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Abstract 

We can use demographic methods to study the spatial response of individuals and populations 

to current global changes. The first mechanism underlying range shifts is a change in the spatial 

distribution of births and deaths. The spatial regression of demographic rates with geostatistical 

and spatially explicit models documents the intrinsic growth rate across the range of a 

population. The population distribution is expected to shift towards areas with the largest 

intrinsic growth rate, both mechanistically and because these areas are attractive to dispersing 

individuals. The second mechanism is indeed movement, including emigration away from 

places that recently became inhospitable and immigration into newly available locations. The 

analysis of dispersal fluxes using movement data, or indirectly by comparing the observed and 

intrinsic growth rates in integrated population models, documents these fluxes. Combining 

these two mechanisms in integral projection models or in individual-based simulations is 

expected to yield major advances in predictive spatial ecology, that is, mechanistic species 

distribution models. 
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15.1 Introduction 

Eco-evolutionary processes are rooted in the way fitness varies across space and the way 

individuals implement dispersal strategies in response to that variation. As climate and land use 



changes redistribute the abiotic drivers that influence demography, the importance of spatial 

aspects in eco-evolutionary dynamics is increasingly obvious (Thuiller et al. 2013). In 

particular, the balance between extinctions and colonisations contributes to range shifts in 

metapopulations (Hanski and Gyllenberg 1997; Gandon and Michalakis 1999; McCauley et al. 

2013). In the broader community context, the balance between local adaptation (Bohonak 1999; 

McRae et al. 2008; Burton et al. 2010) and dispersal/movement also creates ways for species 

and individuals to coexist by implementing different space use tactics (Leibold et al. 2004; 

Wolf et al. 2007; Péron et al. 2019). 

This chapter reviews the analysis of demographic data for inference about spatial variation 

in fitness components and about dispersal strategies (Table 15.1). It also includes a section 

about prospective analysis, that is, the study of model properties for predictive inference 

(section 15.4: the feedback between space use and fitness). 

<COMP: INSERT Table 15.1 NEAR HERE> 

15.2 Spatial variation in demographic rates 

The intrinsic population growth rate, the balance between local births and local deaths, 

documents whether a place acts as a population source that contributes to the overall increase 

in population (Pulliam 1988) or a population sink likely to attract more immigrants than it emits 

emigrants (Novaro et al. 2005). Mapping out the spatial variation in intrinsic population growth 

rate is thus key to understanding the spatial functioning of populations, pinpoint the areas 

deserving of conservationists’ concerns, infer whether dispersing individuals are using public 

information or conspecific occurrence to decide where to settle, and determine gene flow from 

source–sink dynamics. I will first review the generic nonparametric statistical tools to estimate 

spatial variation in any variable (section 15.2.1) and provide a nonexhaustive review of recent 
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nonparametric analyses pertaining to spatial demography (section 15.2.2). Parametric 

approaches will only be briefly discussed (section 15.2.3) because they have been reviewed 

elsewhere and extensively (Dormann et al. 2007; Beale et al. 2010). 

15.2.1 Statistical tools for nonparametric inference about spatial variation 

The objective in this section is to provide an overview of often complex statistical techniques 

and point the reader in the right direction, hopefully. 

First, at the data exploration stage, users may want to use Moran’s index of autocorrelation 

to determine whether there is spatial structure in their data (Moran 1950; Cressie 1993). 

Moran’s index detects the presence of a systematic increased level of similarity between data 

points that are close together compared to data points that are further apart. In practice, one may 

use the function Moran from the raster package for R if the data are in raster format and 

assuming a linear decay in autocorrelation strength with Euclidian distance; or the function 

moran from the spdep package to accommodate less regular samples (Bivand et al. 2013).  

I will now review the three main options for the analysis of spatial variation in demographic 

data. Note that these methods can be applied directly to spatially explicit sets of fecundity data 

or population survey data, but, to apply them to capture–recapture data for inference about 

survival and lifespan (cf. Chapter 13), they must first be incorporated into the appropriate state-

space model that deals with imperfect detection of individuals (Gimenez et al. 2006; Péron et 

al. 2011). 

Random forest algorithms 

Also known as hierarchical clustering algorithms, this class of method belongs to the data 

mining and machine learning movement. It owes its name to its building blocks which are 

decision trees (Breiman 2001). A decision tree is a sequence of multiple-choice questions based 
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on clustering criteria or features (e.g. ‘Is the object red, blue, or green?’, ‘Is it a square or a 

circle?’). The training dataset is grouped into bags according to these features (e.g. bag 1 = 

‘green squares’). The value of the dependent variable in each bag is computed from the training 

data (e.g. ‘bag 1 was good to eat’). The decision tree is fitted to the training data using traditional 

statistics (e.g. least square criterion or receiver operating characteristic curve). The interest then 

lies in the predictive power of the tree, that is, its ability to bin new objects into bags without a 

priori knowledge of the dependent variable and only knowing the features of the object (e.g. 

‘determine palatability based on colour and shape’). The main issue with this type of approach 

is overfitting, for example, when the tree uses more features than supported by the training data 

and identifies small-sample artefacts rather than meaningful trends. To prevent overfitting 

without losing information, a random forest is a group of decision trees each based on a reduced 

subset of features. The prediction is the consensus between all the trees in the forest. For the 

random forest to perform better than a single decision tree, we simply need some of the features 

to be meaningful, that is, related to the predicted variable, and that the predictions made by 

individual trees have low correlations with each other (Breiman 2001). The latter condition is 

usually enforced by training each tree in the forest with a different subset of the data and by 

selecting the features of each tree at random irrespective of their predictive power. 

When applied to spatial demography, the key strength of the random forest framework is 

the ability to input ancillary information in the form of spatial covariates. If the covariates are 

meaningful and well chosen, the algorithm makes it possible to downscale or disaggregate the 

demographic data at the resolution of these ancillary covariates (Stevens et al. 2015). However, 

the random forest algorithm also performs adequately if provided with nothing more than the 

geographical coordinates of the samples, in which case it will look for clusters of adjacent 

samples with similar demographic properties (Brickhill et al. 2015; Rushing et al. 2016). In 



practice, the random forest algorithm for spatial data is implemented in, for example, the 

ranger package for R (Wright and Ziegler 2017). 

Splines 

This section is going to be more technical than the rest of the chapter. The principle of this 

family of techniques is to approximate the spatial variation in a variable Y by a sum of K 

unimodal functions with desirable mathematical properties, which are termed the splines 

(Ruppert et al. 2003). The main feature of the splines is their location, that is the position of 

their knot kκ , which is typically decided using a data-driven space-filling algorithm (Nychka 

and Saltzman 1998). The analytical shape of the spline is less influencial. Hereafter, I will 

consider radial splines denoted  ,kD κ
, where D is the distance operator. The dependant 

variable Y at location (x, y), is then modelled through the link function , as 

     0 1 2 1
,   , ,  ˆ K

k kk
Y x y x y b D x y  


     κ

. The b parameters represent the weights 

associated to each of the K splines. The   parameters represent clinal variation. To fit that 

model, we need to minimise the least-square criterion     2,     β βb Y X Z bC ‖ ‖
, where 

Y contains the N observations of the focal variable, X is a N×3 matrix containing the coordinates 

at the sampling locations preceded by a 1 for the intercept, and Z is a N×K matrix, with ,i kZ
 the 

value of spline k at sampling location i. 

The main issue with this basic implementation of the spline model is, like in the decision 

tree case, overfitting. To avoid giving too much weight to idiosyncratic patterns occurring at 

the sampled locations, one typically incorporates a penalisation term designed to force the sum 

of the squared bs to stay below a threshold (Ruppert et al. 2003, p. 65). The criterion to be 

minimised then becomes of the form     2 2, ,  T        β β Ωb Y X Z b   b bC ‖ ‖
. 



Following Ruppert et al. (2003, p. 73), we use for Ω  the K×K distance matrix with 

 ,Ω ,k l k lD κ κ
.   is the smoothing parameter controlling how much the idiosyncrasies will 

be smoothed out, to be estimated directly from the data themselves.   is akin to the bandwidth 

parameter in kernel density estimators or the penalisation coefficient in lasso regularised 

regressions. To estimate the parameters, following Ruppert et al. (2003, p. 108ff), we exploit 

the fact that the criterion  , ,βC b
 is the same as that of a linear mixed model with predictor 

X, fixed-effect regression coefficient β , design matrix 
1/2 ΩZ Z , Gaussian random effects 

1/2 Ωu b , and individually and independently distributed Gaussian error term ε  such that 

   2Var Varε u
. This means that we can fit the model using any software designed to fit 

linear mixed effect models, as long as the software interface allows us to specify a custom 

design matrix. Implementations using Bayesian software are available (Crainiceanu et al. 

2005), including within capture–recapture models that account for imperfect detection of 

individuals (Gimenez et al. 2006; Péron et al. 2011). 

Autoregressive models 

This section is also going to be more technical than the rest of the chapter. Note, however, that 

autoregressive models are readily available in R packages spdep and nlme (Pinheiro et al. 

2013) and are extensively used in ecology (Dormann et al. 2007). The underlying assumption 

of this class of model is that the value of the target variable Y at location (x, y) can be predicted 

from the value at any nearby location (x+dx, y+dy) and inversely. There are two nonexclusive 

options to implement that principle (Cressie 1993). 

 In a spatial lag model, the observations are directly regressed against each other: 

        , ,  ρ   ,x y x y x y  μ εY W Y
, where μ  is a mean term that usually 



depends on spatially explicit linear predictors, ρ  is the autocorrelation coefficient, 

W is a weight matrix typically corresponding to the Euclidian distances between 

samples, and ε  contains individually and independently distributed (IID) error 

terms. 

 In a spatial error model, the spatial autocorrelation affects the error term only: 

      , ,   ,x y x y x y μY e
 with    , λ   ,x y x y εe   We

. This type of model is 

typically used when the sampling noise is spatially autocorrelated. If this 

autocorrelation in the sampling error was not accounted for, the estimation of μ , 

that is, the ecological process of how the dependent variable Y depends on 

environmental covariates at location  ,x y
, would be biased, sometimes severely 

(Beale et al. 2010). Importantly, however, spatial error models work under the 

assumption that only the sampling error is autocorrelated. If it is not the case, that 

is, there is a biological process of spatial autocorrelation, using a spatial error 

model will assign too much spatial variance to the error and not enough variance 

to the mean. 

In terms of R implementation, one may use the functions lagsarlm for the spatial lag 

model and errorsarlm for the spatial error model, both from package spdep. The spatial 

lag and spatial error models can also be merged together to obtain the simultaneous 

autoregressive models (SAR) that features both autocorrelation structures. There is also the 

conditional autoregressive model (CAR) or autologistic model, a variant of the spatial lag 

model. CAR is often preferred in ecological applications because of its flexibility and ability to 

accommodate missing data (Yackulic et al. 2012; Péron et al. 2016). CAR is obtained by 

designing the weight matrix according to user-specified lists of ‘neighbours’ for each sample, 

for example, the adjacent cells in a raster. We specify W as the adjacency matrix with a 1 if two 



samples are neighbours and 0 otherwise, and D is the normalisation matrix, a diagonal matrix 

with 
ii ij

j

D W
. Then the CAR model is a Gaussian random field (Gelfand and Vounatsou 

2003), of mean μ  and variance 
 

12 ρ


D W
 (Cressie 1993). Following Besag (1974), there 

is an analytical solution under some constraints. In practice, implementations like the function 

spautolm from the spdep package rely on numerical optimisation to offer more flexibility 

regarding what goes in μ  and how the W matrix is defined, at the cost of increased risk of 

numerical errors and optimisation failures. Many ecological applications furthermore include 

the CAR structure within a more complex hierarchical structure, for example, a partially 

observed colonisation/extinction process (Yackulic et al. 2012; Péron et al. 2016). 

15.2.2 Recent implementations in spatial demography 

Spatially explicit matrix population models 

By ‘spatially explicit matrix population model’ I mean an array of grid cell-specific matrix 

population models (cf. Chapter 9), parameterised using the nonparametric estimation 

techniques outlined above in section 15.2.1. They describe the spatial variation in intrinsic 

population growth rate but do not account for dispersal. Actually, I will only review the studies 

of spatial variation in survival rate, not in intrinsic population growth rate per se. This is because 

I could not locate any study of the spatial variation in fecundity that used a nonparametric 

technique. However, see data sets of passerine clutch size and nest fate (Baillie 1990; Brickhill 

et al. 2015; Eglington et al. 2015), acorn production in oak (Quercus sp.) forests (Koenig and 

Knops 2013; Touzot et al. 2018), and egg or foetus mass in harvested individuals from 

exploited species like commercial fish (Bell et al. 1992; Kraus et al. 2000; Stige et al. 2017) 

and game (Karns 2014; Gamelon et al. 2018). 



Even survival studies are quite rare to the best of my knowledge. Saracco et al. (2010) used 

autoregressive models to generate maps of survival probability for the wood thrush (Hylocichla 

mustelina), a migratory passerine. The way survival increased in the northern and especially 

northwesternmost sections of the range is congruent with the observed increase in abundance 

in the northwestern part of the range (Rushing et al. 2016) and aligns with predictions from 

climate change. The particularity of the Saracco et al. study is that they accommodated 

transience at the bird ringing locations, that is, an excess of individuals captured only once 

(Pradel et al. 1997)—an important nuisance parameter to accommodate when individuals are 

not site-faithful. 

Péron et al. (2011) used the spline method to delineate population sinks as areas where the 

predicted overwinter survival probability of Eurasian woodcocks (Scolopax rusticola) fell 

below the population renewal rate, itself a function of spatially invariant fecundity and summer 

survival rates. Their results confirm the additive nature of hunting mortality (Péron 2013) and 

imply that the dispersal of juveniles into population sinks is critical to the persistence of the 

species in the sinks. 

Campbell et al. (2018) also used the autoregressive method to perform a spatially explicit 

population viability analysis of the Sonoran desert tortoise (Gopherus morafkai) based on 

spatially explicit survival rates. In this desert-adapted species, their results provide a 

demographic explanation for the ‘abundant centre hypothesis’ (Péron and Altwegg 2015b), that 

is, demographic performance was best at the core of the species’ range and worst near the edge 

of the species’ range. Interestingly, a decrease in the age at maturity near the edge of the range 

failed to compensate for the decreased survival rates. 

To my knowledge, there is no study to date using the random forest method to estimate 

spatial variation in survival rates. This is because the cross-validation part of the random forest 



algorithm is not straightforwardly compatible with the state-space modelling framework 

required to estimate survival from capture–recapture data with imperfect detection. 

Modelling the population growth rate from count data 

When the vital rates themselves are not available, and if time-specific and spatially-explicit 

population count data are available, these counts may be interpolated both spatially and 

temporally to compute the spatial variation in the population growth rate directly (Renner et al. 

2013; Rushing et al. 2016). However, in most cases, data sets have proven too sparse and 

authors have either estimated the spatial and temporal components separately (i.e. using 

additive effects) or they pooled the data at a coarse ecoregion level. In the latter case, random 

forest algorithms appear well suited to delineate these ecoregions based on the demographic 

data themselves (Brickhill et al. 2015; Rushing et al. 2016). In any case, as reviewed further in 

section 15.3 on dispersal, in vertebrates it is extremely rare to collect exact population counts 

at a fine spatial resolution and over large geographical areas. What is typically available instead 

is crowd-sourced, rasterised presence/absence or minimum count data (e.g. Péron and Altwegg 

2015a). Using the link between the overall abundance in the landscape and the probability that 

any given location is occupied, or alternatively the link between the local abundance and the 

probability that at least one individual is detected (Royle and Nichols 2003), we may use these 

data as a proxy for the local abundance (Williams et al. 2017) and compute the spatial variation 

in the population growth rate that way. 

15.2.3 Discussion 

Empirical discrepancies between the three nonparametric regression methods 

Empirically, the outputs of the three nonparametric methods are often significantly different 

(e.g. ‘RF’ vs. ‘MARS’ in Figure 6 in Renner et al. 2013). This is in part because of differences 



in the amount of smoothing. As illustrated by Kie (2013) in the context of kernel density 

estimators, the smoothing parameter is of paramount importance (see also ‘GAM’ vs. ‘MARS’ 

in Figure 6 in Renner et al. 2013; and ‘KDE’ vs. ‘KDEr’ and vs. ‘AKDE’ in Figure 1 in Péron 

2019b). Therefore, the fact that the three methods are not strictly equivalent in terms of the 

amount of smoothing that they apply is critical. If the noise/signal ratio is large, that is, if 

nonspatial variance exceeds spatial variance in the data, the random forest is the most likely to 

overfit the data, and researchers should therefore prefer either the spline or the autoregressive 

method. But by contrast, if there are discontinuities or locally sharp gradients in the focal 

variable, the random forest method is the most relevant because other methods will smooth out 

these discontinuities, and this might lead to lack of fit. 

What about fully parametric approaches? 

Instead of a nonparametric, descriptive approach, researchers are often keen on using spatial 

covariates to predict spatial demography and infer the underlying ecological mechanisms 

(Beale et al. 2010; Germain et al. 2018). This is especially the case when extrapolating 

mortality factors from telemetry data which have a natural spatial component to them (Schwartz 

et al. 2010; Basille et al. 2013; Péron et al. 2017). However, researchers should be acutely 

aware that, especially in our data-rich times, it is often possible to find combinations of climate 

and vegetation covariates that adequately predict the observed spatial variation in demography, 

but without capturing any significant biological mechanism, in other words, only by 

coincidence (Journé et al. 2019). Such correlations are therefore potentially great for 

interpolating gaps in coverage, but they should not be overinterpreted or used for predictions 

and extrapolations. For example, within a population of red-billed chough (Pyrrhocorax 

pyrrhocorax), the between-site variation in survival probability was caused by the different 

natal origin of the individuals in the different sites, not by the environmental attributes of the 



sites (Reid et al. 2006). In an archipelago population of great tits (Parus major), the spatial 

variation in demography was driven by an evolutionary ‘island syndrome’, not directly by the 

variation in climate between islands and the continent (Postma and van Noordwijk 2005). To 

avoid the pitfall of overinterpreting correlations, one may define broad ecoregions and compute 

spatial variation in demographic rate at this resolution. Alternatively, all the nonparametric 

approaches described in section 15.2.1 can be made into semiparametric tools that combine a 

regression against spatial covariates and a nonparametric spatial structure in the error term of 

the regression (Gimenez et al. 2006). 

On spatial capture–recaptures 

In the context of spatial demography, beware that the phrase ‘spatial capture–recaptures’ 

(Borchers and Efford 2008; Royle et al. 2013) usually refers to a type of model that is indeed 

spatially explicit but does not typically yield an estimate of spatial variation in survival. Spatial 

capture–recapture models are designed to improve the estimation of the population size by 

accommodating the decrease in individual capture probability with the distance between the 

home range centroid of the animal and the capture locations. They thereby provide a better fit 

to the capture–recapture data. They can inform spatial variation in population density (Gardner 

et al. 2010), but spatial variation in survival probability remains largely out of bounds for this 

type of model and data. 

15.3 Estimating dispersal fluxes 

Dispersal is defined as movement that has the potential to lead to gene flow (Clobert et al. 

2001). Movements within individual home ranges and seasonal migrations are not considered 

dispersal. In many taxa, adults are site-faithful either by constraint (plants, sessile animals) or 



due to philopatric behaviour (Greenwood 1980), and thereby gene flow mostly occurs through 

natal dispersal, that is, the movements of immatures or propagules (Greenwood 1980). 

Importantly, especially with a vertebrate focus, dispersal is the result of a series of decisions—

from the decision to leave the current location to the choice of the new location among the 

locations that were explored (Grosbois and Tavecchia 2003). These different decisions may use 

different environmental cues, and different individuals may make different decisions based on 

the same cues. These decisions, summed over time and across individuals, yield the dispersal 

kernel: the probability that an individual in location ( 1 1,x y ) at time t1 will disperse to location 

( 2 2,x y ) at time t2. One often also refers to ‘dispersal fluxes’ when the population is spatially 

structured (the number of individuals dispersing from one site to another site, per unit of time) 

or to ‘dispersal rates’ (number of individuals dispersing from one site to another, per unit of 

time and per individual in the site of origin) (Table 15.1). Dispersal may be recorded directly 

by documenting the changes in individual locations from one breeding attempt to the next or 

from the place of birth to the first breeding attempt (Doligez et al. 2002; Ducros et al. 2019). 

But this type of data remains rare and therefore I will also review less direct methodologies. 

15.3.1 Integrated population models 

In this method, the target variable is the net flux of individuals that exit or enter a given study 

region over a given period of time. The net flux is the difference between the number of 

emigrants and the number of immigrants. That flux is estimated as the difference between the 

overall population growth ( N ) minus the intrinsic population growth (b – d, where b is the 

number of births and d is the number of deaths). In practice, the best approach is to jointly 

analyse capture–recapture data, fecundity survey data, and population survey data in an 

integrated population model (Abadi et al. 2010), as described in Chapter 14. Because it remains 

extremely challenging to collect these three types of data together and at the same time, 
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examples are still rare in the literature (Millon et al. 2019). Importantly, however, several less-

data-hungry approaches have been proposed for special cases. For example, Nichols and 

Pollock (1990) described how to use a ‘robust design’ of the capture–recapture protocol for 

voles (Microtus pennsylvanicus) that relies on the precise ageing of the juveniles upon capture 

to separate local recruits from immigrants during the post-dispersal capture events of the same 

year. Peery et al. (2006) combined the observed rate of recruitment of locally born chicks of 

marbled murrelets Brachyramphus marmoratus and Pradel’s (1996) estimate of anteriority 

within the breeding adults to compute the immigration rate as the difference between local and 

total recruitment. Note that both of the latter approaches only quantify immigration; emigration 

is confounded with mortality in these two approaches. Potential users should furthermore 

carefully consider the model assumptions and the fieldwork requirements that the above authors 

listed. 

15.3.2 Multisite capture–recapture models and integrated metapopulation models 

In these methods, individuals are monitored over discrete population units or ‘sites’, such as 

seabird colonies or forest fragments. When an individual is recorded to move from one site to 

another, this represents a recorded dispersal event. The data are processed through a multisite 

capture–recapture model to allow for missing observations of some individuals in some years 

(Lebreton et al. 2009), as described in Chapter 13, yielding an estimate of dispersal rates. To 

further study the dispersal decision process, the dispersal rates may be decomposed into the 

probability of site-fidelity and the site selection conditioned on the lack of site-fidelity 

(Grosbois and Tavecchia 2003). The model may feature a ‘memory effect’ of the location of 

birth (Péron et al. 2010b) or of the previous dispersal decision (Lagrange et al. 2014). 

In addition, to accommodate the fact that researchers in the field may not be able to monitor all 

the sites in a metapopulation, a ‘ghost’ population unit may be incorporated in the model, 
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representing unmonitored population units where an individual may temporarily reside and 

therefore temporarily escape detection (Schaub et al. 2004). Statistical inference in this case 

may be facilitated if the unmonitored population units that form the ghost state can be surveyed 

for population size. These data may be jointly analysed with the capture–recapture data in an 

‘integrated metapopulation model’ (Péron et al. 2010a). The key benefit of the integrated 

approach is improved accuracy of parameter estimates and the ability to extrapolate the 

dispersal information from a subset of sites where marked individuals are monitored to a larger 

ensemble of sites where only population count data are collected (Péron et al. 2010a). Lastly, 

when the interest lies only in the decision to leave or stay in the current site (Schmidt 2004), 

the dispersal information may be simplified into a binary variable—site-faithful or site-

unfaithful—thereby discarding the information about the site identities (Lagrange et al. 

2014).Lastly, note that the dispersal rates in these models do not account for permanent 

emigration out of the survey area, which is confounded with death but may be age-specific.  

In practice, multisite capture–recapture models are best implemented using dedicated 

software as described in Chapter 13. Integrated metapopulation models are best implemented 

in the Bayesian framework (e.g. Péron et al. 2012 and references therein), although initial 

implementations were in the frequentist framework using the Kalman filter to compute the 

likelihood of the population count data (Péron et al. 2010a and references therein). 

15.3.3 Dispersal as a diffusion process along resistance surfaces 

The main drawback of the two previous methods is that they require clear boundaries 

delineating population units. In most cases, these do not exist. The population is instead 

distributed in a continuous manner along ecological gradients. The dispersal process is then 

more akin to a diffusion process than to a discrete state-switching process (Ovaskainen et al. 

2008; Jongejans et al. 2011; Foltête and Giraudoux 2012; Williams et al. 2017). Nevertheless, 
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dispersal may still be spatially structured by landscape features (McRae et al. 2008; Spear et 

al. 2010; Berthier et al. 2013; Hanks and Hooten 2013) or by the social cues that the individuals 

use to decide where to move, such as conspecific population density and conspecific breeding 

success (Doligez et al. 2002; Péron et al. 2010b). 

Traditionally, this type of ecological landscape structure is documented either by landscape 

genetics, whereby the genetic structure of the population is compared to a landcover map, 

mostly to infer the barriers to dispersal but also the dispersal corridors that promoted genetic 

homogenisation (McRae et al. 2008; Spear et al. 2010; Hanks and Hooten 2013), or by 

movement data analysis, whereby the tracked movements of focal individuals are extrapolated 

to infer the barriers to movement and the corridors that would facilitate the movements of 

potential dispersers (Ovaskainen 2004; Panzacchi et al. 2016; Scharf et al. 2018; Zeller et al. 

2016; Wang 2020). The result is a resistance surface. 

The resistance surface may also be estimated from demographic data. The spatial and 

temporal variation in the rasterised population abundance N may be modelled as a partial 

differential equation or diffusion equation (Skellam 1951; Okubo and Levin 2001; Ovaskainen 

et al. 2008; Foltête and Giraudoux 2012; see also Neubert and Caswell 2000; Jongejans et al. 

2011). That framework allows an elegant partition of the local population growth rate 

d

dt

N

 into 

the intrinsic population growth on the one hand and on the other hand a diffusion term 

representing the flux of individuals from or into neighbouring locations: 

21 ( )
d

N
dt

 
      
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R N D

K  

The diffusion parameters in D directly quantify the resistance surface. R and K represent the 

population growth rates and carrying capacities, and 
2  is the Laplace operator that computes 



the sum of the second partial derivatives relative to geographical coordinates. In practice the 

diffusion term is approximated by its rasterised formulation, with adjacency matrix W and 

raster grid resolution h: 
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2

2
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j i
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The rasterisation transforms the diffusion equation into a set of ordinary differential 

equations, making it solvable within any numerical solver that can manage large systems of 

equations. As formulated above, the dispersal kernel does not feature a preferential dispersal 

direction. In wind-dispersed plants (Jongejans et al. 2011), and in the theoretical situation 

where individuals would have been selected by climate change to systematically disperse in a 

particular direction, the contributions to the sum over j in the above equation could be 

weighted according to the dispersal direction. 

Another major caveat, which is not always recognised, is that the diffusion equation as 

written above assumes that movements are most likely between adjacent grid cells. The 

framework does not really accommodate long-distance dispersal. Depending on the behaviour 

of the species at stake, this model may therefore grossly misrepresent the biological process. 

This may explain some apparent lack of fit of that model to the patterns that occur along the 

colonisation front of species that routinely perform long-distance dispersal (Louvrier et al. 

2019). Alternative formulations of the diffusion term in the above equation therefore appear 

warranted. Avenues of research in this direction include the Riesz fractional derivatives, as used 

to represent the infamous (for movement ecologists) ‘Lévy flight’ (Mandelbrot 1982; Sims et 

al. 2008; Çelik and Duman 2012). 

Eventually, the main issue with this approach is going to be the data requirements, but a 

new era seems to have opened in that respect. Recently, Williams et al. (2017) proposed to 

leverage the link between the abundance of a species and the probability that it is detected 



during any one visit to a location of occurrence (Royle and Nichols 2003). This makes it 

possible to fit the above model to presence/absence data, which are much easier to obtain 

nowadays by crowd-sourcing than population survey data which would require an intense 

professional field effort. The parameters of the dynamic occupancy model (colonisation rates, 

extinction rates, and detection probabilities; Yackulic et al. 2012; Péron et al. 2016) are 

expressed as functions of R, K, and D, allowing the estimation of the latter. Recent examples 

include the description of the colonisation of a newly ice-free bay by sea otters (Enhydra lutris) 

(Williams et al. 2019) and the recolonisation of south-eastern France by wolves (Canis lupus) 

(Louvrier et al. 2019). The main limiting assumption of that presence–absence framework is 

that the population must remain well below carrying capacity. In other words, the framework 

applies to rare species or species that are currently expanding. When the population enters the 

density-dependent regime, most of the study area is occupied, the detection of at least one 

individual does not depend on abundance anymore (Royle and Nichols 2003), and the intrinsic 

growth rate is mostly influenced by K rather than R. This makes the model unidentifiable, that 

is, the parameters cannot be separately estimated in this biological configuration. This is called 

weak identifiability. 

In conclusion, the diffusion equation approach to the estimation of resistance surfaces 

currently rests on several strong assumptions. Although this represents a limit to its applicability 

today, the framework nevertheless appears extremely promising as an approach to analyse 

crowd-sourced data and therefore warrants more attention from mathematically inclined 

ecologists. 

15.4 The feedback between space use and fitness 

In the previous sections, I described how to estimate the link between the geographic location 

of an individual, its demographic performance, and its dispersal kernel. Now I will outline how 



to use this information to parameterise an integral projection model (IPM) to forecast the future 

distribution of the population based on its spatial demography. 

15.4.1 Principles of integral projection models as pertaining to spatial demography 

In IPM parlance (cf. Chapter 10), natal dispersal corresponds to ‘inheritance’ and adult or 

breeding dispersal corresponds to ‘growth’. Besides that, spatial IPMs are not conceptually very 

different from unidimensional IPMs designed to study the dynamics of quantitative traits like 

body mass (Lewis et al. 2006; Jongejans et al. 2011; Merow et al. 2014). The basic principle 

is to define a kernel function k representing the probability that an individual at location ( 1 1,x y

) at time t1 will yield an individual at location ( 2 2,x y ) at time t2. The kernel function combines 

all the information about how the individual survived, where it moved, whether it reproduced, 

and where the offspring moved. Further defining the function to function operator 

      2 2 1 1 1 1 2 2 1 1

Ω

, , , , ,K x y x y k x y x y dx dyν ν∬
, where ν  represents a distribution function, 

the IPM equation becomes 
    2 1t K tn n

, where 
 tn

 denotes the population distribution 

at time t. In the following I will outline how to analyse the properties of K, but first I will review 

a lingering question in spatial ecology, that is, the fundamental difference between contingency 

and agency. 

15.4.2 Space use or resource selection? 

One of the critical decisions that eventual applications of the above principles will have to make 

is whether to model space use per se—for example, the focal variable is the geographical 

coordinates of the individual (Lewis et al. 2006; Jongejans et al. 2011)—or whether to model 

a behavioural trait that governs space use—for example, resource selection coefficients, 

personality traits, or ‘movement syndromes’. ‘Movement syndromes’ refer to covariations 
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between movement rates and between movement rates and other behavioural traits, often 

labelled as personalities, for instance explorative or competitive personality (Wolf et al. 2007; 

Spiegel et al. 2017). Species- and individual-specificity in these syndromes is known to enhance 

coexistence (Vanak et al. 2013; Péron et al. 2019) and population viability in fragmented 

landscapes (Zheng et al. 2009; Zera 2017). 

In the first case, the model describes the interaction between geographical coordinates and 

fitness. For geographical coordinates, one may use the centroid of an animal’s home range. One 

may also replace the coordinates with the proportion of a given landcover in the home range 

(Péron 2019b) or the environmental covariates where a plant is growing (Merow et al. 2014), 

thereby swapping the geographic coordinates for the ecological coordinates. In this type of 

application, the IPM will become a relatively phenological model, forecasting the population 

distribution if current reaction norms are maintained into the future (Neubert and Caswell 2000; 

Lewis et al. 2006; Merow et al. 2014). However, the spatial variation in demography will just 

get described, not explained. 

In the second case, one first estimates behavioural traits and in a second step links these traits 

to spatial demography. But in this case, researchers may need to incorporate plastic reaction 

norms describing how the behavioural trait changes depending on the context. For example, 

resource selection coefficients depend on what is available for selection, often in a nonlinear 

way (Forester et al. 2009). A typical example is roe deer (Capreolus capreolus), which today 

are commonly found in open agricultural landscapes but will revert to selecting forest edges if 

given the opportunity. The realised resource selection coefficients may therefore need to be 

interpreted with caution and may perhaps best be replaced by alternative behavioural metrics 

that capture the plasticity of resource selection by each individual (Bonnot et al. 2018). 

Importantly, the two approaches (geographical coordinates and behavioural traits) are not 

mutually exclusive. They are opposed here to reflect on the underlying philosophy and lingering 



challenges in terms of data acquisition. Lastly, the interpretation of spatial IPMs in terms of 

evolutionary dynamics is not always straightforward. Similar to the way that offspring may 

inherit the large or small body mass of their mother because they feed on the same resource, 

not because they share the same genotype, the inheritance parameter in spatial IPMs combines 

true heritability and nongenetic inheritance. The nongenetic inheritance stems from the fact that 

offspring are expected to settle closer to their parents than expected at random, due to physical 

constraints on movement distance..  

15.4.3 Formal analysis of IPMs 

IPMs, once parameterised with field data, can be formally analysed for inference about 

equilibrium distribution, spatially explicit population growth, sensitivity of the population 

growth rate to variation in model parameters, individual variation, transitory dynamics (Ellner 

and Rees 2006), and the speed of the range shift under some additional conditions (Lewis et 

al. 2006). As an illustration, I will focus on a well-worked example that pertains to 

monocarpic perennial plants (Rose et al. 2005; Ellner and Rees 2006; Rebarber et al. 2012). 

The keys to this model are that (1) the distribution of the focal trait among propagules is 

independent from the trait value of their parents; and (2) density dependence occurs among 

seedlings/propagules only, meaning that the recruitment rate declines with the number of 

candidates to recruitment, not the number of adults. There is usually a stable distribution of 

the trait in such a system (Ellner and Rees 2006; Rebarber et al. 2012) which can be 

computed as a function of the trait-specific survival function s, the trait distribution at birth b, 

the trait-specific fecundity function c, and the density-dependent recruitment term g (Figure 

15.1; Appendix 1; please go to www.oup.com/companion/SalgueroGamelonDM). 
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Figure 15.1 Simulation inspired by Rebarber et al. (2012) of a perennial plant population with 

no seed bank and random seed rain, faced with two scenarios of aridity. Left: a drier scenario. 

Seeds are more likely to fall in an arid spot (cf. grey curve). Compared to the distribution among 

seedlings (grey curve), the stable population distribution is shifted towards wetter locations 

(black curve), mostly because the seedlings that grow in the driest locations fail to survive. This 

means that over time the population is expected to shift its range centroid towards wetter 

locations, at a pace that can be estimated, but that there will always be a few individuals growing 

in arid locations because that is where they fell as a seed. Right: a wetter scenario. The stable 

population distribution is barely different from the expectation from the seed rain. This means 

that the population range is not expected to change much over time. Note also among the model 

outputs the forecast of the average population fitness and reproductive rates. In detail, the model 

was specified by the survival function    1    2 2s x logit x 
, the fecundity function 

       2 2c x exp x 
, and the density-dependent recruitment   0.33g C C 

. The code is freely 

available and can be modified to accommodate any other analytical form for these functions 

(Appendix S1; please go to www.oup.com/companion/SalgueroGamelonDM). 

 

Now, to make this model a model of spatial demography, the trait may, for example, 

represent the aridity at the specific location where the plant is growing. Then, b represents the 
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relative frequency of arid and wet places in the landscape where seeds are randomly dispersed 

by wind, for example; that is, b represents the environmental constraints. The stable distribution 

represents the eventual population distribution along the aridity gradient, as caused by the 

demographic performance of the individuals (Figure 15.1). There is, however, no evolution 

involved: at each generation the seedlings are redistributed at random along the aridity gradient 

(using the grey curves in Figure 15.1). As a side note, the complex mathematics underlying the 

formal analysis of density-dependent IPMs (Rebarber et al. 2012) render the framework 

somewhat costly to tailor to specific situations, which might restrict the type of study systems 

for which it is relevant and the type of evolutionary questions that can be tackled with it. 

15.4.4 Individual-based simulation approach 

As highlighted in section 15.4.3, the formal analysis of IPMs may not offer enough flexibility 

in practice to accommodate the complexity of ecological processes and to easily tailor the IPMs 

to specific case studies. In the context of spatial demography, a more flexible alternative is 

individual-based modelling (Chapter 12). The simulation focuses on individual movement 

decisions and their consequences in terms of survival and reproduction. The simulation 

parameters are informed by analyses from section 15.2 about spatially explicit survival and 

fecundity and from section 15.3 about dispersal kernels. The IPM properties are then computed 

as emergent properties of the individual-based simulation (e.g. Wiens et al. 2017). The 

movement model do not need to be more complex than a step selection model (Signer et al. 

2017; Péron 2019a). However,the interest of the framework lies in its flexibility, for example, 

to incorporate interactions between individuals, to take into account the cost of movement 

(Péron 2019b), to add heritable individual covariates that influence dispersal decisions, and to 

outfit the individuals with the ability to gather information about the spatial variation in fitness 

(Doligez et al. 2002) (Figure 15.2). 
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<COMP: INSERT Fig. 15.2 NEAR HERE> 

Figure 15.2 Principles of the simulation approach to analyse complex IPMs. The simulated 

animals are drawn from the density distribution at time t, made to perform and move according 

to the IPM kernel function, yielding the density distribution at time t+1. The process may be 

iterated a large number of times to obtain the asymptotic behaviours of the system. The kernel 

function may incorporate more complex rules than depicted, for example, dependency on 

nonstationary environmental covariates and interactions between the model individuals. 

Importantly, the kernel functions may depend on heritable individual traits that govern the 

spatial behaviour, rather than directly on the geographical coordinates. For example, data 

permitting, the trait under study could be the preferential direction of the natal dispersal kernel, 

and the model would provide inference about the selection pressure on dispersal direction. 

 

Technical bottlenecks that currently hamper the more widespread empirical 

implementation of spatial IPMs to vertebrates include the need to track the movements and 

demographic performance of a large number of individuals with known parentage and over 

long enough periods of time that the repeatability, reaction norms, and age specificity of their 

space use patterns and fitness components can be estimated. Despite the democratisation of 

geotracking technologies, these conditions remain hard to meet. 
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15.5 Conclusions 

Although spatial demography is firmly located at the core of eco-evolutionary thinking, it does 

not appear to have given rise to a rich empirical literature yet, even if many methods are now 

readily available. The reasons include on the one hand the prohibitive data requirements and on 

the other hand the relative lack of communication between method-heavy ‘quantitative 

ecology’ projects and concept-heavy theoretical initiatives. This overall makes it challenging 

to adopt a comprehensive empirical outlook on spatial demography. The increasing availability 

of crowd-sourced species distribution data and the democratisation of geotracking technologies 

represent exciting opportunities. The fact that spatial demography bridges some currently 

isolated subfields like movement ecology and evolutionary biodemography may also open 

fruitful interfaces. 
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Table 15.1 List of the spatial demography methods reviewed in this chapter. Note, that this 

chapter does not consider movement tracking data or genetic data, only demographic data in 

the sense of information about vital rates and population abundance. 

Spatial variation in demographic rates  

Method name Objectives Section 

Splines 

Continuous spatial variation in a demographic rate, 

nonparametric (no environmental predictor needed) 

15.2.1 

Autoregressive 

models Continuous variation, nonparametric 

15.2.1 

Random forest 

algorithm Continuous variation, nonparametric 

15.2.1 



Spatial variation in demographic rates  

Method name Objectives Section 

Linear models 

Continuous or discrete variation, parametric (environmental 

predictor needed) 

15.2.3 

Multisite capture–

recapture model 

Discrete spatial variation in survival probability (i.e. analysis 

of the differences between predefined population units) 

15.3.2 

Integrated 

metapopulation 

model Same as above but ability to estimate fecundity too 

15.3.2 

Dispersal fluxes 

Method name Objectives Section 

Integrated 

population model 

The net flux of individuals into or outside of a focal 

population 

15.3.1 

Multisite capture–

recapture model 

The rates at which individuals disperse between discrete 

population units 

15.3.2 

Integrated 

metapopulation 

model 

Same as above but increased statistical power and spatial 

extent 

15.3.2 

Diffusion equation 

Landscape resistance to population homogenisation in a 

continuously distributed population 

15.3.3 

 


