Strongly Polarized Iridiumδ^-—Aluminumδ^+ Pairs: Unconventional Reactivity Patterns Including CO$_2$ Cooperative Reductive Cleavage

Léon Escomel, Iker Del Rosal, Laurent Maron, Erwann Jeanneau, Laurent Veyre, Chloé Thieuleux, and Clément Camp*

Cite This: https://doi.org/10.1021/jacs.1c01725

ABSTRACT: The iridium tetrahydride complex Cp*IrH_4 reacts with a range of isobutylaluminum derivatives of general formula Al(iBu)$_x$(OAr)$_{3-x}$ $(x = 1, 2)$ to give the unusual iridium aluminum species [Cp*$\text{IrH}_3\text{Al(iBu)(OAr)}]$ (1) via a reductive elimination route. The Lewis acidity of the Al atom in complex 1 is confirmed by the coordination of pyridine, leading to the adduct [Cp*$\text{IrH}_3\text{Al(iBu)-(OAr)(Py)}]$ (2). Spectroscopic, crystallographic, and computational data support the description of these heterobimetallic complexes 1 and 2 as featuring strongly polarized Al(III)σ^+–Ir(III)δ^- interactions. Reactivity studies demonstrate that the binding of a Lewis base to Al does not quench the reactivity of the Ir–Al motif and that both species 1 and 2 promote the cooperative reductive cleavage of a range of heteroallenes. Specifically, complex 2 promotes the decarbonylation of CO$_2$ and AdNCO, leading to CO (trapped as Cp*IrH_2(CO)) and the alkylaluminum oxo ([[(iBu)(OAr)(Py)]$\text{Al}(\text{OAr})$]$_2$(μ-O) (3)) and ureate ({Al(OAr)(iBu)[κ$_2$-(N,O)AdNC(O)-NHAd]} (4)) species, respectively. The bridged amidinate species Cp*IrH_2(μ-CyNC(H)NCy)Al(iBu)(OAr) (5) is formed in the reaction of 2 with dicyclohexylcarbodiimine. Mechanistic investigations via DFT support cooperative heterobimetallic bond activation processes.

INTRODUCTION

Alkylaluminum(III) reagents are classically used in organometallic chemistry as catalysts activators—due to the propensity of these strong Lewis acids to perform halide or alkyl abstractions—leading to unsaturated, highly electrophilic transition-metal (TM) cations paired with weakly coordinating aluminate counteranions (Scheme 1, top). One of the most seminal applications of this chemistry is the widespread use of methylaluminoxanes (MAOs) as cocatalysts with metallocene complexes, which has revolutionized polyolefin synthesis. In contrast, in this contribution, we describe a very rare example where alkylaluminum species promote umpolung at a d-block metal, converting iridium half-metalloccenes into nucleophiles through the formation of polarized Irδ^-–Alδ^+ pairs (Scheme 1, bottom).

The study of TM complexes bearing aluminum-based metallo-ligands is still in its infancy. This is mostly due to the synthetic challenges associated with the preparation of such heterobimetallic species in a controlled way, which requires the introduction of an Al center, the derivatives of most of which are Lewis acidic, in the coordination sphere of a TM, classically acting as a Lewis acids as well. Yet, such derivatives hold great promises in terms of reactivity. In the case of late transition metals, which feature higher electronegativities in comparison to Al (1.61 on the Pauling scale), the binding of hard Al-based ligands, acting as σ-acceptors, can reverse the classical ligand→TM bonding situation and confer unique electronic properties.
to the resulting complexes, which opens up attractive opportunities for cooperative reactivity. Although a range of Z-type metal–alane $L_nM−AlX_3$ Lewis adducts are known, 3 $^{−13}$ complexes featuring X-type metal–aluminum $L_nM−AlX_2(L'_m)$ ($m = 0, 1$) covalent bonds are much more rare (Scheme 2) and their reactivity remains almost unexplored. $^{14−22}$

A groundbreaking achievement in this area was reported in 2019 by Goicoechea, Aldridge, and colleagues, who described the transfer of polarity between gold(I) and a “naked” (NON) Al aluminyl(I) anion, leading to an $Alδ^+−Auδ^−$ complex. 19 A direct consequence of this umpolung is the unusual nucleophilic reactivity at the gold center observed in the reductive insertion of CO$_2$. Very recently, Power reported the preparation of an aluminum–copper metal–metal-bonded species from Al(I), (BDI Mes)CuAl(BDIDip), 23 and Arnold reported rare examples of $An−Al$ dative interactions ($An = U, Th$), 24,25 but the reactivity of these species was not described.

It is important to note that all of the reported late-metal–aluminum systems, shown in Scheme 2, rely on the use of electronegative amido $α$-substituents to stabilize the Al center. Although alkyl-substituted aluminyl anions and a monomeric alanediy1 species have been synthesized very recently, $^{26−29}$ their coordination chemistry to late transition metals has yet to be demonstrated. One notable exception is the unusual ethylaluminum complex $[Cp^*Ir(AlEt)]_2$ (Scheme 3, top), reported by Bergman and co-workers in 1998. 13 This compound was prepared without the requirement of isolating challenging low-valent Al–alkyl species, via a simple double deprotonation of a dihydride iridium(III) complex by the commercially available triethylaluminum reagent. 30 To our surprise, no followup studies emerged from this preliminary work to explore further the reactivity of this unconventional molecular object featuring a low-valent Ir$_2$Al$_2$ core. Very recently, our group reported the preparation of heterobimetallic tantalum–iridium complexes using a similar alkane reductive elimination approach (Scheme 3, bottom) and demonstrated the ability of the resulting Ta=Ir multiple bond motif to promote H/D isotope exchange reactions with excellent catalytic performances. $^{31−33}$

Inspired by this exploratory work from Bergman and co-workers, and in a continuation of our previous work, we hypothesized that this alkane elimination chemistry could be extended to the preparation of well-defined iridium systems bearing aluminum-based ligands. Such an approach could open up unusual mechanistic pathways and help in an understanding of more complex chemistry, such as the multifaceted role of alkylaluminum reagents employed as cocatalysts in numerous transition-metal-catalyzed processes. Accordingly, we investigated the reactivity of aluminum isobutyl derivatives toward the iridium tetrahydride complex Cp^*IrH_4, 34 which led to the formation of unusual bimetallic complexes featuring strongly polarized $Alδ^−−Irδ^+$ cores. These heterobimetallic complexes were notably able to reductively cleave heteroallenes (CO$_2$, isocyanates).

RESULTS AND DISCUSSION

Preparation of Bimetallic Ir/Al Species.

In view of preventing the formation of tetrametallic aggregates such as those observed by Bergman 30 (Scheme 3), we considered the use of sterically hindered Al–alkyl sources. For that purpose, we employed bulky isobutylaluminum aryloxy precursors and explored their reactivity toward Cp^*IrH_4.

Treatment of diisobutyl(3,5-di-tert-butyl-4-hydroxytoluene)-Al, denoted $Al(Bu)_2(OAr)$, with Cp^*IrH_4 results in the formation of the heterobimetallic complex $[Cp^*IrH-Al(Bu)(OAr)]$ (1) which is isolated in 72% yield after 24 h of reaction at room temperature (Scheme 4). One equivalent of
isobutane (quantified by ¹H NMR, see Figure S1) is released in the course of the reaction. The ¹H NMR spectrum of I, recorded in C₆D₆ solution, shows isobutyl signals at δ 2.15, 1.08, and 0.31 ppm integrating respectively for 1H, 6H, and 2H and indicating the presence of one isobutyl group per Al center as expected. The hydride resonance is observed as a singlet at δ −16.80 ppm and integrates for 3H. This suggests rapid exchange among the three hydrides on the NMR time scale at room temperature, which is expected on the basis of literature precedents for metal–polyhydride systems. The IR spectrum of I exhibits two strong bands at s 2144 cm⁻¹ and 1973 cm⁻¹ assigned to metal–hydride stretches. The most significant feature of the crystallographic structure of I, shown in Figure 1, is the Al–Ir distance of 2.406(2) Å, which

at room temperature. Upon heating at 110 °C for 1 week, compound 2 is obtained from Al(Bu)(OAr)₂, and is isolated in 18% yield from cold (−40 °C) recrystallization in a saturated pentane solution (Scheme 4). ¹H NMR monitoring of this reaction indicates the release of 2,6-di-tert-butyl-4-methylphenol (see Figure S2). We attribute the preferential reductive elimination of HOAr versus isobutane to the particularly high steric hindrance of this phenoxy derivative. Note that complex I does not react with HOAr, even upon heating, while treatment of 1 with 1 equiv of 2,6-diphenylphenol, which features a lower steric profile, results in the quick formation of an intractable mixture of species, among which is Cp*IrH₄ (identified by ¹H NMR), most likely due to the competition in the protonolysis reactivities of the Al–C versus Al–Ir motifs together with ligand redistribution phenomena.

The Lewis acidity of the Al atom in complex 1 is confirmed by the coordination of pyridine, leading to the adduct [Cp*IrH₃Al(Bu)(OAr)(Py)] (2), which is isolated in 68% yield by cold crystallization in pentane (Scheme 5). The

coordinated pyridine molecule can be dissociated from Al upon treatment of 2 with B(C₆F₅)₃ to restore complex 1 (Figure S11). The molecular structure of complex 2 is underpinned by multinuclei NMR and IR spectroscopy, elemental analysis, and X-ray diffraction analysis. The ¹H NMR spectrum of 2 is for the most part similar to that of 1 with a typically shielded hydride signal integrating for 3H at δ −17.26 ppm. Characteristic metal–hydride stretches around 2100 cm⁻¹ are found in the DRIFT spectrum of 2.

The solid-state molecular structure of 2 (Figure 2) confirms the N-coordination of the pyridine onto aluminum, with an Al–N1 bond length (2.032(7) Å) in the expected range. The Al cation adopts a pseudotetrahedral geometry with angles lying in the 92.6(3)−119.9(2)° range. The pyridine donation to Al results in an elongation of both the Al–O₁ bond (1.695(4) Å in 1 vs 1.776(6) Å in 2) and the Al–Ir distance from 2.406(2) Å in 1 to 2.502(2) Å in 2. Note that the formal shortness ratio for the Ir–Al parameter (r = 0.998) is at unity, indicating a strong interaction between the Cp*IrH₄ and Al(Bu)(OAr)(Py) fragments. The acute bending of the Cp* ring with respect to the Ir–Al axis (Cp*centroid–Ir–Al angle of 138.73° in 2 vs 143.79° in 1) suggests a terminal coordination of at least one of the hydrides.

Structural Investigation via DFT. In order to get better insights into the nature of the Ir–Al interaction in complexes 1 and 2 as well as to verify the position and role of the hydrides in the bonding, DFT calculations (B3PW91) were carried out. The bonding situations are very similar in 1 and 2 (see Figure
hydrides in solution is expected, which is in agreement with the \(^1H \) NMR data. The most stable structure exhibits two bridging hydrides and one terminal \(\text{Ir}−\text{H} \), whereas the three hydrides have a \(\mu \)-coordination in the second isomer (+0.5 kcal/mol). Interestingly, the presence of a terminal hydrogen has an effect on the geometry around the iridium center since the Al−Ir−X (\(X = \text{Cp}^* \) centroid) angle is 136°, whereas this angle is 180° in the second isomer. The former geometry and the computed Ir−Al distance (2.51 Å computed vs 2.50 Å experimental) are in line with the X-ray crystallographic structure. Natural bonding orbital (NBO) analyses of the two isomers clearly indicate the presence of three covalent Ir−H interactions (with 50−58% contribution from the Ir spd hybrid orbital). At the second-order donor−acceptor level, donations from the Ir−H bonds as well from the Ir d lone pairs into the Al empty sp orbital are observed, in line with the presence of three-center−two-electron (3c-2e) \(\text{Ir}−\text{H}−\text{Al} \) bonds as well as some Ir−Al interactions. The latter is corroborated by an analysis of the Wiberg bond indexes (WBIs, Figure 3). The Ir−H WBIs are around 0.7, in line with a mainly covalent interaction, whereas the Al−H WBIs are close to 0.12−0.15, in line with electron delocalization from the Ir−H bond onto an acceptor orbital on Al. Interestingly, the Ir−Al WBI is around 0.3, in line with some bonding interaction between Ir and Al. The NPA charge on iridium is significant in both cases, taking values of −1.033 and −0.882, respectively, while the effective charges on the aluminum centers are +1.932 and +1.874, respectively (Figure 3). This analysis is consistent with the works of Crimmin and Aldridge on related M−Al (M = Rh, Au) complexes. Indeed, a substantial negative charge on the transition metal was reported in these cases, as well as similar WBIs.\(^{15,19}\)

![Figure 2](image-url) Solid-state molecular structure of 2. Displacement ellipsoids are plotted at the 30% probability level. Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (deg): \(\text{Ir1}−\text{Al1} \) 2.502(2), \(\text{Al1}−\text{O1} \) 1.776(6), \(\text{Al1}−\text{Cl} \) 1.986(9), \(\text{Al1}−\text{N1} \) 2.032(7), \(\text{O1}−\text{Al1}−\text{Ir1} \) 119.9(2), \(\text{O1}−\text{Al1}−\text{N1} \) 92.6(3), \(\text{O1}−\text{Al1}−\text{Cl} \) 113.2(3), \(\text{N1}−\text{Al1}−\text{Ir1} \) 114.4(3), \(\text{Cl}−\text{Al1}−\text{N1} \) 138.7(2), \(\text{Al1}−\text{Ir1}−\text{Cl} \) 138.7(2). S37 in the Supporting Information), and therefore hereafter only the description of 2 is given. Two isoenergetic structures are found for 2 (Figure 3), so that a rapid exchange of the

![Figure 3](image-url) Calculated structures, NPA charges, and Wiberg bond indexes for the two conformers of complex 2.

![Scheme 6](image-url) Reactivity of 2 with \(\text{CO}_2 \)
an eclipsed conformation, with the two isobutyl ligands pointing in the same direction. The Al1—O1 and Al2—O1 bond distances (1.697(2) and 1.701(2) Å, respectively) are in the expected range. A DRIFT spectroscopy analysis of 3 shows the absence of O–H vibrations, in agreement with a bridging oxo ligand (versus a bridging hydroxo). Note that, in solution, complex 3 exists as a mixture of two rotamers in a ratio of 93/7 which interconvert above 84 °C, as proved by a variable-temperature 1H NMR experiment (see Figure S15).

Despite the pivotal role of methylaluminoxane derivatives in catalysis, very few well-defined alkylaluminoxanes are known to date. This can be attributed to the hydrolytic conditions classically used to prepare such derivatives, which are extremely difficult to control, together with the propensity of Al−O linkages to oligomerize to form insoluble amorphous materials. Complex 3 thus adds to the handful of structurally characterized molecular aluminum oxide species. Note that examples of stoichiometric CO2 reduction by low-valent Al species leading to C−O bond cleavage to yield CO + Al oxo/carbonyl species have emerged only recently. Here the reaction mechanism is totally different, since it does not involve redox changes of the Al(III) center (see DFT calculations below) but still allows the preparation of an amido species generated after CO extrusion. Complex 4 might thus arise from isocyanate insertion into such an Al−NHAd intermediate. Overall, this uncommon reaction adds to the handful of examples of the metal-mediated decarbonylation of isocyanates and cyanates.

The reaction of 2 with dicyclohexylcarbodiimine does not lead to the reductive cleavage of a C≡N bond but instead to the formation of a bridged amidinate species, Cp*IrH2(μ-CyNC(H)Ncy)Al(Bu)(OAr) (5) (Scheme 7, bottom), arising from hydride transfer to the central carbon of the heteroallene. The protonation of the central carbon of the amidinate is confirmed by NMR spectroscopy: the 1H NMR spectrum of 5 displays a characteristic singlet at δ +6.99 ppm
which correlates in the 1H–13C HSQC NMR experiment to the diagnostic 13C resonance found at δ 162.9 ppm.

The crystallographic structure of 5 is shown in Figure 5. The bridging μ-η^1-η^1 amido ligand is located parallel to the metal–metal axis, as is commonly found in metal–metal-bonded dinuclear amide-aminate species.77 The N1–C2–N2 angle (124.8(4)$^\circ$) is much larger than that classically found in η^2 amides, but this value compares well with that reported for μ-η^1-η^1 amides bridging metal-metal ions.2,74

The N1–Ir1 (2.088(4) Å) and N2–Al1 (1.905(4) Å) bond lengths are comparable to those found in Al and Ir amido complexes, respectively.70,73

In order to better understand the reaction mechanisms operating in these heteroallenyl activations by Ir–Al metal–metal pairs, we carried out DFT calculations (B3PW91). The reaction begins by the replacement of the pyridine by a CO$_2$ molecule that binds to Al and Ir (Figure 6). This substitution is endothermic by 7.5 kcal/mol. From this adduct, the CO$_2$ undergoes a nucleophilic attack by the iridium center. Indeed, at the transition state (TS), the CO$_2$ molecule is bent in order to overlap an empty orbital at the carbon of CO$_2$ with a lone pair of the iridium center (see the associated molecular orbital in Figure S38 in the Supporting Information). The aluminum center ensures an electrophilic assistance by binding to the oxygen. The associated barrier is 18.9 kcal/mol, in line with a kinetically accessible reaction. From the intrinsic reaction coordinates, this yields a four-membered metallacyclic species whose formation is slightly endothermic (+3.6 kcal/mol) with respect to the reactants. Next, the small size of the CO$_2$ molecule allows a migratory insertion onto the Ir–Al bond. This is easily achieved through a low-lying TS (barrier of 10.5 kcal/mol) and leads to the formation of a stable metal-lacarboxylate complex (−11.5 kcal/mol) where the two oxygens bind to Al while C is bound to Ir. This intermediate is similar to the few examples where CO$_2$ is reductively inserted in polar metal–metal bonds.19,58

The presence of three hydrides on the Ir center, in close vicinity to the inserted CO$_2$, allows an easy hydrogen migration from Ir to one of the oxygen atoms. This migration occurs through a kinetically accessible TS (barrier of 25.8 kcal/mol), which is followed by a C–O bond breaking TS to ultimately yield the formation of an Al hydroxide molecule and Cp*Ir(CO)$_2$H$_2$, whose formation is exothermic by 7.1 kcal/mol with respect to the reactants (the hydrogen transfer + CO bond breaking step being slightly endothermic by 4.4 kcal/mol from the Ir(CO$_2$)Al carboxylate intermediate). The Al hydroxide species can then react with a second equivalent of complex 2. This reaction is kinetically facile with a barrier of 13.4 kcal/mol and yields after pyridine recoordination the experimentally observed compounds 3 and Cp*IrH$_4$. Other pathways were investigated (see Figure S39 in the Supporting Information) but the one reported here appears to be the most favorable. This CO$_2$ reduction mechanism is very different from that reported by Murray et al. for a diiron–hydride complex,78 where the first step is a hydrogen transfer to CO$_2$, or the reaction reported by Lu et al.79 using nickelate–group 13 complexes, where a CO$_2$ disproportionation is observed.

On the other hand, the reactivity is slightly reminiscent of what is observed in f-element chemistry,80–83 in particular with the formation of an intermediate where CO$_2$ is inserted between Ir and Al, but the protonation of CO$_2$ and the formation of a terminal hydroxyl unit are unique. Conceptually, the chemistry observed here is related to the heteroallenyl dipolar addition chemistry in Fischer carbene84,85 or boryl complexes,86–90 for instance in the case where CO$_2$ is added across a Ir–C(H)(OR) fragment, which is nucleophilic at Ir and electrophilic at C, leading to an iridium carbonyl adduct and HC(O)OR.91

Similar calculations were conducted for the reaction of 2 with AdNCO (Figure 7 and Figure S40). The reaction
sequence is quite similar to that reported for CO$_2$. In particular, the replacement of pyridine by AdNCO is endothermic by 9.7 kcal/mol. From this adduct, AdNCO also undergoes a kinetically accessible (23.2 kcal/mol) nucleophilic attack by the Ir center, yielding an unstable four-membered metallacyclic intermediate (+7.2 kcal/mol). The next step is different from that reported for CO$_2$ and is likely due to the steric bulk of the adamantyl group. Indeed, AdNCO cannot easily insert between Ir and Al, so that the hydrogen transfer from Ir to N occurs on the four-membered-ring metallcycle with a barrier of 27.7 kcal/mol (hydride transfer to the oxygen and AdNCO insertion followed by hydrogen transfer were also computed and were found not to be competitive; see Figures S40 and S41). This hydrogen transfer is followed by a C−N bond breaking TS (barrier of 4.7 kcal/mol), which allows the formation of an Al amido complex and a molecule of Cp*Ir(CO)$_2$H$_2$ (exo-thermic by 2.3 kcal/mol with respect to the reactants). The formed Al amide molecule does not react with a molecule of 2 (as observed with CO$_2$), presumably due to its steric bulk, but rather undergoes a [2 + 2] cycloaddition with another molecule of AdNCO (barrier of 6.9 kcal/mol). This yields a stable cycloaddition product (−23.1 kcal/mol), which can rearrange to a more stable isomer (−45.2 kcal/mol) through, for example, a 1,3-hydrogen shift.

While isocyanates are well-known to undergo catalytic polymerization or cycloisomerization, selective dimerization of isocyanates to substituted ureas after the elimination of CO has been almost unexplored and, to our knowledge, this original cooperative decarbonylation mechanism of AdNCO is unprecedented.

Calculations were also carried out on the reaction of CO$_2$ with CyN═C═NCy (see Figure S42). In that case the increased steric bulk stops the reaction at the amidinate complex, as observed experimentally.

CONCLUSION

In summary, the iridium tetrahydride complex Cp*IrH$_4$ reacts with isobutylaluminum aryloxy derivatives to give unusual iridium aluminum species via a reductive elimination route. Spectroscopic, crystallographic, and computational data support the description of these heterobimetallic complexes as featuring strongly polarized Al(III)$^+$−Ir(III)$^-$ cores. Reactivity studies demonstrate that the Al sites retain their Lewis acidic character and that the binding of a Lewis base to Al does not quench the reactivity of the Ir−Al motif. More importantly, these Ir−Al species promote the cooperative reductive cleavage of heteroallenes (CO$_2$, AdNCO). In these processes, the Ir(III) center acts as a nucleophile. Although some Ir(I) species are known to act as nucleophiles, to the best of our knowledge such behavior is unusual for d6 Ir(III) complexes and thus such a result opens up attractive prospects for reactivity in catalysis. From the perspective of aluminum, these complexes allow access to unconventional motifs in molecular Al chemistry (e.g., oxos) without a change in the formal oxidation state of the Al(III) center. This contrasts with CO$_2$ cleavage promoted by low-oxidation-state aluminum species, which are notoriously difficult to isolate, and thus represents a major achievement. This work also illustrates the multifaceted reactivity of transition metals toward alkylaluminum reagents, which are employed as cocatalysts in numerous processes. Future efforts will be devoted in our group to further explore the cooperative heterobimetallic reactivity of these unconventional molecular objects.

Figure 6. Computed enthalpy profile for the reaction of CO$_2$ with 2 at room temperature.
EXPERIMENTAL SECTION

General Considerations. Unless otherwise noted, all reactions were performed either using standard Schlenk line techniques or in an MBraun glovebox under an atmosphere of purified argon (<1 ppm of O₂/H₂O). Glassware and cannulas were stored in an oven at ∼100 °C for at least 12 h prior to use. Toluene, n-pentane, octane, THF, and diethyl ether were purified by passage through a column of activated alumina, dried over Na/benzophenone, vacuum-transferred to a storage flask, and freeze−pump−thaw degassed prior to use. Deuterated solvents (THF-d₈, toluene-d₈, and C₆D₆) were dried over Na/benzophenone, vacuum-transferred to a storage flask, and freeze−pump−thaw degassed prior to use. CO₂ gas was dried over freshly regenerated R311G BASF catalyst/molecular sieves (4 Å) prior to use. The compounds Cp*IrH₃Al(iBu)(OAr) and Al(iBu)₂(OAr) were prepared according to the literature procedures. All other reagents were acquired from commercial sources and used as received.

IR Spectroscopy. Samples were prepared in a glovebox (diluted in dry KBr), sealed under argon in a DRIFT cell equipped with KBr windows, and analyzed on a Nicolet 670 FT-IR spectrometer.

Elemental Analyses. Elemental analyses were performed under an inert atmosphere at Mikroanalytisches Labor Pascher, Germany.

X-ray Structural Determinations. Experimental details regarding single-crystal XRD measurements are provided in the Supporting Information. CCDC 2059453–2059457 contain supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

NMR Spectroscopy. Solution NMR spectra were recorded on Bruker AV-300, AVQ-400, and AV-500 spectrometers. ¹H and ¹³C chemical shifts were measured relative to residual solvent peaks, which were assigned relative to an external TMS standard set at 0.00 ppm. ¹⁹F chemical shifts are reported relative to BF₃·OEt₂ set at 0.00 ppm. ¹H and ¹³C NMR assignments were confirmed by ¹H−¹H COSY, ¹H−¹³C HSQC, and HMBC experiments.

Synthesis of [Cp*IrH₃Al(iBu)(OAr)] (1). A 4 mL pentane solution of IrCp*H₄ (282.5 mg, 0.85 mmol, 1.0 equiv) was added dropwise to a 8 mL colorless pentane solution of (2,6-di-tert-butyl-4-methylphenoxy)diosbutylaluminum, Al(iBu)₂(OAr) (310.0 mg, 0.86 mmol, 1.0 equiv). The resulting solution was stirred at room temperature for 20 h. Then, the volatiles were removed under vacuum, yielding a white solid (550 mg of crude solid). This powder...
was dissolved in the minimum amount of pentane (ca. 7 mL) and the solution was filtered and stored at −40 °C for 16 h, yielding compound 1 as white microcrystals (390.0 mg, 72% yield).1H NMR (500 MHz, CD3OD, 293 K): δ 7.18 (s, 2H, CH2), 2.32 (s, 3H, CH3-Ar), 2.15 (m, 1H, CH3-aryl), 1.96 (s, 15H, C(CH3)3), 1.65 (s, 18H, CH(CH3)2), 1.08 (d, JHH = 6.4 Hz, 6H, CH3-aryl), 0.31 (3, JHH = 7.1 Hz, 2H, CH2-aryl), −16.80 (s, 3H, H-Ir).13C{1H} NMR (125 MHz, CD3OD, 293 K): δ 155.46 (Cα), 138.18 (Cβ), 126.41 (Cδ), 126.10 (Cζ), 94.64 (Cγ), 35.00 (Cε), 32.88 (CH3-aryl), 32.18 (Cζ), 28.04 (CH3-aryl), 25.93 (CH3-aryl), 21.59 (Ar(CH3)), 11.04 (CH3-aryl). DRIFTS (293 K, cm−1): σ 2946 (s, vC-H), 2916 (s, vC-H), 2877 (s, vC-H), 2857 (s, vC-H), 2144 (s, vC-H), 1464 (s), 1425 (s), 1297 (s), 1252 (s). Anal. Caled for C37H52Ir2O: C, 54.95; H, 6.57; Ir, 11.99.

Synthesis of [Cp*IrH2Al(i-Bu)(OAr)(Py)]2 (2). A 0.5 mL colorless pentane solution of pyridine (15.6 mg, 0.20 mmol, 1.0 equiv) was added dropwise to a 8.5 mL light yellow pentane solution of 1 (123.5 mg, 0.20 mmol, 1.0 equiv). The resulting pale yellow solution was stirred at room temperature for 30 min. Then, the volatiles were removed under vacuum, yielding a crude off-white oily material. This crude material was dissolved in the minimum amount of pentane (ca. 1.5 mL), and the solution was filtered and stored at −40 °C for 16 h, yielding 2 as colorless needle crystals (94 mg, 68% yield). Colorless block single crystals of 2 suitable for XRD studies were grown by slow recrystallization of 2 in an octane/toluene (7/1) mixture at −40 °C within 48 h.1H NMR (500 MHz, CD3OD, 293 K): δ 8.89 (d, 2H, CH2-aryl), 7.24 (s, 2H, CH2), 6.73 (t, 1H, CH3-aryl), 6.43 (s, 2H, CH2-aryl), 2.37 (s, 3H, CH3-Ar), 2.03 (s, 15H, C(CH3)3), 1.86 (m, 2H, CH2-aryl), 1.61 (s, 18H, CH(CH3)2), 1.06 (bs, 6H, CH3-aryl), 0.74 (d, 2H, CH2-aryl), 0.95 (s, 3H, CH3-Ir).13C{1H} NMR (125 MHz, CD3OD, 293 K): δ 155.72 (Cα), 149.34 (CH2-aryl), 149.04 (CH2-aryl), 139.12 (Cβ), 126.01 (Cδ), 124.57 (Cζ), 124.56 (Cε), 124.46 (Cδ), 134.96 (Cγ), 31.61 (Cε), 29.61 (Cγ), 26.88 (Cζ), 26.65 (Cδ), 24.40 (Cε), 21.48 (Cζ). DRIFTS (293 K, cm−1): σ 3101 (m), 3022 (m), 2948 (s, νC-H), 2913 (s, νC-H), 2855 (s, νC-H), 1616 (m), 1451 (s), 1423 (s), 1271 (s). Anal. Caled for C46H46Ir2Al2O2: C, 57.66; H, 4.27; N, 3.21. Found: C, 57.42; H, 4.92; N, 3.34.

Synthesis of Compound 4. A 3 mL colorless toluene solution of 1-adamantyl isocyanate (82.5 mg, 0.47 mmol, 2.0 equiv) was added dropwise to a 8.5 mL colorless pentane solution of 2 (167 mg, 0.23 mmol, 1.0 equiv). The reaction mixture was stirred at room temperature for 24 h, yielding a brownish solution. Volatiles were removed in vacuo, yielding a brownish solid containing an equimolar mixture of Cp*IrH3(Al(CH3))2 and complex 4 (ca. 240 mg). This solid was dissolved in the minimum amount of pentane (ca. 8 mL), and the solution was filtered and stored at −40 °C for 3 weeks, yielding 4 as colorless block crystals suitable for XRD analysis (110 mg, 76% yield).1H NMR (500 MHz, CD3OD, 293 K): δ 7.27 (s, 2H, CH2), 4.40 (s, 1H, NH), 2.37 (s, 3H, CH3-Ar), 2.19 (m, 1H, CH3-aryl), 1.88−1.98 (m, 18H, CH2-aromatics), 1.72 (t, JHH = 6.6 Hz, 6H, CH3-aryl), 1.45−1.55 (m, 12H, CH2-aryl), 1.22 (dd, 6H, CH3-aryl), 0.59 (m, 2H, CH2-aryl).13C{1H} NMR (125 MHz, CD3OD, 293 K): δ 163.96 (Cδ), 154.47 (Cε), 138.59 (Cζ), 126.13 (Cδ), 126.08 (Cζ), 135.11 (Cε), 50.27 (Cζ), 43.54 (Cε), 42.82 (Cζ), 36.62 (Cδ), 36.37 (Cζ), 35.28 (Cζ), 31.71 (Cε), 29.94 (Cζ), 28.89 (Cδ), 28.45 (Cζ), 28.02 (Cζ), 26.68 (Cζ), 21.81 (Cζ), 21.58 (Cε). DRIFTS (293 K, cm−1): σ 2348 (m, νC-H), 2944 (s, νC-H), 2911 (s, νC-H), 2847 (s, νC-H), 1575 (s), 1451 (s), 1490 (m), 1278 (m). Anal. Caled for C60H56Al2Ni2O2: C, 76.15; H, 10.07; N, 4.44. Found: C, 76.02; H, 10.12; N, 4.39.

Synthesis of Compound 5. A 3 mL colorless pentane/toluene (1/1) solution of N,N'-dicyclohexylcarbodiimide (44.5 mg, 0.22 mmol, 1.1 equiv) was added dropwise to a 6.5 mL colorless pentane solution of 2 (144.5 mg, 0.20 mmol, 1.0 equiv). The resulting solution was stirred and heated at T = 50 °C for 3 h, triggering a color change from colorless to yellow. The crude reaction mixture was then cooled to room temperature and stirred for 24 h. Volatiles were then removed in vacuo, yielding a crude yellow powder (ca. 150 mg). This solid was dissolved in the minimum amount of pentane (ca. 6 mL), and the solution was filtered and stored at −40 °C, yielding 5 as light yellow block crystals suitable for XRD analysis (100 mg, 60% yield).1H NMR (500 MHz, CD3OD, 293 K): δ 7.24 (s, 2H, CH2), 6.99 (s, 1H, CH2-met), 3.37 (m, 1H, CH2-Cδ), 2.83 (m, 1H, CH2-Cε), 2.41 (s, 3H, CH2-Ar), 2.35 (d, 1H, CH2), 2.32 (m, 1H, CH2-aryl), 2.23 (d, 1H, CH2), 1.80 (m, 2H, CH2-aryl), 1.73 (s, 18H, CH3-aryl), 1.66 (m, 2H, CH2-aryl), 1.61 (s, 15H, CH2-aryl), 1.54 (m, 2H, CH2-aryl), 1.45 (d, JHH = 6.7 Hz, 3H, CH3-Ir), 1.41 (d, JHH = 6.6 Hz, 3H, CH3-Ir), 0.95−1.39 (10H, m, CH2-aryl), 0.93 (d, JHH = 6.6 Hz, 2H, CH2-aryl, −14.52 (s, 1H, H-Ir)), −14.99 (s, 1H, H-Ir).13C{1H} NMR (125 MHz, CD3OD, 293 K): δ 161.86 (Cδ), 157.63 (Cε), 139.62 (Cζ), 125.96 (Cζ), 124.03 (Cε), 92.05 (Cζ), 69.61 (Cε), 57.33 (Cζ), 36.72 (Cζ), 35.95 (Cζ), 35.76 (Cζ), 35.57 (Cζ).
(CH₂CN), 35.24 (CH₃CN), 34.46 (CH₂CN), 32.63 (CH₃CN), 29.13 (CH₃CN), 28.18 (CH₂CN), 26.97 (CH₃CN), 26.75 (CH₂CN), 26.73 (CH₃CN), 26.36 (CH₃CN), 26.32 (CH₂CN), 26.16 (CH₃CN), 21.41 (CH₃CN), 10.48 (CH₃CN).

DRIFTS (293 K, cm⁻¹): σ 2949 (σ, v_C-H), 2915 (s, v_C-C), 2851 (s, v_C-H), 2145 (w, v_O-H), 2071 (w, v_P-O), 1614 (s, v_O-P), 1447 (m), 1421 (s), 1264 (s). Anal. Calcd for C₄₃H₇₆AlIrN₂O: C, 60.13; H, 8.84; N, 3.27. Found: C, 60.13; H, 8.84; N, 3.28.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c01725.

NMR, IR, XRD and computational data (PDF)

Cartesian coordinates for the calculated structures (XYZ)

Accession Codes

CCDC 2059453–2059457 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Clément Camp – Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, F-69616 Villeurbanne, France; orcid.org/0000-0001-8528-0731; Email: clement.camp@univ-lyon1.fr

Authors

Léon Escomet – Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, F-69616 Villeurbanne, France; orcid.org/0000-0001-7744-1048

Iker Del Rosal – Université de Toulouse, CNRS, INSA, UPS, UMR 5215, LPCNO, F-31077 Toulouse, France

Laurent Maron – Université de Toulouse, CNRS, INSA, UPS, UMR 5215, LPCNO, F-31077 Toulouse, France; orcid.org/0000-0003-2653-8557

Erwann Jeanneau – Université de Lyon, Centre de Diffractométrie Henri Longchambon, 69100 Villeurbanne, France

Laurent Veyre – Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, F-69616 Villeurbanne, France

Chloé Thieuleux – Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, F-69616 Villeurbanne, France; orcid.org/0000-0002-5436-2467

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/jacs.1c01725

Author Contributions

All authors have given approval to the final version of the manuscript.

Funding

We gratefully acknowledge financial support from the CNRS-MOMENTUM program. CalMip is acknowledged for a generous grant of computing time (CALMIP-EOS grant 0833).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Anne Baudouin, Christine Lucas, and Nesrine Oueslati for their help with the NMR spectroscopic analyses. We thank the anonymous reviewers for their very insightful comments during the revision process of this manuscript.

REFERENCES

(102) Wang, H. M.; Li, H. X.; Yu, X. Y.; Ren, Z. G.; Lang, J. P. Cyclotrimerization and Cyclotrimerization of Isocyanates Promoted by One Praseodymium Benzenethiolate Complex [Pr(SPh)3(THF)-3]. Tetrahedron 2011, 67 (8), 1530–1535.

