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Three bench-stable difluoromethylene phosphonate hydrazones were prepared from simple diethyl (difluoromethyl)phosphonate within two steps in good yields. The [3 + 2] cycloaddition reaction of these diazo precursors with aryl diazonium salts has been accomplished under metalfree conditions with exclusive regioselectivity. This transformation provides practical access to a broad panel of 2-aryl-2H-tetrazol-5-yl difluoromethylene phosphonates, including the corresponding derivatives of amino acid (phenylalanine) and drug cores (Pomalidomide and Lapatinib fragment).

Difluoromethylene phosphonates [DFMP, CF2PO(OR)2] could mimic the naturally occurring phosphates and phosphonates, thus having emerged as a frequently utilized structural motif in the study of various biochemical processes [1,2]. For example, phosphonodifluoromethyl phenylalanine (F2Pmp) has been developed as one of the most powerful nonhydrolyzable phosphotyrosine mimetics to modulate the corresponding proteinprotein interactions and used as protein tyrosine phosphatases (PTPs) inhibitors (Fig. 1) [3][4][5]. Furthermore, the difluoromethylene phosphonate moiety has also been utilized in the design and development of signal transducer and activator of transcription (STAT) antagonists, fructose-1,6-bisphosphatase (FBPase) inhibitors, P2Y1 receptor antagonists, and cytidine triphosphate synthetase inhibitors (Fig. 1) [6][7][8][9][10]. Therefore, the design and development of new difluoromethylene phosphonatecontaining molecular frameworks has emerged as an increasingly important task in synthetic organic chemistry. In this context, while simple aryl-substituted difluoromethylene phosphonates have been extensively studied in the past few decades [11][12][13][14][15][16][17], the construction of heterocyclic difluoromethylene phosphonates remains far less explored. More importantly, most previous studies have mainly focused on the use of metalated CF2PO(OR)2 derivatives to undergo cross-coupling-type transformations, while --- the development of new reactive DFMP-containing 1,3-dipoles to be used in convergent cycloadditions remains elusive. Very recently, Han, Röschenthaler, and co-workers reported the design of aryl-substituted difluoromethylene phosphonate-containing diazo reagents (DFMP-Diazo, Scheme 1a) [18,19]. The [3 + 2] cycloaddition reaction of DFMP-Diazo with vinyl sulfones enabled the synthesis of difluoromethylene phosphonate-
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A B S T R A C T containing pyrazolines with good efficiency. However, due to the instability of DFMP-containing diazo compounds, the utilization of unsubstituted DFMP-functionalized 1,3-dipolar species to produce aromatic cycloadducts is an unsolved problem. As part of our long interest in fluorinated diazoalkanes [20][21][22][23][24][25][26][27][28] and the construction of tetrazoles (Scheme 1b) [29][30][31][32][33], herein we report the preparation of three bench-stable DFMP-containing diazo precursors (DFMP-Hydrazones), and their application in the regioselective synthesis of DFMP-tetrazoles via [3 + 2] cycloaddition reactions with aryldiazonium salts (Scheme 1c).

Note that this study represents the first example of introducing a difluoromethylene phosphonate motif onto the tetrazole scaffold. These two chemical entities are both metabolically stable to many of the biological transformations and have widespread implications in pharmaceuticals and bioconjugations [34][35][36].

Scheme 1. Cycloaddition reactions for the preparation of difluoromethylene phosphonate heterocycles.

Scheme 2. Preparation of difluoromethylene phosphonate hydrazones.

At the outset, we synthesized three DFMP-hydrazones via the condensation of DFMP-aldehyde precursor S-2 with the corresponding benzenesulfonyl hydrazides. As outlined in Scheme 2, treating commercially available diethyl (difluoromethyl)phosphonate S-1 with LDA in the presence of CeCl3, followed by addition of N,N-dimethylformamide (DMF) in one-pot, the desired dihydrate S-2 was smoothly obtained in 96% yield [37,38]. Subsequently, condensation of this masked aldehyde S-2 with different hydrazides under acidic conditions proved to be viable, thus giving the target DFMP-hydrazones 1a-1c in 91-95% yields [39,40]. Importantly, these diazo precursors were found to be quite stable under bench conditions, and all of them have been successfully crystallized for X-ray diffraction analysis [41].

With the three difluoromethylene phosphonate hydrazones in hand, we then proceeded to optimize the [3 + 2] cycloaddition reaction with phenyldiazonium salt 2a (Table 1) [42]. Pleasingly, by just using 4-dimethylaminopyridine (DMAP) as the base, acetonitrile as the solvent, the desired 2,5-disubstituted tetrazole 3a was obtained in up to 90% yield from CF3-hydrazone 1a without the detection of any regioisomer (entry 1). Employing NO2-hydrazone 1b or Me-hydrazone 1c could also permit the formation of tetrazole 3a, albeit in decreased yields (entry 2 and 3). The significantly lower yield observed when using Mehydrazone 1c could be the result of a lower leaving-group ability of its benzenesulfonyl moiety with respect to 1a and 1b. Notably, this reaction does not require the use of an organometallic species and thus should not involve a carbenoid intermediate that is clearly indicative of a different mechanism compared with our previous studies on the silver-catalyzed synthesis of differently decorated tetrazoles [43,[START_REF](ESI): calcd. for C12H15N4O3ClF2P + (M+H) + : 367.0538, found: m/z 367.0533. Diethyl ((2-(4-bromophenyl)-2H-tetrazol-5-yl)difluoromethyl)phosphonate (3r). For 0.2 mmol scale, the standard procedure of method B was followed to provide 3r by column chromatography on silica gel (petroleum ether/EtOAc, 4:1, v/v) as a yellow[END_REF]. Addition of silver acetate to the reaction mixture was not beneficial (entry 4). Changing DMAP to a series of organic and inorganic bases resulted in no obvious improvement (entries 5-10). This cycloaddition transformation was also found to be compatible with different solvents such as THF, CH2Cl2, and EtOAc (entries [11][12][13]. Reducing the amount of diazonium salt 2a to 1 equivalent could still generate 3a at the expense of a relatively lower yield (entry 14). Using water as a co-solvent was found be viable, albeit in slightly decreased yield (entry 15). This DMAP-promoted [3 + 2] cycloaddition protocol proved to be quite general with respect to the scope of aryldiazonium salts (Scheme 3). Electron-donating groups substituted at the benzene ring at different positions, including alkyl, alkoxyl, and amino groups, all reacted well with hydrazone 1a under identical conditions (products 3b-3i). Incorporation of another phenyl group turned out be no problem (products 3j-3k). Fluorine, bromine, and iodine atoms substituted at the para, ortho, and meta locations on the phenyl ring were all well tolerated, and afforded the corresponding tetrazoles 3l-3u in up to 92% yield. Furthermore, strong electron-withdrawing substituents such as -Ac, -CN, -CO2Me, and -NO2, had no obvious influence on the reaction performance (products 3v-3y). 1-Naphthyl-, 3-thienyl-, and 8-quinolinyl-derived tetrazol-5-yl difluoromethylene phosphonates 3z-3b' were also obtained with exclusive regioselectivity, albeit with low yield in the case of basic 8quinolinyl product 3b'. 7-Coumarin-diazonium salt also underwent the cycloaddition with hydrazone 1a under standard conditions, thus delivering the coumarin-tetrazole 3c' in 72% yield (X-ray confirmed) [41]. Importantly, this cycloaddition reaction also tolerates alkynyl and alkenyl moieties as exemplified by the smooth generation of cycloadducts 3d' and 3e' in good yields. The presence of protected amino or free carboxylic group in aryldiazonium salts could also be tolerated, giving the corresponding tetrazoles 3f' and 3g' with good result. To further illustrate the utility of this protocol, we conducted cycloaddition reactions with several pharmacophore-derived aryldiazonium salts (Scheme 4). Aniline derivative featuring the Lapatinib's substructure was easily converted to the diazonium salt and cyclized with hydrazone 1a with good result (product 3h').

Despite the presence of free amide group, Pomalidomide-derived diazonium salt was also a feasible substrate for this reaction, and gave access to the corresponding difluoromethylene phosphonate 3i' in 66% yield. More noteworthy is that phenylalanine-derived diazonium salt 2j' participated in the cycloaddition process smoothly, thereby providing the noncanonical amino acid 3j' in good yield with maintained complete regio-control. Finally, the phosphonate group in 3a was successfully hydrolyzed with the aid of TMSBr, affording the free phosphonic acid 4a in 92% yield (Scheme 5).

In summary, we have developed a bench-stable difluoromethylene phosphonate hydrazone to serve as the corresponding diazo precursor, and established a metal-free [3 + 2] cycloaddition transformation with aryldiazonium salts. A number of 2-aryl-2H-tetrazol-5-yl difluoromethylene phosphonates were obtained in good yields with single regioselectivity under mild conditions. Future studies will focus on the reaction mechanism and products applications.
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containing pyrazolines with good efficiency. However, due to the instability of DFMP-containing diazo compounds, the utilization of unsubstituted DFMP-functionalized 1,3-dipolar species to produce aromatic cycloadducts is an unsolved problem. As part of our long interest in fluorinated diazoalkanes [20][21][22][23][24][25][26][27][28] and the construction of tetrazoles (Scheme 1b) [29][30][31][32][33], herein we report the preparation of three bench-stable DFMP-containing diazo precursors (DFMP-Hydrazones), and their application in the regioselective synthesis of DFMP-tetrazoles via [3 + 2] cycloaddition reactions with aryldiazonium salts (Scheme 1c).

Note that this study represents the first example of introducing a difluoromethylene phosphonate motif onto the tetrazole scaffold. These two chemical entities are both metabolically stable to many of the biological transformations and have widespread implications in pharmaceuticals and bioconjugations [34][35][36].

Scheme 1. Cycloaddition reactions for the preparation of difluoromethylene phosphonate heterocycles.

Scheme 2. Preparation of difluoromethylene phosphonate hydrazones.

At the outset, we synthesized three DFMP-hydrazones via the condensation of DFMP-aldehyde precursor S-2 with the corresponding benzenesulfonyl hydrazides. As outlined in Scheme 2, treating commercially available diethyl (difluoromethyl)phosphonate S-1 with LDA in the presence of CeCl3, followed by addition of N,N-dimethylformamide (DMF) in one-pot, the desired dihydrate S-2 was smoothly obtained in 96% yield [37,38]. Subsequently, condensation of this masked aldehyde S-2 with different hydrazides under acidic conditions proved to be viable, thus giving the target DFMP-hydrazones 1a-1c in 91-95% yields [39,40]. Importantly, these diazo precursors were found to be quite stable under bench conditions, and all of them have been successfully crystallized for X-ray diffraction analysis [41].

With the three difluoromethylene phosphonate hydrazones in hand, we then proceeded to optimize the [3 + 2] cycloaddition reaction with phenyldiazonium salt 2a (Table 1) [42]. Pleasingly, by just using 4-dimethylaminopyridine (DMAP) as the base, acetonitrile as the solvent, the desired 2,5-disubstituted tetrazole 3a was obtained in up to 90% yield from CF3-hydrazone 1a without the detection of any regioisomer (entry 1). Employing NO2-hydrazone 1b or Me-hydrazone 1c could also permit the formation of tetrazole 3a, albeit in decreased yields (entry 2 and 3). The significantly lower yield observed when using Mehydrazone 1c could be the result of a lower leaving-group ability of its benzenesulfonyl moiety with respect to 1a and 1b. Notably, this reaction does not require the use of an organometallic species and thus should not involve a carbenoid intermediate that is clearly indicative of a different mechanism compared with our previous studies on the silver-catalyzed synthesis of differently decorated tetrazoles [43,[START_REF](ESI): calcd. for C12H15N4O3ClF2P + (M+H) + : 367.0538, found: m/z 367.0533. Diethyl ((2-(4-bromophenyl)-2H-tetrazol-5-yl)difluoromethyl)phosphonate (3r). For 0.2 mmol scale, the standard procedure of method B was followed to provide 3r by column chromatography on silica gel (petroleum ether/EtOAc, 4:1, v/v) as a yellow[END_REF]. Addition of silver acetate to the reaction mixture was not beneficial (entry 4). Changing DMAP to a series of organic and inorganic bases resulted in no obvious improvement (entries 5-10). This cycloaddition transformation was also found to be compatible with different solvents such as THF, CH2Cl2, and EtOAc (entries 11-13). Reducing the amount of diazonium salt 2a to 1 equivalent could still generate 3a at the expense of a relatively lower yield (entry 14). Using water as a co-solvent was found be viable, albeit in slightly decreased yield (entry 15). This DMAP-promoted [3 + 2] cycloaddition protocol proved to be quite general with respect to the scope of aryldiazonium salts (Scheme 3). Electron-donating groups substituted at the benzene ring at different positions, including alkyl, alkoxyl, and amino groups, all reacted well with hydrazone 1a under identical conditions (products 3b-3i). Incorporation of another phenyl group turned out be no problem (products 3j-3k). Fluorine, bromine, and iodine atoms substituted at the para, ortho, and meta locations on the phenyl ring were all well tolerated, and afforded the corresponding tetrazoles 3l-3u in up to 92% yield. Furthermore, strong electron-withdrawing substituents such as -Ac, -CN, -CO2Me, and -NO2, had no obvious influence on the reaction performance (products 3v-3y). 1-Naphthyl-, 3-thienyl-, and 8-quinolinyl-derived tetrazol-5-yl difluoromethylene phosphonates 3z-3b' were also obtained with exclusive regioselectivity, albeit with low yield in the case of basic 8quinolinyl product 3b'. 7-Coumarin-diazonium salt also underwent the cycloaddition with hydrazone 1a under standard conditions, thus delivering the coumarin-tetrazole 3c' in 72% yield (X-ray confirmed) [41]. Importantly, this cycloaddition reaction also tolerates alkynyl and alkenyl moieties as exemplified by the smooth generation of cycloadducts 3d' and 3e' in good yields. The presence of protected amino or free carboxylic group in aryldiazonium salts could also be tolerated, giving the corresponding tetrazoles 3f' and 3g' with good result. Scheme 4. Preparation of pharmacophore-derived tetrazolyl difluoromethylene phosphonates.

Scheme 5. Hydrolysis of difluoromethylene phosphonate 3a.

To further illustrate the utility of this protocol, we conducted cycloaddition reactions with several pharmacophore-derived aryldiazonium salts (Scheme 4). Aniline derivative featuring the Lapatinib's substructure was easily converted to the diazonium salt and cyclized with hydrazone 1a with good result (product 3h').

Despite the presence of free amide group, Pomalidomide-derived diazonium salt was also a feasible substrate for this reaction, and gave access to the corresponding difluoromethylene phosphonate 3i' in 66% yield. More noteworthy is that phenylalanine-derived diazonium salt 2j' participated in the cycloaddition process smoothly, thereby providing the noncanonical amino acid 3j' in good yield with maintained complete regio-control. Finally, the phosphonate group in 3a was successfully hydrolyzed with the aid of TMSBr, affording the free phosphonic acid 4a in 92% yield (Scheme 5).

In summary, we have developed a bench-stable difluoromethylene phosphonate hydrazone to serve as the corresponding diazo precursor, and established a metal-free [3 + 2] cycloaddition transformation with aryldiazonium salts. A number of 2-aryl-2H-tetrazol-5-yl difluoromethylene phosphonates were obtained in good yields with single regioselectivity under mild conditions. Future studies will focus on the reaction mechanism and products applications.

Three bench-stable difluoromethylene phosphonate hydrazones have been developed to function as the corresponding diazo precursor, and cyclized with aryldiazonium salts under metal-free conditions to give the 2-aryl-2H-tetrazol-5-yl difluoromethylene phosphonates with exclusive regioselectivity.
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General Information

1 H, 13 C and 31 P were recorded on Bruker AV 400 MHz instrument at 400 MHz ( 1 H NMR), 376 MHz ( 19 F NMR), 162 MHz ( 31 P NMR), as well as 101 MHz ( 13 C NMR). Chemical shifts were reported in ppm down field from internal Me4Si and external CCl3F, respectively. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), br (broad). Coupling constants were reported in Hertz (Hz). High resolution mass spectrometry (HRMS) spectra were obtained on a Waters Xevo G2-XS QTof instrument. X-ray structural analysis was conducted on a Bruker APEX-II CCD instrument. Materials: Toluene was distilled from sodium benzophenone; CH2Cl2 (DCM) and N,Ndimethylformamide (DMF) were distilled from CaH2; MeCN was distilled from P2O5. All commercially available reagents were used without further purification. The diazonium salts were prepared according to the reported procedures. [1,2] Analytical thin layer chromatography was performed on 0.20 mm silica gel plates. Silica gel (200-300 mesh) was used for flash chromatography. All purchased reagents were used without further purification. Analytical thin layer chromatography was performed on 0.20 mm Qingdao Haiyang silica gel plates. Silica gel (200-300 mesh) (from Qingdao Haiyang Chem. Company, Ltd.) was used for flash chromatography.

Important Safety Note

Handling of diazo compounds and diazonium salts should be done in a wellventilated fume cupboard. No incidents occurred handling of these reagents during this study, yet the readers should be aware of carcinogenicity and explosiveness of the herein described diazo compounds and diazonium salts. General safety precautions when working with diazo compounds and diazonium salts should be followed. Any reactions described in this manuscript should not be performed without strict risk assessment. [3,4] Experimental Procedures

The synthesis of three bench-stable DFMP-containing diazo precursors (DFMP-Hydrazones). (Method A)

To solution of LDA (41 mL, 2.0 M solution in THF/n-heptane/ethylbenzene) in dry THF at -78 °C was added freshly dried cerium(III) chloride (21 g, 82 mmol) in one portion. The resulting suspension was stirred vigorously at -78 °C for 20 min. Diethyl difluoromethylphosphonate (S-1; 15 g, 80 mmol) was added dropwise over 15 min, and the mixture was stirred for 1 h. Freshly distilled N, N-dimethylformamide (6.2 mL, 6 g, 82 mmol) was slowly added to the pale yellow-orange suspension, and after the mixture was stirred for 1 h further, aqueous hydrochloric acid was added until complete dissolution of cerium salts and the solution was warmed to room temperature. The aqueous layer was extracted with dichloromethane, and the combined organic layers were washed with brine, dried over MgSO4, and concentrated in vacuo to afford diethyl (1,1-difluoro-2,2-dihydroxyethyl)phosphonate (S-2, 18.0 g, 96%) [1] . Then a 250 mL bottom flask was charged with S-2 (60 mmol), ArSO2NHNH2 (40 mmol) and ethyl acetate (200 mL). Then acetic acid (4 mmol) was added dropwise under Ar atmosphere. Then the mixture was transferred to 40 ºC and stirred overnight, and monitored by TLC (PE:EA=2:1, v/v). After the reaction was complete, the mixture was concentrated under reduced pressure and washed by PE/Et2O to afford the product 1a (15.4 g, 91%) as a white solid, 1b (15.5 g, 93%) as a yellow solid, and 1c (14.6 g, 95%) as a white solid, respectively.

General procedure for the synthesis of 2-aryl-2H-tetrazol-5-yl difluoromethylene phosphonates. (Method B)

An oven-dried Schlenk tube equipped with a magnetic stir bar was charged with hydrazone 1a (0.2 mmol), aryl diazonium salts 2 (0.4 mmol), DMAP (0.8 mmol), then MeCN (3 mL) were added under Ar atmosphere. The resulting mixture was allowed to stir at 0 o C for 12 hours. The resulting organic solution was concentrated under reduced pressure, and the residue was further purified by a silica gel column chromatography to yield the corresponding 2-aryl-2H-tetrazol-5-yl difluoromethylene phosphonates 3.

Optimization of Reaction Conditions a

Entry

Variation from the standard conditions Yield (%) b 

Diethyl (E)-(1,1-difluoro-2-(2-((2-nitrophenyl)sulfonyl)hydrazineylidene)ethyl) phosphonate (1b).

For 40 mmol scale, the standard procedure of method A was followed to provide 1b as a yellow solid (15.5 g, 93%). 

Diethyl (E)-(1,1-difluoro-2-(2-tosylhydrazineylidene)ethyl)phosphonate (1c).

For 40 mmol scale, the standard procedure of method A was followed to provide 1c as a white solid (14.6 g, 95%). 

Diethyl (difluoro(2-(4-methoxyphenyl)-2H-tetrazol-5-yl)methyl)phosphonate (3f).

For 0.2 mmol scale, the standard procedure of method B was followed to provide 3f by column chromatography on silica gel (petroleum ether/EtOAc, 4:1, v/v) as a purple solid (59.5 mg, 82% 
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 1 Fig. 1. Selected bio-active difluoromethylene phosphonates.

Scheme 4 .Scheme 5 .

 45 Scheme 4. Preparation of pharmacophore-derived tetrazolyl difluoromethylene phosphonates.
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Fig. 1 .

 1 Fig. 1. Selected bio-active difluoromethylene phosphonates.

a 3 .

 3 Scheme3.Substrate scope of 2-aryl-2H-tetrazol-5-yl difluoromethylene phosphonates.

19 F

 19 NMR (376 MHz, CDCl3) δ -58.02 (s), -113.08 (d, J = 7.7 Hz), -113.36 (d, J = 7.5 Hz). 31 P NMR (162 MHz, CDCl3) δ 3.14 (t, J = 104.1 Hz). 13 C NMR (101 MHz, DMSO-D6) δ 137.7 (dd, J = 27.1, 14.5 Hz), 137.3 (d, J = 12.8 Hz), 134.0, 133.4, 131.5, 128.6 (q, J = 6.2 Hz), 126.4 (q, J = 32.9 Hz), 122.7 (d, J = 274.0 Hz), 114.5 (td, J = 260.0, 214.0 Hz), 64.7 (d, J = 6.6 Hz), 16.0 (d, J = 5.3 Hz). HRMS (ESI): calcd. for C13H17N2O5 F5PS + (M+H) + : 439.0516, found: m/z 439.0506.

13 C

 13 NMR (101 MHz, CDCl3) δ 162.1 -158.0 (m), 135.9, 133.1, 132.0, 130.9, 127.0, 125.1, 112.9 (td, J = 262.5, 217.5 Hz), 65.7 (d, J = 6.6 Hz), 18.6, 16.4 (d, J = 5.5 Hz). HRMS (ESI): calcd. for C13H18N4O3F2P + (M+H) + : 347.1085, found: m/z 347.1090. Diethyl ((2-(3,5-dimethylphenyl)-2H-tetrazol-5-yl)difluoromethyl)phosphonate (3e

  13 C NMR (101 MHz, CDCl3) δ 160.6 -159.1 (m), 140.0, 136.4, 132.3, 118.0, 113.0 (td, J = 262.9, 217.6 Hz), 65.8 (d, J = 6.6 Hz), 21.4, 16.5 (d, J = 5.5 Hz). HRMS (ESI): calcd. for C14H20N4O3F2P + (M+H) + : 361.1241, found: m/z 361.1242.

  7 (d, J = 6.5 Hz), 55.7, 16.4 (d, J = 5.5 Hz). HRMS (ESI): calcd. for C13H18N4O4F2P + (M+H) + : 363.1034, found: m/z 363.1035. )phosphonate (3g). For 0.2 mmol scale, the standard procedure of method B was followed to provide 3g by column chromatography on silica gel (petroleum ether/EtOAc, 4:1, v/v) as a red-brown solid (80.0 mg, 94%). M.p.: 58-59 o C. 1 H NMR (400 MHz, CDCl3) δ 7.77 -7.62 (m, 3H), 4.40 (p, J = 7.2 Hz, 4H), 4.02 (s, 3H), 1.42 (t, J = 7.1 Hz, 6H). 19 F NMR (376 MHz, CDCl3) δ -109.67, -109.94. 31 P NMR (162 MHz, CDCl3) δ 2.80 (tq, J = 100.8,

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1

 1 Optimization of reaction conditions. a

	Entry	Variation from the standard conditions	Yield (%) b
	1	none	90
	2	1b instead of 1a	80
	3	1c instead of 1a	54
	4	AgOAc (5 mol%) was added	85
	5	Pyridine instead of DMAP	91
	6	DABCO instead of DMAP	80
	7	DBU instead of DMAP	77
	8	DIPEA instead of DMAP	66
	9	Cs2CO3 instead of DMAP	80
	10	K3PO4 instead of DMAP	65
	11	THF instead of MeCN	82
	12	CH2Cl2 instead of MeCN	73
	13	EtOAc instead of MeCN	71
	14	0.2 mmol of 2a was employed	68
	15	MeCN/H2O = 1:1 was used as solvent	71

Table 1

 1 Optimization of reaction conditions. a

	Entry	Variation from the standard conditions	Yield (%) b
	1	none	90
	2	1b instead of 1a	80
	3	1c instead of 1a	54
	4	AgOAc (5 mol%) was added	85
	5	Pyridine instead of DMAP	91
	6	DABCO instead of DMAP	80
	7	DBU instead of DMAP	77
	8	DIPEA instead of DMAP	66
	9	Cs2CO3 instead of DMAP	80
	10	K3PO4 instead of DMAP	65
	11	THF instead of MeCN	82
	12	CH2Cl2 instead of MeCN	73
	13	EtOAc instead of MeCN	71
	14	0.2 mmol of 2a was employed	68
	15	MeCN/H2O = 1:1 was used as solvent	71

Diethyl (difluoro(2-(o-tolyl)-2H-tetrazol-5-yl)methyl)phosphonate (3d).

  Hz, 2H), 4.21 (q, J = 7.3 Hz, 4H), 2.40 (s, 3H), 1.30 (t, J = 7.1 Hz, 6H). 19 F NMR (376 MHz, For 0.2 mmol scale, the standard procedure of method B was followed to provide 3d by column chromatography on silica gel (petroleum ether/EtOAc, 4:1, v/v) as a yellow oil (59.6 mg, 86%). 1 H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 7.9 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.39 (dd, J = 14.4, 5.3 Hz, 2H), 4.39 (p, J = 7.3 Hz, 4H), 2.37 (s, 3H), 1.40 (t, J = 7.1 Hz, 6H). 19 F NMR (376 MHz, CDCl3) δ -109.28, -109.55. 31 P NMR (162 MHz, CDCl3) δ 3.09 (tt, J = 101.7, 8.5 Hz).

1 H NMR (400 MHz, CDCl3) δ 10.41 (s, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0

  ). For 0.2 mmol scale, the standard procedure of method B was followed to provide 3e by column chromatography on silica gel (petroleum ether/EtOAc, 4:1, v/v) as a red oil (63.4 mg, 88%). 1 H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 1.6 Hz, 2H), 7.15 (s, 0H), 4.45 -4.33 (m, 4H), 2.41 (s, 6H), 1.41 (t, J = 7.1 Hz, 6H). 19 F NMR (376 MHz, CDCl3) δ -109.49, -109.76. 31 P NMR (162 MHz, CDCl3) δ 3.05 (tp, J = 101.2, 8.2 Hz).

  ). M.p.: 38-39 o C. 1 H NMR (400 MHz, CDCl3) δ 8.06 (d, J = 9.2 Hz, 2H), 7.04 (d, J = 9.1 Hz, 2H), 4.61 -4.12 (m, 4H), 3.88 (s, 3H), 1.41 (t, J = 7.1 Hz, 6H). 19 F NMR (376 MHz, CDCl3) δ -109.39, -109.66. 31 P NMR (162 MHz, CDCl3) δ 3.08 (tt, J = 101.7, 8.3 Hz). 13 C NMR (101 MHz, CDCl3) δ 161.2, 129.8, 121.8, 114.8, 112.9 (td, J = 262.8, 217.7 Hz), 65.

P-NMR of 1a (CDCl3, 162 M)13 C-NMR of 1a (DMSO-d6, 101 M)

H-NMR of 1b (CDCl3, 400 M)19 F-NMR of 1b (CDCl3, 376 M)

P-NMR of 1b (CDCl3, 162 M)13 C-NMR of 1b (CDCl3, 101 M)

H-NMR of 1c (CDCl3, 400 M)19 F-NMR of 1c (CDCl3, 376 M)

P-NMR of 1c (CDCl3, 162 M)13 C-NMR of 1c (CDCl3, 101 M)

H-NMR of 3a (CDCl3, 400 M)19 F-NMR of 3a (CDCl3, 376 M)

P-NMR of 3a (CDCl3, 162 M)13 C-NMR of 3a (CDCl3, 101 M)

H-NMR of 3b (CDCl3, 400 M)19 F-NMR of 3b (CDCl3, 376 M)

P-NMR of 3b (CDCl3, 162 M)13 C-NMR of 3b (CDCl3, 101 M)

H-NMR of 3c (CDCl3, 400 M)19 F-NMR of 3c (CDCl3, 376 M)

P-NMR of 3c (CDCl3, 162 M)13 C-NMR of 3c (CDCl3, 101 M)

H-NMR of 3d (CDCl3, 400 M)19 F-NMR of 3d (CDCl3, 376 M)

P-NMR of 3d (CDCl3, 162 M)13 C-NMR of 3d (CDCl3, 101 M)

H-NMR of 3e (CDCl3, 400 M)19 F-NMR of 3e (CDCl3, 376 M)

C-NMR of 3e (CDCl3, 101 M)

H-NMR of 3f (CDCl3, 400 M)19 F-NMR of 3f (CDCl3, 376 M)

P-NMR of 3f (CDCl3, 162 M)13 C-NMR of 3f (CDCl3, 101 M)

H-NMR of 3g (CDCl3, 400 M)

C-NMR of 3g (CDCl3, 101 M)

H-NMR of 3h (CDCl3, 400 M)19 F-NMR of 3h (CDCl3, 376 M)

P-NMR of 3h (CDCl3, 162 M)13 C-NMR of 3h (CDCl3, 101 M)

H-NMR of 3i (CDCl3, 400 M)19 F-NMR of 3i (CDCl3, 376 M)

P-NMR of 3i (CDCl3, 162 M)13 C-NMR of 3i (CDCl3, 101 M)

H-NMR of 3j (CDCl3, 400 M)19 F-NMR of 3j (CDCl3, 376 M)

P-NMR of 3j (CDCl3, 162 M)13 C-NMR of 3j (CDCl3, 101 M)

H-NMR of 3k (CDCl3, 400 M)

P-NMR of 3k (CDCl3, 162 M)

H-NMR of 3l (CDCl3, 400 M)

P-NMR of 3l (CDCl3, 162 M)

H-NMR of 3r (CDCl3, 400 M)

C-NMR of 3r (CDCl3, 101 M)

C-NMR of 3z (CDCl3, 101 M)

H-NMR of 3a' (CDCl3, 400 M)19 F-NMR of 3a' (CDCl3, 376 M)

P-NMR of 3a' (CDCl3, 162 M)13 C-NMR of 3a' (CDCl3, 101 M)

H-NMR of 3b' (CDCl3, 400 M)\ 19 F-NMR of 3b' (CDCl3, 376 M)

P-NMR of 3b' (CDCl3, 162 M)13 C-NMR of 3b' (CDCl3, 101 M)

H-NMR of 3c' (CDCl3, 400 M)19 F-NMR of 3c' (CDCl3, 376 M)

P-NMR of 3c' (CDCl3, 162 M) 13 C-NMR of 3c' (CDCl3, 101 M)

H-NMR of 3d' (CDCl3, 400 M)19 F-NMR of 3d' (CDCl3, 376 M)

P-NMR of 3d' (CDCl3, 162 M)13 C-NMR of 3d' (CDCl3, 101 M)

H-NMR of 3e' (CDCl3, 400 M)19 F-NMR of 3e' (CDCl3, 376 M)

P-NMR of 3d' (CDCl3, 162 M)13 C-NMR of 3e' (CDCl3, 101 M)

H-NMR of 3f' (CDCl3, 400 M)19 F-NMR of 3f' (CDCl3, 376 M)

P-NMR of 3f' (CDCl3, 162 M)13 C-NMR of 3f' (CDCl3, 101 M)

H-NMR of 3g' (DMSO-d6, 400 M)

H-NMR of 3h' (CDCl3, 400 M)19 F-NMR of 3h' (CDCl3, 376 M)

P-NMR of 3h' (CDCl3, 162 M)13 C-NMR of 3h' (CDCl3, 101 M)

H-NMR of 3i' (CDCl3, 400 M)19 F-NMR of 3i' (CDCl3, 376 M)

P-NMR of 3i' (CDCl3, 162 M)13 C-NMR of 3i' (CDCl3, 101 M)

H-NMR of 3j' (CDCl3, 400 M)19 F-NMR of 3j' (CDCl3, 376 M)

P-NMR of 3j ' (CDCl3, 162 M)13 C-NMR of 3j' (CDCl3, 101 M)

H-NMR of 4a (D2O, 400 M)
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Metal-free regioselective construction of 2-aryl-2Htetrazol-5-yl difluoromethylene phosphonates

Shi-Jing Zhai, a Dominique Cahard, b Fa-Guang Zhang, a, Jun-An Ma, a, 

Diethyl (difluoro(2-(p-tolyl)-2H-tetrazol-5-yl)methyl)phosphonate (3b

Diethyl ((2-(4-(dimethylamino)phenyl)-2H-tetrazol-5yl)difluoromethyl)phosphonate (3i

). For 0.2 mmol scale, the standard procedure of method B was followed to provide 3i by column chromatography on silica gel (petroleum ether/EtOAc, 4:1, v/v) as a purple solid (55. 5 

Diethyl ((2-([1,1'-biphenyl]-3-yl)-2H-tetrazol-5-yl)difluoromethyl)phosphonate (3j

). For 0.2 mmol scale, the standard procedure of method B was followed to provide 3j by column chromatography on silica gel (petroleum ether/EtOAc, 4:1, v/v) as a red-brown oil (63.2 mg, 86%). 

S9 Diethyl ((2-([1,1'-biphenyl]-2-yl)-2H-tetrazol-5-yl)difluoromethyl)phosphonate (3k

). For 0.2 mmol scale, the standard procedure of method B was followed to provide 3k by column chromatography on silica gel (petroleum ether/EtOAc, 4:1, v/v) as a brown oil (73.5 mg, 90%). 

Diethyl (difluoro(2-(4-fluorophenyl)-2H-tetrazol-5-yl)methyl)phosphonate (3l).

For 0.2 mmol scale, the standard procedure of method B was followed to provide 3l by column chromatography on silica gel (petroleum ether/EtOAc, 4:1, v/v) as a brown oil (42.0 mg, 60%). 

Diethyl (difluoro(2-(3-fluorophenyl)-2H-tetrazol-5-yl)methyl)phosphonate (3m).

For 0.2 mmol scale, the standard procedure of method B was followed to provide 3m by column chromatography on silica gel (petroleum ether/EtOAc, 4:1, v/v) as a red-brown oil (55.3 mg, 79%). 

Diethyl (difluoro(2-(2-fluorophenyl)-2H-tetrazol-5-yl)methyl)phosphonate (3n).

For 0.2 mmol scale, the standard procedure of method B was followed to provide 3n by column chromatography on silica gel (petroleum ether/EtOAc, 3:1, v/v) as a yellow oil (48.3 mg, 69%). 

Diethyl ((2-(4-chlorophenyl)-2H-tetrazol-5-yl)difluoromethyl)phosphonate (3o).

For 0.2 mmol scale, the standard procedure of method B was followed to provide 3o by column chromatography on silica gel (petroleum ether/EtOAc, 4:1, v/v) as a yellow oil (79.6 mg, 88%). 

Diethyl ((2-(3-chlorophenyl)-2H-tetrazol-5-yl)difluoromethyl)phosphonate (3p).

For 0.2 mmol scale, the standard procedure of method B was followed to provide 3p by column chromatography on silica gel (petroleum ether/EtOAc, 4:1, v/v) as a red-brown solid (66. 

Diethyl ((2-(2-chlorophenyl)-2H-tetrazol-5-yl)difluoromethyl)phosphonate (3q).

For 0.2 mmol scale, the standard procedure of method B was followed to provide 3q by column chromatography on silica gel (petroleum ether/EtOAc, 3:1, v/v) as a brown oil (56.4 mg, 77%). 

Diethyl ((2-(4-ethynylphenyl)-2H-tetrazol-5-yl)difluoromethyl)phosphonate (3d').

For 0.2 mmol scale, the standard procedure of method B was followed to provide 3d' by column chromatography on silica gel (petroleum ether/EtOAc, 4:1, v/v) as a red-brown solid (51. 

Diethyl (difluoro(2-(4-vinylphenyl)-2H-tetrazol-5-yl)methyl)phosphonate (3e').

For 0.2 mmol scale, the standard procedure of method B was followed to provide 3e' by column chromatography on silica gel (petroleum ether/EtOAc, 4:1, v/v) as a brown

Diethyl ((2-(3-chloro-4-((3-fluorobenzyl)oxy)phenyl)-2H-tetrazol-5yl)difluoromethyl)phosphonate (3h'

). For 0.2 mmol scale, the standard procedure of method B was followed to provide 3h' by column chromatography on silica gel (petroleum ether/EtOAc, 2:1, v/v) as a black solid (111.7 mg, 76%). M.p.: 74-75 o C. 

Diethyl ((2-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)-2H-tetrazol-5yl)difluoromethyl)phosphonate (3i'

). For 0.2 mmol scale, the standard procedure of method B was followed to provide 3i' by column chromatography on silica gel (petroleum ether/EtOAc, 1:2, v/v) as a yellow oil (67.6 mg, 66%). 

Methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(5-((diethoxyphosphoryl)difluoromethyl)-2H-tetrazol-2-yl)phenyl)propanoate (3j').

For 0.2 mmol scale, the standard procedure of method B was followed to provide 3j' by column chromatography on silica gel (petroleum ether/EtOAc, 1:1, v/v) as a red-brown oil (80.0 mg, 75%). 

Proposed Mechanism

We proposed two possible mechanisms for this reaction as shown below. In pathway I, hydrazone 1a was first transformed to the diazo intermediate Int-1 via eliminating arylsulfone moiety under basic conditions. 1,3-Dipolar cycloaddition reaction of Int-1 with aryldiazonium salt 2 proceeded to give the cycloadduct Int-2. Final aromatization process led to the tetrazole product 3. On the other hand, it is also possible that hydrazone 1a first underwent nucleophilic addition to aryldiazonium salt 2 to generate a formazan intermediate Int-3. Then intramolecular cyclization and arylsulfone elimination steps proceeded to give the tetrazole product 3. We have treated hydrazone 1a with DMAP in the absence of aryldiazonium salt and didn't observe the formation of diazo species Int-1. This control experiment indicated that pathway II is probably more practicable, but pathway I still couldn't be fully excluded.
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