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1 INTRODUCTION

SUMMARY

In fluid dynamics, the scaling behaviour of flow length scales is commonly used to infer
the governing force balance of a system. The key to a successful approach is to measure
length scales that are simultaneously representative of the energy contained in the solution
(energetically relevant) and also indicative of the established force balance (dynamically rele-
vant). In the case of numerical simulations of rotating convection and magnetohydrodynamic
dynamos in spherical shells, it has remained difficult to measure length scales that are both
energetically and dynamically relevant, a situation that has led to conflicting interpretations,
and sometimes misrepresentations of the underlying force balance. By analysing an extensive
set of magnetic and non-magnetic models, we focus on two length scales that achieve both
energetic and dynamical relevance. The first one is the peak of the poloidal kinetic energy
spectrum, which we successfully compare to crossover points on spectral representations of
the force balance. In most dynamo models, this result confirms that the dominant length scale
of the system is controlled by a previously proposed quasi-geostrophic (QG-) MAC (Magneto-
Archimedean-Coriolis) balance. In non-magnetic convection models, the analysis generally
favours a QG-CIA (Coriolis-Inertia-Archimedean) balance. Viscosity, which is typically a
minor contributor to the force balance, does not control the dominant length scale at high con-
vective supercriticalities in the non-magnetic case, and in the dynamo case, once the generated
magnetic energy largely exceeds the kinetic energy. In dynamo models, we introduce a second
energetically relevant length scale associated with the loss of axial invariance in the flow. We
again relate this length scale to another crossover point in scale-dependent force balance dia-
grams, which marks the transition between large-scale geostrophy (the equilibrium of Coriolis
and pressure forces) and small-scale magnetostrophy, where the Lorentz force overtakes the
Coriolis force. Scaling analysis of these two energetically and dynamically relevant length
scales suggests that the Earth’s dynamo is controlled by a QG-MAC balance at a dominant
scale of about 200 km, while magnetostrophic effects are deferred to scales smaller than 50 km.

Key words: Core; Dynamo: theories and simulations; Numerical modelling.

outer core L as a characteristic flow length scale. The dimensionless
numbers therefore only provide an estimate of the global-scale force

Turbulent convective motions of liquid metal in the Earth’s outer
core initiate dynamo action that maintains the geomagnetic field.
Based on the magnetohydrodynamic theory of convection-driven
dynamos, it is known that the fluid flow in the Earth’s core is influ-
enced by six different forces, namely Coriolis, pressure, buoyancy,
Lorentz, inertial and viscous forces. Our main tool to study their
relative importance and thus to know which dynamical regime the
Earth’s core is in, are dimensionless numbers, which can be com-
puted from the core’s physical properties (see Table 1). These can
be interpreted as order of magnitude estimates of the ratio between
two forces. Since the Earth is a rapidly rotating system, the rela-
tive strengths of the individual forces with respect to the Coriolis
force are considered. In the following, we adopt the thickness of the

balance. It can be expected that the force balance differs at smaller
scales.

The ratio between viscous and Coriolis forces can be estimated
with the help of the Ekman number

LY 15
E= oo 0(1077), M

while the relative amplitude of inertia compared to Coriolis forces
is given by the Rossby number

U
Ro=—>~0 (1079). @
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Table 1. Typical estimates of physical properties of the Earth’s outer core.

Symbol Definition Value Reference

Q Rotation rate 7.29 x 1073 57!

L Thickness of outer core 2.26 x 10°m Dziewonski & Anderson (1981)
P Mean core density 1.1 x 10*kgm™3 Dziewonski & Anderson (1981)
2 Gravity at core-mantle boundary 10.68ms2 Dziewonski & Anderson (1981)
n Magnetic permeability 47 x 1077Hm™!

v Kinematic viscosity 1070 m?s~! Pozzo et al. (2013)

o Thermal expansion coefficient 1073K! Gomi et al. (2013)

® Typical superadiabatic temperature perturbation 1074K Jones (2015)

N Specific heat capacity at constant pressure 850 Jkg~! K~! Stacey (1994)

k Thermal conductivity 100Wm~'K~! Pozzo et al. (2012)

P Thermal diffusivity 109 m?s™! & = klpcy

A Magnetic diffusivity 0.7m?s™! Pozzo et al. (2012)

U Typical flow velocity 4% 10"*ms™! Finlay & Amit (2011)

B Typical magnetic field strength 4x1073T Gillet et al. (2010)

In the above two definitions, 2 denotes the Earth’s rotation rate,
U a characteristic flow velocity and v the kinematic viscosity. The
smallness of £ and Ro allows us to conclude that in the Earth’s
core inertial and in particular viscous contributions are insignifi-
cant compared to rotational effects at large scales. The strength of
buoyancy relative to Coriolis forces can be estimated by defining
the following buoyancy number

_ aBg,
QU

Bu ~0(107), (3)
where « represents the thermal expansion coefficient, ® a superadia-
batic temperature perturbation and g, the gravity at the core—mantle
boundary. The ratio between Lorentz and Coriolis forces in plane-
tary dynamos is often assessed by evaluating the traditional form of
the Elsasser number, which is defined by

2

B
A= ~0( 4
= ooe 0 (10), 4)

where B is the magnetic field strength, p the fluid density, u the
magnetic permeability and A the magnetic diffusivity. This defini-
tion suggests a dominant role of the Lorentz force in governing
the flow dynamics. However, it has been argued that the traditional
Elsasser number is an unreliable measure of the force ratio due to
some of the underlying assumptions possibly not being fully sat-
isfied in turbulent dynamos (see e.g. Soderlund et al. 2012, 2015;
Dormy 2016). A more exact estimate can be obtained using the
so-called dynamic Elsasser number (e.g. Christensen et al. 1999;
Cardin et al. 2002; Soderlund et al. 2012, 2015)

BZ

_ N -2
= oUL 0(107%). (5)

Ay
In contrast to A,, the dynamic Elsasser number indicates that the
Lorentz force is two orders of magnitude smaller than the Coriolis
force, suggesting that convection dynamics are rotationally dom-
inated. The final force that has not been considered so far is the
one due to pressure. In the case of negligible inertia and viscosity,
the pressure force compensates the part of the Coriolis force that is
not balanced by buoyancy and Lorentz forces. The hierarchy of the
forces indicated by dimensionless numbers is different depending
on which Elsasser number is used to estimate the Lorentz force. It
is clear, however, that in either case viscosity and inertia represent
the least important contributions, since they are far smaller than the
other four forces. When considering the dynamic Elsasser number,

buoyancy and Lorentz forces come about one or two orders of mag-
nitude below the prevailing force equilibrium between pressure and
Coriolis forces. The leading-order force balance in this case is there-
fore geostrophic (e.g. Busse 1970). The traditional Elsasser number,
on the other hand, suggests a much stronger Lorentz force, so that
the dominant force balance would be between pressure, Coriolis and
Lorentz forces, which is termed magnetostrophic (MS) balance (e.g.
Roberts 1978). As already pointed out above, the non-dimensional
numbers only provide information about the force balance on the
system scale. The true force balance in the Earth’s core is likely
more complicated due to the length-scale dependence of the forces
(e.g. Aurnou & King 2017; Aubert ef al. 2017). Based on scaling
analysis of A, (eq. 5), which is described in detail in Section 2.2,
Aurnou & King (2017) for instance argued that only the large-scale
flow is predominantly geostrophic, while magnetostrophy occurs on
smaller scales.

The nature of the leading-order force balance has a significant
effect on the convective pattern. A dominant geostrophic balance
would result in convection being primarily organized into colum-
nar eddies that are aligned with the rotation axis as a result of the
so-called Proudman—Taylor theorem. In the case of magnetostro-
phy, on the other hand, the Lorentz force would be able to relax
this rotational constraint, and thus break up the columnarity of
the flow, resulting in larger scale flow. Core flow inversions based
on observations of the secular variation of the Earth’s magnetic
field show consistency with leading-order geostrophy (e.g. Pais &
Jault 2008; Gillet et al. 2012; Aubert 2020). However, solutions
to the core flow problem are non-unique, and the unknown con-
tribution from unresolved length scales in the magnetic field and
secular variation limits the spatial resolution of the inverted flows
to spherical harmonic degrees well below ¢ = 14 (e.g. Hulot et al.
2015). Therefore, smaller unresolvable scales could still be inan MS
state.

In addition to observations and theoretical considerations, nu-
merical simulations are an important tool for our understanding of
the geodynamo mechanism. Computational constraints make it cur-
rently impossible to simulate the extreme range of spatial and tem-
poral scales present in the Earth’s core (e.g. Schaeffer et al. 2017).
Nonetheless, dynamo models can provide valuable insights into our
planet’s core dynamics if they operate in a relevant force balance
regime, since this would allow a meaningful extrapolation of the
numerical results to realistic parameters. Two different approaches
have been used to assess the dynamical regime such simulations
operate in. First, the comparison of the scaling behaviour of mea-
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sured flow length scales to scaling laws, which allows one to infer
the underlying force balance. Second, the explicit calculation of the
magnitude of the individual forces.

The analysis of the scaling behaviour of convective length scales
in geodynamo simulations has not resulted in an agreement with
a scaling law based on a geophysically relevant force balance (see
Section 2 for details about the scaling laws). Instead, it has been
shown that typical flow length-scale measures roughly follow the
viscous scaling (e.g. King & Buffett 2013; Oruba & Dormy 2014).
This has led to the suggestion that convection in numerical dynamos
is viscously controlled and therefore not applicable to the Earth’s
core.

Explicit calculations of the root-mean-square (rms) strength of
the forces in the dynamo models (e.g. Wicht & Christensen 2010;
Soderlund et al. 2012; Yadav et al. 2016; Aubert et al. 2017; Aubert
2019; Schwaiger et al. 2019) did not confirm a dominant role of
viscosity. Instead, these studies showed that the force equilibrium
in geodynamo simulations is typically composed of a zeroth-order
balance between Coriolis and pressure forces, followed by a bal-
ance between buoyancy, Lorentz and ageostrophic Coriolis forces.
This type of force balance has been referred to as quasi-geostrophic
Magneto-Archimedean-Coriolis (QG-MAC) balance (Aubert 2019;
Schwaiger et al. 2019). Inertia and viscosity were found to be
second-order contributions, although the difference between them
and the first-order forces proved to be rather small in models com-
puted at moderate control parameters, in particular if viscous bound-
ary layers are not excluded (Soderlund et al. 2012). Recent high-
resolution simulations (e.g. Yadav et al. 2016; Aubert et al. 2017,
Schaeffer et al. 2017; Aubert 2019) in advanced parameter regimes
showed that the relative importance of viscosity and inertia de-
creases in more realistic setups. The leading-order structure of the
force balance, however, remains essentially unchanged. While these
studies brought more insight to the discussion about the underlying
physics in numerical dynamos, it has still remained an outstanding
task to successfully relate force balances to convective flow length
scales.

The contradiction between the results obtained by applying theo-
retical scalings to a flow length scale and the explicit force balance
calculation is likely the result of two often overlooked questions: (i)
How do we estimate length scales that are sufficiently representa-
tive of the energy contained in the solution? (ii) Is the length-scale
measure representative of the underlying force equilibria?

The recent introduction of a spectral analysis of the forces by
Aubert et al. (2017) has provided access to the length-scale depen-
dence of the force balance. This approach revealed that the zeroth-
order force balance in geophysically relevant numerical models
is either geostrophic at all scales, or subdivided into large-scale
geostrophy and small-scale magnetostrophy. Similarly, in the first-
order MAC equilibrium the ageostrophic Coriolis force is predom-
inantly balanced by buoyancy at large scales, and by the Lorentz
force towards smaller scales. The respective transitions between
large- and small-scale balances define triple points, at which three
forces are of comparable magnitude. The associated length scales
are referred to as crossover length scales, which are by construction
characteristic of the underlying physics. The goal of this paper is
to relate them to energetically relevant flow length scales, as well
as to theoretical scaling laws. To this end, we will analyse a se-
ries of dynamo models as well as non-magnetic rotating convection
models for comparison. The study presented here is a follow-up to
Schwaiger et al. (2019), where the force balance in the considered
dynamo models was systematically analysed, and to Aubert et al.

(2017) and Aubert (2019), in which the force balance tools and the
concept of crossover length scales were introduced.

We outline the various scaling laws that have been proposed for
relevant convective flow length scales in Section 2. In Section 3, we
describe the numerical models and methods. The results of our study
are presented and discussed in Sections 4 and 5. Our conclusions
are summarized in Section 6. Note that throughout the manuscript,
when we use the terms ‘dominant’ or ‘leading-order’ force balance,
we refer to the zeroth-order force equilibrium.

2 THEORETICAL SCALINGS OF THE
FLOW LENGTH SCALE

At this point, we would like to recollect several theoretical scal-
ings of relevant length scales that have been suggested for dynamos
and non-magnetic rotating convection based on different assump-
tions regarding the governing force balance. The starting point for
these scalings is the Navier—Stokes equation for thermally driven
Boussinesq convection in a rotating reference frame:

3
p(£+qu>+Mqu=—VP+mﬂg+
at N, e —— S——

— Coriolis pressure - puoyancy
inertia

+j x B+ pvViu, (6)
———— e —
Lorentz viscosity
where u is the velocity field, 2 the rotation vector, P the pressure,
T the temperature, g the gravitational acceleration, B the magnetic
field and j = 1/uV x B the electric current density. The labels
denote the corresponding forces.

2.1 Leading-order geostrophy

Since the Earth’s core is rapidly rotating, the leading-order force
balance is often assumed to be geostrophic (e.g. Busse 1970; Calkins
2018), that is a balance between the Coriolis force and the pressure
gradient:

202 xu=—-VP. (7
Taking the curl yields

ou

_— = 0’ 8
o (®)

which is known as the Proudman—Taylor theorem. It constrains the
fluid flow to the two dimensions perpendicular to the rotation axis.
The only truly geostrophic flows in spherical shells are however
axisymmetric, and as such cannot drive the geodynamo according to
Elsasser’s antidynamo theorem (Elsasser 1946). Therefore, poloidal
flow, which can only arise from deviations to geostrophy, is required
in the Earth’s core. This non-geostrophic (ageostrophic) flow can
be obtained from eq. (6) by taking its curl to remove the pressure
gradient, which yields the vorticity equation

w ou 1 .
— 4+ u-Vo—0 -Vu+2Q— =Vx(@lg)+ -V x(jxB)+
Jat dz P

+ 1V, (€))

where @ = V X u is the vorticity.

Based on the assumption of triple force balances in eq. (9), three
different scalings for the convective flow length scale have been
suggested. All three triple balances have in common the thermal
wind balance, that is the balance between ageostrophic Coriolis and
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buoyancy terms, termed AC in the following. It is supplemented by
a third force term that is hypothesized to be responsible for breaking
the Proudman—Taylor constraint. This third force could be viscosity,
inertia or the Lorentz force forming the respective VAC, CIA and
MAC force balance. By virtue of the small Ekman and Rossby
numbers in the Earth’s core, the Lorentz force is considered to be
the geophysically most relevant candidate. Nevertheless, we will
outline all three scalings below. Since the parameters in geodynamo
simulations are far from Earth’s conditions, the dynamics might be
controlled by inertia or viscosity in numerical models. In addition,
for the purpose of comparison our study includes a series of non-
magnetic rotating convection simulations, for which obviously only
scalings that do not involve the Lorentz force are relevant.

2.1.1 VAC balance

Assuming a balance between viscous, buoyancy and Coriolis terms,
which is sometimes referred to as the VAC balance (VAC for
Viscous-Archimedean-Coriolis), in eq. (9) and using £, and L
to describe the integral length scales perpendicular and parallel to
the rotation axis, respectively, yields the following order of magni-
tude estimates

vo aBg, QU

_ ~

£ L Ly

(10)

The zeroth-order geostrophic balance leads to convection predomi-
nantly occuring in columnar vortices aligned with the rotation axis.
Therefore, it can be assumed that £ ~ L. Combining this with the
assumption w ~ U/L, the balance between Coriolis and viscous
terms yields

ﬁl v 1/3 1
—~(==) =E'", 11
L ( QL? ) (i
which corresponds to the flow length scale at the onset of convection
(e.g. Busse 1970; King & Buffett 2013).

2.1.2 CIA balance

The combination of large Reynolds (Re = UL /v ~ O (10°)) and
low Rossby numbers in the Earth’s core has resulted in some studies
considering a turbulent QG balance between Coriolis, inertia and
buoyancy terms in eq. (9). The acronym CIA (CIA for Coriolis-
Inertia-Archimedean) is commonly used to refer to this type of
balance. The amplitudes of the individual terms are given by

N i il (12)

Combining the assumption £ ~ L with the balance between curled
Coriolis and inertial forces leads to

g w

=~ 5 (13)

Assuming again w ~ U/L yields the following prediction for the
integral flow length scale £

r U\ 2
== ~ Ro'?, (14)
L QL

which is commonly referred to as the Rhines scaling (e.g. Rhines

1975; Cardin & Olson 1994; Aubert et al. 2001; Cabanes et al.
2017; Guervilly et al. 2019).

Relating force balances and flow length scales 1893

2.1.3 MAC balance

The last option consists of assuming a triple balance between
Lorentz, buoyancy and Coriolis terms in (9), the so-called MAC
balance (e.g. Starchenko & Jones 2002; Davidson 2013; Calkins
2018). In addition to the aforementioned integral length scales £
and £, , the MAC balance theory put forward by Davidson (2013)
(see also Wicht & Sanchez 2019 for a detailed derivation) introduces
the magnetic dissipation length scale

/,B2dV

EO m = T 9
" [, (VxBY dv

(15)
where V' is the outer core volume. Ohmic dissipation is expected to
carry most of the energy loss in the limit of magnetic energy much
larger than kinetic energy (Epag > Eiin) and small magnetic Prandtl
number (Pm = v/A < 1). Both requirements are fulfilled in the
Earth’s core.

Assuming the ageostrophic flow dynamics described by eq. (9)
to be controlled by a MAC balance, and using j x B~ B*/uL,
yields the following order of magnitude estimates

B? a®g, QU
puli Lo Ly

(16)
Combining the balance between the Lorentz and buoyancy terms
with the estimate for the input power per unit mass

_ ag
ro

/ru,TdV ~ ag,UB, 17)
v

yields the following relation for the magnetic energy density
372 PL,
P U

. (18)

In the Earth’s core, the energy input is expected to be almost entirely
balanced by ohmic dissipation

1 A
Dy = 7/ XV x BYdV. (19)
PV Iy

However, in numerical dynamos this may not necessarily be the
case due to viscosity still being sizeable. To account for remaining
viscous effects, the factor fo,m, which quantifies the relative fraction
of heat dissipated via Ohmic losses, is introduced. As a result, the
total energy loss per unit mass can be expressed by

1 1 AB?
= 71Dohm ~ o P I
Johm Johm wp Loy

Hence, considering that for a saturated dynamo the energy input
should be balanced by dissipation, P ~ D, yields

D (20)

B? L3
i ~ TthhmP~ (21)

By combining eqs (18) and (21), we therefore obtain

A
EZ

ohm

fomg ~ (22)
In the above expression, U/L, denotes the typical large-scale vor-
ticity related to the convective columns, while A/£%, | can be inter-
preted as a characteristic small-scale vorticity (see Davidson 2013).
Thus, when foum = 1, eq. (22) indicates that large- and small-scale
vorticities are proportional to each other. This proportionality is an
inherent feature of quasi-2-D turbulence such as rapidly rotating
convection (e.g. Davidson 2004). The non-dimensional form of eq.
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(22) provides a way to estimate the integral length scale £

2
EL o (ﬁ"‘"“) R, 23)

L L

where Rm = UL/X is the magnetic Reynolds number. Making the
additional assumption that large- and small-scale vorticities are
independent of the rotation rate implies that the magnetic energy
density itself is also independent of 2. Based on a dimensional
analysis, Davidson (2013) argues that B%/p1 can hence be expressed
as a function of the power per mass generated by buoyancy forces
and the flow length scale alone, which yields

B? 2/3 23
ﬁ ~ [’|| (f;)hmp) . (24)

The balance between the buoyancy and Coriolis terms in eq. (16)

together with eq. (17) results in the following relation

L P

Combining eqs (18), (24) and (25), and assuming £ ~ L, leads to

the following scaling for the flow length scale

Ly
L

Therefore, we finally end up with an expression that only depends
on a system-scale dimensionless number.

(25)

~ filZRo'". (26)

ohm

2.2 Leading-order magnetostrophy

As an alternative to a prevalent geostrophic balance, it has been
suggested that the flow dynamics in the Earth’s core could be in an
MS regime (e.g. Roberts 1978; Hollerbach 1996). This would imply
that the leading-order force balance consists of Coriolis, pressure
and Lorentz forces

2pQ2 xu=—-VP+jxB. (27)

In this scenario, the Lorentz force is expected to be strong enough
to relax the rotational constraint imposed by the Coriolis force. It
has been commonly assumed that the convective length scale can
then reach the system scale

E”N;CJ_'\’L‘ (28)

So far, system-scale magnetostrophy has not been attained in nu-
merical geodynamo simulations, although it has been approached
in some models with strong magnetic control (e.g. Dormy 2016;
Raynaud et al. 2020). Numerical dynamos in the currently accessi-
ble parameter space, however, frequently exhibit an MS balance at
smaller length scales (e.g. Aurnou & King 2017; Aubert 2019).

The assessment of whether a dynamo is in an MS balance is
generally based on the evaluation of the Elsasser number A, which
is a measure of the relative strengths of the Lorentz and Coriolis
forces:

|fLoremz| _ |j X B| o JB
|fCoriolis| 202 x ul pQU

Using Ohm’s law to scale the current density as J ~ o UB, where o
= 1/(uA), results in the traditional form of the Elsasser number
BZ
A= (30)
PULS
This definition allows one to obtain estimates of the force ratio for
planetary dynamos based on magnetic field observations, yielding

A =

29

A ~ O (10) for the Earth. This has been used to argue for a domi-
nant role of Lorentz forces, and therefore the geodynamo being in
the MS regime. Soderlund et al. (2012) note that this might not be
the correct interpretation of A, since the estimate J ~ o UB is only
expected to hold when Rm <« 1. This is, however, not the case for
global-scale dynamics in the Earth’s core for which Rm ~ O (103).
Hence, A, is only relevant on small length scales where Rm < 1
and is likely not an appropriate measure to assess global-scale mag-
netostrophy. Soderlund et al. (2012, 2015) suggested that a more
meaningful estimate of the relative strengths of Lorentz and Coriolis
forces in the Earth’s core can be obtained by scaling the electric cur-
rent density using Ampere’s law under the magnetohydrodynamic
approximation

_VxB B

J )
I nLlp

G

where L is the length scale of magnetic field structures. Inserting
this into eq. (29) results in the dynamic Elsasser number (e.g. Chris-
tensen et al. 1999; Cardin et al. 2002; Soderlund et al. 2012)

B2 A L

ANg=—5 ~ — 32
$= iQULs (32)

Rm E B '

The dependence of A4 on £' implies that the relative strength of the
Lorentz force increases with decreasing length scale. Building on
these developments, Aurnou & King (2017) attempted to estimate
the flow scale at which the zeroth-order force balance changes from
geostrophy to magnetostrophy, that is the flow scale at which Ag4
= 1. To this end, they assumed quasi-steady induction (d0B/d¢ = 0)
which results in the following balance:

BU AB

~

—, 33
i (33)

where Ly is the length scale of the flow. This yields the following
relation for the magnetic length scale:

c Ly \"?
‘;N<mﬁ>' 34)
Replacing L5 /L in eq. (32) with relation (34) results in

A2 L\

Based on this expression Aurnou & King (2017) interpret A2/ Rm
as a dimensionless length scale

L A?
=Xk (36)
L Rm
The dynamic Elsasser number can therefore be rewritten as
Lo\
Ag ~ | — , 37
o~ (2) 67

indicating that the flow is in geostrophic balance on length scales
larger than Ly due to the Lorentz force being subdominant to the
Coriolis force (Ag < 1). On scales smaller than Ly, the Lorentz
force is expected to be dominant (A4 > 1), suggesting that the flow
is in MS balance. Hence, Aurnou & King (2017) refer to Ly as the
MS crossover length scale.
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3 METHODS

3.1 Numerical models

For this study, we extend the set of numerical dynamo models anal-
ysed by Schwaiger ef al. (2019) with non-magnetic rotating con-
vection models. In both sets of simulations, we consider a spherical
shell rotating about the axis e, with constant angular frequency 2,
with a ratio between the inner and outer radii of r;/r, = 0.35. The
shell is filled with an incompressible fluid of density p and kine-
matic viscosity v, which is electrically conducting in the dynamo
models and electrically insulating in the rotating convection models.
An imposed temperature difference AT = T, — T; between the two
bounding spheres drives convection of the fluid. In addition to be-
ing held at constant temperatures, both boundaries are mechanically
rigid and electrically insulating.

We solve the dimensionless magnetohydrodynamic equations un-
der the Boussinesq approximation for the velocity field u, magnetic
field B and temperature 7. The shell depth L = r, — r; serves as
the reference length scale and the viscous diffusion time L%/v is
the time unit. The temperature is scaled by AT, and the magnetic
field by /o2, where u is the magnetic permeability and A the
magnetic diffusivity. The dimensionless gravity profile is assumed
to be linear and follows g(r) = r/r,. Hence, we end up with the
following system of equations:

ou 2 Rar

— 4u-Vu+ Ze, =-VP+4+ ——T+V?
8t+u u+Ee X u +Prr(, + Vu +
1

— (V x B) x B, 38

o (VX B) x (38)
8T+ vT 1V2T (39)
_ u- = — s
ot Pr
JB 1
— =V B) + — VB, 40
” X (u % )+Pm (40)
V.u= 0, (41)

where P corresponds to the dimensionless pressure. The control
parameters governing this set of equations are the Ekman number
v

= —, 43
oLz (43)
the hydrodynamic Prandtl number
pr=", (44)
K
the magnetic Prandtl number
v
Pm=— 45
m= (45)
and the Rayleigh number
WL3AT
_ %&L7AT (46)
VK

where « is the thermal diffusivity, o the thermal expansion coeffi-
cient and g, the gravity at the outer boundary.

All simulations considered in this study were computed using the
open-source code MaglC (Wicht 2002; Gastine et al. 2016, freely
available at https://github.com/magic-sph/magic). To numerically
solve eqs (38)—(42) in the spherical coordinate system (7, 6, ¢), the
solenoidal vector fields u and B are decomposed into poloidal and
toroidal potentials

u=VxVx(We)+V x(Ze,), 47)

Relating force balances and flow length scales 1895

B=V xVx(Ge)+V x(He,), (48)

where e, is the radial unit vector. The spatial discretization of the
unknown scalar fields W, Z, G, H, T and P involves a spherical har-
monic expansion up to degree and order £, in the angular direc-
tions, and a Chebyshev decomposition with &, collocation points in
the radial direction. MagIC employs the open-source libary SHTns
(Schaeffer 2013, freely available at https://bitbucket.org/nschaeft/s
htns) for efficient computation of the spherical harmonic transforms.
The equations are integrated in time using a semi-implicit adap-
tive time stepping algorithm. The Coriolis force and the nonlinear
terms are treated explicitly using a second-order Adams—Bashforth
scheme, while the remaining terms are advanced implicitly with a
Crank—Nicolson scheme.

To investigate the link between force balances and observable
flow length scales, we analyse 95 dynamo models and 24 non-
magnetic rotating convection models. The set of dynamo models is
nearly identical to the one studied by Schwaiger et al. (2019, Table
Al), with the only difference being that the run time of some of
the simulations has been increased to improve the statistics of the
output parameters. The control parameters and relevant results of
the non-magnetic cases can be found in Table A1. Additional data
can be obtained from the corresponding author upon request.

3.2 Energetically relevant length scales

In numerical dynamo and rotating convection models, characteristic
length scales of the convective flow are typically obtained from the
kinetic energy spectra. In our study, we consider the time-averaged
spectrum of the poloidal kinetic energy, which is defined by (see
Glatzmaier 2013, p. 159)

inax
gpol = Z gpol,ls (49)
=0
where
ot 2
"o / LE+1), o owy
Enol.t :/ g“” 1) |:r2 || +‘zT dr. (50)

In the above expression, ;" is the poloidal flow potential of degree
£ and order m. The prime on the summation indicates that the m = 0
contribution entering the sum is multiplied by one-half. We choose
the peak of the spectrum of &, to characterize the convective pattern
of the flow in our simulations, that is,

oot = argmax (Epole) - (51)
¢

The degree £, can be associated to a length scale £, through
the definition of the characteristic half-wavelength (see e.g. Backus
et al. 1996, p. 101)

r Tr,
[/pol _ m r~ m

b (pa+1) 0

(52)

where the mid-shell radius r,, = (r; 4 r,)/2 is approximated by 1
when ri/r, = 0.35. As we shall see in Fig. 2(a), L, enables the
recovery of results previously obtained with the more commonly
used energy-weighted length scale (Christensen & Aubert 2006),
while being more representative of the dominant scale of convection
and arguably less sensitive to second-order force balances that would
control the tail of the spectrum (e.g. Aubert et al. 2017; Dormy et al.
2018).
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3.3 Dynamically relevant length scales

To examine whether the energetically relevant flow length scales can
be related to the governing force balances, we define dynamically
relevant length scales, that is, length scales that are representative of
the underlying force equilibria. To this end, we rely on the spectral
representation of the force balance introduced by Aubert et al.
(2017). This requires an expression of each force vector f in terms
of scalar potentials, that is,

f=Re, +rVS+rx VT, (53)

where r = re, is the radius vector. R, S and 7 represent the radial,
spheroidal and toroidal scalar fields, respectively. The latter three
quantities can then be expanded in spherical harmonics, such that

Zmax 3
=)D RIVe +SIrVY] +T"r x VY[, (54)
=0 m=—t

where Y;" are the spherical harmonic functions of degree ¢ and
order m. The energy of the force vector (excluding viscous boundary
layers) can then be obtained by computing

F? =/f2dV
Vv

ro—b tmax £
= 2/ b YR e+ (| + |7;'"|2)r2dr,
fith =0 m=0

(5%

where b is the thickness of the viscous boundary layers. The prime
on the summation again indicates that the first term of the sum is
multiplied by one half. The above expression can be rewritten as

£max

P =37, (56)
=0

where

ro—b ¢ ,
F= 2/ SR e v ([Sr] 4 |Tf) R ar 57)
rith o
The above formalism can be used not only to compute spectra of
individual forces, but also to measure the degree of cancellation be-
tween forces, such as between the pressure gradient and the Coriolis
force, which yields the ageostrophic Coriolis force.

Fig. 1 illustrates the force spectra F, (time-averaged and nor-
malized by the peak of the spectrum of the Coriolis force) of two
dynamos controlled by a QG-MAC balance. This type of force equi-
librium has been shown to be the governing force balance of most
dipole-dominated dynamos in a systematic parameter space survey
by Schwaiger et al. (2019). At zeroth order, these dynamos are
controlled by a balance between pressure and Coriolis forces, the
so-called geostrophic balance. However, depending on the strength
of the magnetic field, the geostrophic balance is either present at
all length scales (see Fig. 1a) or restricted to large scales, that is
small spherical harmonic degrees (see Fig. 1b). In the latter case,
the zeroth-order equilibrium morphs into a balance between pres-
sure and Lorentz forces towards smaller scales, forming an MS
balance. The Lorentz force contributes to this balance predomi-
nantly in the form of magnetic pressure. At the following order, the
cancellation between pressure and Coriolis forces, the ageostrophic
Coriolis force, is balanced by buoyancy at large scales (small £) and
the Lorentz force at small scales (large ¢). This first-order balance
is typically referred to as MAC balance. Finally, inertia and viscous
forces contribute at second order. To indicate the ‘strong fieldness’

of the dynamo, that is, the dynamical influence of the Lorentz force
relative to the second-order forces, we will use the ratio between
the magnetic and kinetic energies M = Ey,o/Eyin (€.g. Schwaiger
et al. 2019). In the following, we will refer to cases with M > 10 as
strong-field dynamos.

In dynamo models, there are up to four possible cross-overs of
forces (see Fig. 1), which can be linked to different types of force
balances: MAC, CIA, VAC and MS. The types of crossings which
can be observed in a given dynamo model directly depends on the
relative strength of the individual forces. The spherical harmonic
degrees fya, {1a and €y,, corresponding to first- or higher order
MAC, CIA and VAC force balances, represent the scales at which the
Lorentz force, inertia and viscous forces are of the same amplitude
as buoyancy, respectively. Thus, we define

ZMA = argmiﬂ (l}—Lorentz,(Z - Fbuoyancy,e |) 5 (58)
4

‘eIA = argmin (|]:inertia,l - ]:huoyancy,ll) 5 (59)
¢

KVA = argmin (|]:Viscous,(/, - ]:buoyancy,K') . (60)
£

The MS crossing ¢ys occuring at zeroth order, represents the scale
at which Lorentz and Coriolis forces are in balance. It is therefore
given by

ZMS = argmin (lJ:Coriolisl - ]:Lorcntzl |) . (61)
€

The length scales associated to these crossings (the so-called
crossover length scales) are again given by the characteristic half-
wavelength associated to each degree (see eq. 52)

TF,
=" 2
L= (62)

4 RESULTS

4.1 Convective length scales in dynamo simulations

In planetary dynamos, the flow length scale is expected to be con-
trolled by the Lorentz force. Therefore, we will examine in the
following sections whether it is possible to relate the QG-MAC
length scale Lya/L = 7/€ua and the MS crossover length scale
Lys/L = 1 /€ys to observable (energetically relevant) flow length
scales. In addition, we will also examine their scaling behaviour to
assess the validity of the aforementioned theoretical scalings in our
numerical models.

4.1.1 QG-MAC length scale

One of the most frequently invoked results in favour of a QG-
VAC balance in numerical dynamos is the apparent compatibility
of a spectrally weighted kinetic energy length scale (Christensen
& Aubert 2006) with the viscous E'*-scaling (e.g. King & Buffett
2013; Oruba & Dormy 2014). Fig. 2(a) shows the spectral peak
length scale L, as a function of the Ekman number. We observe
that L, also appears to follow a similar trend. This is however
misleading, as the scatter of L, at each given Ekman number
is almost as large as the change in length scale predicted by the
viscous scaling. This indicates that in this case simply considering
the Ekman number as a diagnostic, without a more detailed analysis,
has little to no predictive power for the underlying force balance.
The comparison of the dynamically relevant crossover £y;4 and
the peak of the poloidal kinetic energy £,,,; shown in Fig. 2(b) offers
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Figure 1. Examples of time-averaged force balance spectra for two strong-field QG-MAC dynamos. The amplitudes of the spherical harmonic contributions
of the forces are normalized relative to the peak of the Coriolis force. The shaded regions correspond to one standard deviation in time. (a) Force balance of a
dynamo (M = Enag/Exin ~ 10) governed by a prevailing geostrophic balance at all length scales, followed by a first-order MAC balance. (b) Force balance of
a dynamo (M =~ 200) with a subdivided zeroth-order force balance that is controlled by a geostrophic balance at large scales (small £) that transitions into an
MS balance towards smaller scales (large £).
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Figure 2. (a) Lp1/L (eq. 52) as a function of the Ekman number E. The black dashed line corresponds to the viscous scaling £, /L ~ E 173 (b) Comparison
of the spherical harmonic degree at which buoyancy and Lorentz forces are of equal magnitude in the force balance spectra, {ya (see Fig. 1 for examples)
to the peak of the poloidal kinetic energy spectrum £,01. The spherical harmonic degrees can be converted to length scales using eq. (62). The green vertical
dashed lines correspond to the respective azimuthal wavenumber of convection onset 7, for E € {107%, 1073, 107¢} from left to right. The symbols in both
panels are coloured with M.

a more meaningful approach to link the dominant convective length magnetic and kinetic energies M. We observe that £y, is in good
scale to the governing physics. All models where €y14 is well defined agreement with £, for dynamos with sufficiently large M (M >
are included independent of the type of the first-order force balance. 10), which suggests that the convective scale is indeed controlled
To include information about the force balance of the dynamos, the by a first-order MAC balance in these models. For dynamos with

symbols of the models are coloured with the ratio between the 1 < M < 10, this correlation becomes less obvious due to the
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QG-MAC balance being increasingly perturbed by viscous and/or
inertial effects. Finally, we observe no correlation between fya
and £, for dynamos with M < 1, as expected since these models
are no longer controlled by a QG-MAC balance. The influence of
second-order forces on the convective scale in dynamos with M <
10 is further highlighted by the fact that for each of the considered
Ekman numbers, £, seems to cluster around the respective critical
azimuthal wavenumber of convection onset (green vertical dashed
lines in Fig. 2b), which follow the viscous scaling (eq. 11). The
onset values have been computed using the open-source generalized
eigenvalue solver Singe (Vidal & Schaeffer 2015, freely available
at https://bitbucket.org/nschaeff/singe).

Given that £y5 seems to correspond to an observable flow length
scale in QG-MAC dynamos, we will now examine whether it is con-
sistent with the theoretical predictions based on the assumption of
a first-order MAC balance as suggested by Davidson (2013, see
Section 2.1.3). The comparison between Ly and the prediction of
the integral length scale £, obtained from the equivalence between
large- and small-scale vorticities (eq. 23) is shown in Fig. 3(a). The
symbols corresponding to the individual models are again coloured
with M. We observe that for numerical dynamos with strong mag-
netic control (M > 10), that is, QG-MAC dynamos, the predicted
and measured length scales are overall in good agreement. This
suggests that the vorticity equivalence is reasonably well satisfied
for these cases. The crossover length scale Lya thus appears to
correspond to the integral length scale £, as defined by Davidson
(2013). This is again much less the case for dynamos with smaller
M since those dynamos either feature a significant contribution of
inertial/viscous effects or are controlled by a different first-order
force balance.

The second scaling of £, (eq. 26) by Davidson (2013) which
further assumes the rotational independence of the vorticities is
shown in Fig. 3(b), in which Ly /L is plotted versus Ro. However,
no correlation is found between Ly;4 /L and the theoretical £, /L ~
Ro'* scaling, even in the limit of M > 10. Including the factor
folh/[fl in eq. (26) does not improve the correlation between the two
quantities, which is why it is omitted in Fig. 3(b). There are several
possible explanations for this. One of them being that our numerical
models are not operating in a regime of Pm < 1, the physical
limit in which the scaling (26) was devised. Therefore, viscous
dissipation is still significant (although some of the very high Pm
runs do have large fyum). Additionally, the assumption of B2/pu
being independent of the rotation rate, which is required for this
scaling, is potentially not well satisfied in the models (Schrinner
2013). In Fig. 3(b), we also observe that the data points show a
dependency on M, with larger length scales typically corresponding
to larger M. This hints at a feedback between the magnetic field
and the velocity field, which suggests that scaling the Lorentz force
as B?/uL, is likely too crude an approximation. While there are
a number of reasons that could lead to the scaling law not being
applicable to numerical dynamos, it should also be noted that in our
models in which M > 10, Ro only covers slightly more than one
order of magnitude, which might not be enough for a fair assessment
of its validity.

4.1.2 Magnetostrophic crossover length scale

In many strong-field dynamos, the zeroth-order geostrophic bal-
ance is only present at large scales, while it turns into a balance
between pressure and Lorentz forces towards smaller scales (see
Fig. 1b). This transition from geostrophy to magnetostrophy occurs

at the MS crossover length scale at which Lorentz and Coriolis
forces are of equal magnitude (Aurnou & King 2017). The effect
of this dichotomy of the zeroth-order force balance is visualized
in Fig. 4 for one parameter configuration considered by Dormy
et al. (2018). We observe that the flow is organized into large-scale
columns (spanning the entire shell) that are aligned with the rotation
axis, indicating a dominant geostrophic balance on large scales. On
smaller scales, the columns are broken up especially in regions with
an intense magnetic field.

Unlike the QG-MAC crossing £ya, the MS crossover £ys does
not match with £, in any of our dynamos models. Therefore, it
does not appear to control the dominant scale of convection. It is,
however, still possible to relate £y5 to the fluid flow. To this end, we
decompose the cylindrical radial velocity, u;, into its geostrophic
(#%) and ageostrophic (u¢) components. 3-D renderings of these
three velocities are shown in Fig. 5. To construct u$, we average
u, along the rotation axis, which yields a flow component that
completely satisfies the Proudman—Taylor theorem (eq. 8). For the
integration, we consider the regions inside and outside the inner core
tangent cylinder (TC) separately, since the fluid volumes inside the
TC have to be averaged independently in the northern and southern
hemispheres. Therefore, we compute for

(i) i <s <, (i.e. outside TC)
ho

/ us (s, ¢, z) dz, (63)

—ho

o _
i (s.9) = 5 I
(i) 0 <s < rand z > 0O (i.e. inside TC, northern hemisphere)

1 s
(s, ) = —— / u (s, ¢, z) dz, (64)
ho — hi
hi
(iii) 0 < s < r; and z < 0 (i.e. inside TC, southern hemisphere)
—hj

us (s, ¢, z) dz, (65)

(s, @)= —

_ho

where hy = /r? — 52, h, = \/r2 — 52, and s is the cylindrical ra-
dius. Subsequently, we expand the z-averaged flow ¢ (s, ¢) along
the rotation axis back into the initial spherical geometry, which
yields the perfectly axially aligned flow component u£ (7, 0, ¢) vis-
ible in Fig. 5(b). The ageostrophic flow component (see Fig. Sc) is
then given by

ul =u; —ué. (66)

We construct time-averaged spectra of these three velocities as
a function of the degree ¢ using spherical harmonic transforms.
Fig. 6(a) illustrates the resulting spectra for the strong-field dynamo
whose force balance is shown in Fig. 1(b). We observe that the
large scales are almost entirely dominated by the geostrophic flow
component, while the small scales are predominantly ageostrophic
as expected from the corresponding force balance spectrum. The
spherical harmonic degree ¢,, beyond which the flow is mostly
ageostrophic does appear to coincide with the MS crossover £ys.
Repeating this analysis for other cases for which £y is well defined,
shows that ¢, and ¢ys generally seem to be in good agreement as
shown in Fig. 6(b). This indicates that Lys/L = 7 /€ys does indeed
represent the length scale beyond which the zeroth-order geostrophy
is broken up by the Lorentz force. The large spatial resolutions
required for our most extreme simulations restricted this type of
analysis to dynamo models with £ > 1075,
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Figure 3. (a) Comparison of the QG-MAC length scale Lya/L = 7/€ma to the theoretical scaling given by eq. (23). (b) Lma/L as a function of Ro. The

black dashed line corresponds to the theoretical scaling £, /L ~ Ro'/*

10. The symbols in both panels are coloured with M.
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Figure 4. 3-D rendering of the columnar convection pattern and the mag-
netic field lines in a strong-field dynamo at £ = 10~>, Ra = 4 x 107 and Pm
= 7. The columns aligned with the rotation axis (represented by the arrow)
correspond to isosurfaces of the cylindrical radial velocity u; € { — 60, 60}.
The magnetic field lines are coloured according to the magnetic energy.
Additionally, their thickness increases with the magnetic energy. The force
balance corresponding to this case is shown in Fig. 1(b).

For the comparison of the MS crossover length scales obtained
from the force balance spectra, Ly, to the ones predicted by the
Elsasser number scaling suggested by Aurnou & King (2017), L
(eq. 36), we restrict ourselves to numerical dynamos in which £yg is
well defined and M > 10. This ensures that the leading-order force

. The pre-factor 2.4 was obtained by considering only dynamos with M = Einag/Exin >

balance contains an MS range and is not significantly disturbed
by inertia and/or viscous forces. Lys however does not show any
correlation with Ly, especially since in our models Ly varies over
a much larger range of magnitudes than Lys. If we slightly modify
the scaling by Aurnou & King (2017) by assuming similar scales for
the fluid flow and the magnetic field, that is,L ~ L3 (e.g. Aubert
et al. 2017), instead of different ones and follow the same lines of
reasoning as described in Section 2.2, we end up with the following
definition for the MS crossover length scale:

’

Lx = i (67)
L Rm

The comparison between £, /L and Lys/L is shown in Fig. 6(c).
We observe that although the estimate £/, /L does not offer a perfect
prediction for Lys/L, it still gives a reasonable order of magnitude
estimate of the MS crossover length scales defined by the force
balance spectra.

4.2 Convective length scales in rotating convection
simulations

In the previous sections, we have shown that the scales at which
forces equilibrate in dynamo models correspond to observable con-
vective flow scales. In this section, we will now focus on rotating
convection models without the influence of a magnetic field, and
investigate whether comparable results can be obtained. Fig. 7(a)
illustrates the force balance of the non-magnetic counterpart to the
dynamo model shown in Fig. 1(a). Similar to the dynamo model,
the zeroth-order force balance is geostrophic at all length scales in
the non-magnetic case. At the next order, the ageostrophic Corio-
lis force is now balanced by buoyancy at large scales and inertia
towards smaller scales. ;5 corresponds to the harmonic degree
where the latter two forces are of equal amplitude. Analogously to
the magnetic case, we refer to this type of combination of zeroth-
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(b)
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Figure 5. 3-D renderings of (a) the total cylindrical radial velocity uy, (b) the geostrophic component u§ of uy, and (c) the ageostrophic component u¢ of u
for the numerical dynamo at E = 107>, Ra = 4 x 107 and Pm = 7. In each panel, the arrow marks the rotation axis. The force balance corresponding to this

case is shown in Fig. 1b.
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Figure 6. (a) Example of spectra of the total cylindrical radial velocity u; (solid blue line), its geostrophic component u§ (dashed red line), and its ageostrophic
component u¢ (dashed—dotted green line) for the numerical dynamo at £ = 10=>, Ra = 4 x 107 and Pm = 7. The force balance corresponding to this case
is illustrated in Fig. 1(b). €,, represents the crossing between the spectra of u§ and u?. (b) Comparison of the MS crossing £ys defined by the force balance
spectra (see Fig. 1b) to £, . (c) Comparison of Lyis/L = 7 /€vs with the estimate £y /L provided by the theoretical scaling (67). The symbols are coloured

with M.

and first-order force balance as QG-CIA balance. Viscosity con-
tributes at second order, about one order of magnitude smaller than
inertia for the given example. We would like to emphasize, that al-
though both the QG-MAC and the QG-CIA models are geostrophic
at zeroth order, the separation between zeroth- and first-order force
balance is considerably larger for the latter, indicating a larger de-
gree of geostrophy of the convective flow in the non-magnetic case.

Like for the dynamo models, we again examine whether we can
relate the crossing ¢;5 defined by the first-order force balance to
the dominant convective flow length scale represented by £, in
spectral space. The comparison of the two length scales, expressed
by the associated spherical harmonic degree, is shown in Fig. 7(b).
The symbols corresponding to the individual models are coloured
with the supercriticality Ra/Ra, to visualize their proximity to the
convection onset. We observe that £;, matches reasonably well with

£po above Ra/Ra. 2 25. In these cases, which are governed by
a QG-CIA balance according to the force balance spectra, inertia
hence appears to control the flow length scale. For lower supercrit-
icalities, we again observe to a first approximation a clustering of
£po1 around the critical azimuthal wavenumbers at convection onset
for the respective Ekman numbers. This suggests a viscous control
of the convective flow in weakly supercritical models (e.g. Gastine
et al. 2016; Long et al. 2020).

Given that £, /L = 7 /€15 can be associated with the dominant
convective length scale in models that are controlled by a QG-CIA
balance, we now want to evaluate whether it follows the predicted
Rhines scaling given by relation (14). Fig. 7(c) shows Lj5/L as
a function of Ro. We observe that L1,/ starts to approach the
L1 /L ~ Ro'? scaling towards the lowest Ekman numbers and
largest supercriticalities considered in this study similarly to the
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Figure 7. (a) Example of a time-averaged force balance spectrum of a non-magnetic numerical model with £ = 107, Ra = 5.5 x 10° (Ra/Ra. ~ 30) and
Pr = 1. The amplitudes of the spherical harmonic contributions of the forces are normalized relative to the peak of the Coriolis force. The shaded regions
correspond to one standard deviation in time. £15 is defined as the spherical harmonic degree at which buoyancy and inertia intersect. (b) Comparison of £1o
to the peak of the poloidal kinetic energy spectrum £,01, which serves as reference for the dominant flow length scale in the rotating convection models. The
green vertical dashed lines correspond to the respective azimuthal wavenumber of convection onset m,. for E € {107, 107, 107, 107} from left to right.

(¢) Lia/L = 7 /1a as a function of Ro. The black dashed line corresponds to the theoretical scaling £, /L ~ Ro

coloured with the supercriticality Ra/Ra..

results obtained by Gastine et al. (2016) and Guervilly ez al. (2019).
However, the length scales for the different Ekman numbers do not
collapse on a single curve. This indicates that the analysed models
have not fully reached the inertial regime, although they appear to
be trending towards it.

5 DISCUSSION

Several recent studies helped to define the different force balance
regimes attained in numerical dynamos by explicitly computing the
individual forces (Yadav et al. 2016; Aubert et al. 2017; Aubert
2019; Schwaiger et al. 2019). It, however, still remained an out-
standing task to successfully link the force balances to convective
flow length scales. Our study suggests that this can be achieved
by using the crossover length scales defined by the spectral rep-
resentation of force balances introduced by Aubert et al. (2017).
We have found that in dynamos controlled by a QG-MAC bal-
ance, the scale at which the Lorentz force and buoyancy balance,
Lma, appears to correspond to the dominant convective scale. This
demonstrates the dynamical influence of the Lorentz force in such
models. In addition, we have shown that Lyx can be reasonably
well estimated using the proportionality between large- and small-
scale vorticities (eq. 23) following the theoretical considerations
suggested by Davidson (2013). Assuming fon, = 1, Rm = 1000,
Lowm = 20 km (Aubert 2019) and L = 2260 km yields Lya = 200
km (€ma = 7w L/Lya =~ 40) for the Earth’s outer core.

The £, ~ Ro'/*L scaling by Davidson (2013), which addition-
ally assumes rotational independence of the vorticities is not well
satisfied by our numerical dynamos. This indicates that this assump-
tion might not be valid in at least the parameter regime covered by
our simulations (Schrinner 2013). Possible reasons for this could
be that most of the analysed models operate at rather moderate
magnetic Reynolds number, Rm, and fairly large Pm compared to
the Earth’s core, where Rm ~ O (10°) and Pm ~ O (10~°). That
being said, the exploration of a larger range of Ro might lead to a
reassessment of the validity of the scaling law. This would however
require far more computational resources. Alternatively, the results

172 The symbols in panels (b) and (c) are

could possibly be improved by decreasing Pr which would allow a
lower Pm to be reached at a given Ekman number.

The second crossover length scale of the Lorentz force, that is
the MS crossover length scale Lys, can also be retrieved from
the convective flow. Our results indicate that it corresponds to the
length scale at which the flow dynamics change from predominantly
geostrophic (at large scales) to predominantly ageostrophic towards
smaller scales. We have shown that a reasonable order of magnitude
estimate of Ly can be obtained from a modified version of the
Elsasser number scaling suggested by Aurnou & King (2017) by
assuming similar scales for velocity and magnetic fields (eq. 67).
Considering Ay = 10 and Rm = 1000 (Christensen et al. 2010)
yields Lys &~ 50 km (£ys = w L /Lys =~ 140) for the Earth’s core.

These results highlight the dynamical influence of the Lorentz
force in QG-MAC dynamos, and offer supporting evidences that
force balance crossings reflect convective flow length scales. We
would like to emphasize that our results indicate that it is not neces-
sary for the Lorentz force to reach leading order to be dynamically
relevant. The dominant scale of convection in QG-MAC dynamos
appears to always be controlled by the scale at which buoyancy
and Lorentz forces equilibrate in the first-order balance. This is the
case independent of whether the zeroth-order balance is geostrophic
at all length scales, or subdivided into large-scale geostrophy and
small-scale magnetostrophy.

We have obtained comparable results for non-magnetic rotating
convection simulations. In models that are controlled by a QG-
CIA balance, which is the case at sufficiently high supercriticalities
(Ra/Ra. Z 25), the crossover length scale defined by the first-order
force balance, L4, again seems to be reflected in the dominant
scale of convection. The comparison of £, to the Rhines scaling
L, ~ Ro'L suggests that the inviscid regime has not been attained
for the Ekman numbers considered in this study. The models at the
highest supercriticalities and lowest Ekman numbers, however, ap-
pear to approach it. The fact that the Rhines scaling is not fully met
could be attributed to the viscous dissipation in the boundary layers
still being significant even at the lowest considered Ekman numbers
(Gastine et al. 2016). The recent study by Guervilly et al. (2019),
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Table 2. Theoretical scaling laws and thereby estimated values for the con-
vective flow length scale in the Earth’s outer core. The predictions are ob-
tained by assuming £ = 10"'5, Ro=10"%, Rm = 1000, A; = 10, Lopm = 20
km and L = 2260 km.

Force balance Scaling law Predicted value

QG-VAC L, ~E'AL ~20m

QG-CIA L1 ~ Ro2L ~ 20 km
QG-MAC Ly ~Rm L2 /L ~ 200 km
QG-MAC L1 ~ Ro'AL ~ 100 km
QG-MS L' ~ AL/Rm ~ 50 km

in which a QG approximation of spherical convection is used to re-
duce the computational costs, suggests that Ekman numbers as low
as £ ~ 10~ might be required to fully reach the inertial regime.
Such extreme parameters are currently still out of reach in 3-D sim-
ulations. Given that for the investigated Ekman numbers £ does
not fall onto a single curve yet, we assume a pre-factor of 10 for
the Rhines scaling, which is slightly larger than what our simula-
tions indicate. Using L4 ~ 10 Ro'/?L consistent with the results by
Guervilly ez al. (2019), yields L£ja ~ 20 km (€1 = wL/Lis =~ 350)
for the Earth’s outer core in the absence of a magnetic field. For
comparison, the viscous scale predicted from eq. (11) would be on
the order of 20 m if E = 10" is considered. A summary of the the-
oretical scalings and the predicted flow length scales for the Earth’s
outer core is given in Table 2. Overall, the separation between the
different scales is not large, with the exception of the viscous scale,
which is about a factor 10°~10* smaller than the other scales.

6 CONCLUSIONS

Our main findings can be summarized by the following points:

(i) Length-scale-dependent analysis of the forces shows that in
QG-MAC dynamos, the scale at which buoyancy and Lorentz forces
are of equal magnitude is reflected in the dominant scale of con-
vection. Similar results hold for non-magnetic rotating convection
simulations that are controlled by a QG-CIA balance. In these mod-
els, the scale at which buoyancy and inertia equilibrate can be
associated to the primary convective scale.

(i1) In most QG-MAC dynamos, the dominant force balance is
divided into large-scale geostrophy and small-scale magnetostro-
phy. The analysis of the axial invariance of the flow reveals that the
length scale which marks this transition can be retrieved from the
convective pattern. In agreement with the prevailing force balance,
variations along the axis of rotation are close to invariant along the
rotation axis on large scales, while this is much less the case on
smaller scales.

(iii) Assuming that the Earth’s dynamo is controlled by a QG-
MAC balance, analysing the scaling behaviour of the two charac-
teristic length scales found in geodynamo models suggests that the
dominant flow length scale in the Earth’s core is about 200 km,
while MS effects are deferred to scales smaller than 50 km.

Future contributions to the discussion on convective flow length
scales in numerical dynamo models could involve the analysis of the
z-averaged flow due to the prevailing (large-scale) geostrophy, as has
been done for the 3-D models of non-magnetic rotating convection
in Guervilly ef al. (2019). This would allow access to the integral
flow length scale £, perpendicular to the rotation axis. A similar
strategy could potentially also be applied to the computation of the
force balance, which might provide additional insights on how to
relate force balances to convective flow length scales.
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APPENDIX: RESULTS OF ROTATING
CONVECTION SIMULATIONS

Table Al. Summary of the relevant parameters of the non-magnetic rotating convection simulations considered in
this study. All models have been computed with Pr = 1 and ri/r, = 0.35. Nu represents the Nusselt number.

Ra Nu Ro Re Lpol la (Nr, €max)
E=10"*
1 3.000 x 10° 1.51 431 x 1073 43.15 6 31.18 (41, 85)
2 4.830 x 10° 2.13 7.46 x 1073 74.56 7 55.57 (41, 85)
3 7.500 x 10° 3.02 1.20 x 1072 120.12 6 52.66 (41, 85)
4 1.125 x 107 4.67 1.89 x 102 189.28 6 23.43 (41, 85)
5 1.500 x 107 5.87 248 x 1072 247.81 6 9.58 (41, 85)
6 1.750 x 107 6.51 2.82 x 1072 282.45 6 8.26 (65, 128)
7 2.100 x 107 7.27 3.27 x 1072 327.17 5 6.37 (65, 133)
E=107°
8 4.000 x 107 1.39 6.66 x 107* 66.63 14 51.31 (97, 170)
9 1.000 x 108 2.44 2.01 x 1073 201.38 12 120.4 97,213)
10 2.000 x 108 5.41 499 x 1073 499.27 8 14.99 (97, 256)
11 3.000 x 108 9.01 8.15 x 1073 815.16 9 8.66 (121, 288)
12 4.000 x 108 11.95 1.09 x 102 1092.02 7 6.33 (121, 288)
13 7.000 x 108 18.13 1.82 x 1072 1824.76 5 4.69 (161, 426)
E=10"°
14 8.000 x 108 1.42 1.51 x 1074 150.56 30 110.64 (129, 256)
15 1.000 x 10° 1.55 2.00 x 1074 199.62 27 125.53 (129, 256)
16 2.000 x 10° 238 459 x 1074 458.87 20 244.43 (129, 341)
17 2.800 x 10° 3.42 7.21 x 1074 721.33 18 43.13 (161, 426)
18 3.500 x 10° 474 1.03 x 1073 1028.67 20 22.49 (181, 426)
19 5.500 x 10° 9.42 2.05 x 1073 2045.89 12 12.25 (201, 426)
20 1.000 x 1010 19.68 4.13 x 1073 4125.75 9 6.50 (321, 512)
21 1.600 x 10'0 30.78 6.71 x 1073 6714.67 6 478 (385, 597)
22 2.660 x 1010 46.46 1.06 x 1072 10613.04 5 4.46 (513, 853)
E=10""
23 6.500 x 10'° 4.15 2.07 x 1074 2074.51 26 34.83 (433, 682)
24 1.000 x 10! 7.92 442 x 1074 4420.00 20 19.00 (513, 682)
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