of which may yield insights into underlying controls. Overcoming the
limitations of calendric monsoon definition, WiKS can help sharpen the quantification of rainfall-driven
processes in monsoon dominated regions, setting a benchmark for modeling and forecasting of annual
and seasonal Himalayan monsoon rainfall.

WIiKS allows an objective attribution of measured precipitation to the different seasons and therefore more
robust estimates of their long-term average trends. We find a pervasive long-term increase in annual preci-
pitation totals in the Nepal Himalayas, which cannot be attributed to the ISM. Instead, it was mainly driven
by rainfall intensification during premonsoon, complemented by winter precipitation. Despite the moderate
contribution to annual precipitation totals (20-45%), precipitation in nonmonsoonal seasons appears to have
steered the hydroclimatic evolution of the region since the 1950s. These findings encourage a shift of atten-
tion to smaller-scale moisture sources and drivers for understanding the changes in precipitation availability
over the Himalayan water tower.
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