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We can use demographic methods to study the spatial response of individuals and populations to current global changes. The first mechanism underlying range shifts is a change in the spatial distribution of births and deaths. The spatial regression of demographic rates with geostatistical and spatially explicit models documents the intrinsic growth rate across the range of a population. The population distribution is expected to shift towards areas with the largest intrinsic growth rate, both mechanistically and because these areas are attractive to dispersing individuals. The second mechanism is indeed movement, including emigration away from places that recently became inhospitable and immigration into newly available locations. The analysis of dispersal fluxes using movement data, or indirectly by comparing the observed and intrinsic growth rates in integrated population models, documents these fluxes. Combining these two mechanisms in integral projection models or in individual-based simulations is expected to yield major advances in predictive spatial ecology, that is, mechanistic species distribution models.

Introduction

Eco-evolutionary processes are rooted in the way fitness varies across space and the way individuals implement dispersal strategies in response to that variation. As climate and land use changes redistribute the abiotic drivers that influence demography, the importance of spatial aspects in eco-evolutionary dynamics is increasingly obvious [START_REF] Thuiller | A road map for integrating ecoevolutionary processes into biodiversity models[END_REF]. In particular, the balance between extinctions and colonisations contributes to range shifts in metapopulations [START_REF] Hanski | Uniting two general patterns in the distribution of species[END_REF][START_REF] Gandon | Evolutionarily stable dispersal rate in a metapopulation with extinctions and kin competition[END_REF][START_REF] Mccauley | Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies[END_REF]). In the broader community context, the balance between local adaptation [START_REF] Bohonak | Dispersal, Gene Flow, and Population Structure[END_REF][START_REF] Mcrae | Using circuit theory to model connectivity in ecology, evolution, and conservation[END_REF][START_REF] Burton | Trade-offs and the evolution of lifehistories during range expansion[END_REF]) and dispersal/movement also creates ways for species and individuals to coexist by implementing different space use tactics [START_REF] Leibold | The metacommunity concept: a framework for multi-scale community ecology[END_REF][START_REF] Wolf | Life-history trade-offs favour the evolution of animal personalities[END_REF][START_REF] Péron | The two oxpecker species reveal the role of movement rates and foraging intensity in species coexistence[END_REF].

This chapter reviews the analysis of demographic data for inference about spatial variation in fitness components and about dispersal strategies (Table 15.1). It also includes a section about prospective analysis, that is, the study of model properties for predictive inference (section 15.4: the feedback between space use and fitness).

<COMP: INSERT Table 15.1 NEAR HERE>

Spatial variation in demographic rates

The intrinsic population growth rate, the balance between local births and local deaths, documents whether a place acts as a population source that contributes to the overall increase in population [START_REF] Pulliam | Sources, sinks, and population regulation[END_REF] or a population sink likely to attract more immigrants than it emits emigrants [START_REF] Novaro | An empirical test of source-sink dynamics induced by hunting[END_REF]. Mapping out the spatial variation in intrinsic population growth rate is thus key to understanding the spatial functioning of populations, pinpoint the areas deserving of conservationists' concerns, infer whether dispersing individuals are using public information or conspecific occurrence to decide where to settle, and determine gene flow from source-sink dynamics. I will first review the generic nonparametric statistical tools to estimate spatial variation in any variable (section 15.2.1) and provide a nonexhaustive review of recent nonparametric analyses pertaining to spatial demography (section 15.2.2). Parametric approaches will only be briefly discussed (section 15.2.3) because they have been reviewed elsewhere and extensively [START_REF] Dormann | Methods to account for spatial autocorrelation in the analysis of species distributional data: a review[END_REF][START_REF] Beale | Regression analysis of spatial data[END_REF].

Statistical tools for nonparametric inference about spatial variation

The objective in this section is to provide an overview of often complex statistical techniques and point the reader in the right direction, hopefully.

First, at the data exploration stage, users may want to use Moran's index of autocorrelation to determine whether there is spatial structure in their data [START_REF] Moran | Notes on continuous stochastic phenomena[END_REF][START_REF] Cressie | Statistics for Spatial Data[END_REF]).

Moran's index detects the presence of a systematic increased level of similarity between data points that are close together compared to data points that are further apart. In practice, one may use the function Moran from the raster package for R if the data are in raster format and assuming a linear decay in autocorrelation strength with Euclidian distance; or the function moran from the spdep package to accommodate less regular samples [START_REF] Bivand | Applied Spatial Data Analysis with R, 2nd edition[END_REF]).

I will now review the three main options for the analysis of spatial variation in demographic data. Note that these methods can be applied directly to spatially explicit sets of fecundity data or population survey data, but, to apply them to capture-recapture data for inference about survival and lifespan (cf. Chapter 13), they must first be incorporated into the appropriate statespace model that deals with imperfect detection of individuals [START_REF] Gimenez | Semiparametric regression in capture-recapture modeling[END_REF][START_REF] Péron | Nonparametric spatial regression of survival probability: visualization of population sinks in Eurasian woodcock[END_REF].

Random forest algorithms

Also known as hierarchical clustering algorithms, this class of method belongs to the data mining and machine learning movement. It owes its name to its building blocks which are decision trees [START_REF] Breiman | Random forests[END_REF]. A decision tree is a sequence of multiple-choice questions based on clustering criteria or features (e.g. 'Is the object red, blue, or green?', 'Is it a square or a circle?'). The training dataset is grouped into bags according to these features (e.g. bag 1 = 'green squares'). The value of the dependent variable in each bag is computed from the training data (e.g. 'bag 1 was good to eat'). The decision tree is fitted to the training data using traditional statistics (e.g. least square criterion or receiver operating characteristic curve). The interest then lies in the predictive power of the tree, that is, its ability to bin new objects into bags without a priori knowledge of the dependent variable and only knowing the features of the object (e.g. 'determine palatability based on colour and shape'). The main issue with this type of approach is overfitting, for example, when the tree uses more features than supported by the training data and identifies small-sample artefacts rather than meaningful trends. To prevent overfitting without losing information, a random forest is a group of decision trees each based on a reduced subset of features. The prediction is the consensus between all the trees in the forest. For the random forest to perform better than a single decision tree, we simply need some of the features to be meaningful, that is, related to the predicted variable, and that the predictions made by individual trees have low correlations with each other [START_REF] Breiman | Random forests[END_REF]. The latter condition is usually enforced by training each tree in the forest with a different subset of the data and by selecting the features of each tree at random irrespective of their predictive power.

When applied to spatial demography, the key strength of the random forest framework is the ability to input ancillary information in the form of spatial covariates. If the covariates are meaningful and well chosen, the algorithm makes it possible to downscale or disaggregate the demographic data at the resolution of these ancillary covariates [START_REF] Stevens | Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data[END_REF]. However, the random forest algorithm also performs adequately if provided with nothing more than the geographical coordinates of the samples, in which case it will look for clusters of adjacent samples with similar demographic properties [START_REF] Brickhill | Spatio-temporal variation in European starling reproductive success at multiple small spatial scales[END_REF][START_REF] Rushing | Using demographic attributes from long-term monitoring data to delineate natural population structure[END_REF]. In practice, the random forest algorithm for spatial data is implemented in, for example, the ranger package for R [START_REF] Wright | ranger: a fast implementation of random forests for high dimensional data in C++ and R[END_REF].

Splines

This section is going to be more technical than the rest of the chapter. The principle of this family of techniques is to approximate the spatial variation in a variable Y by a sum of K unimodal functions with desirable mathematical properties, which are termed the splines [START_REF] Ruppert | Semiparametric Regression[END_REF]. The main feature of the splines is their location, that is the position of their knot k κ , which is typically decided using a data-driven space-filling algorithm [START_REF] Nychka | Design of Air-Quality Monitoring Networks[END_REF]. The analytical shape of the spline is less influencial. Hereafter, I will

consider radial splines denoted   , k D  κ
, where D is the distance operator. The dependant variable Y at location (x, y), is then modelled through the link function , as The main issue with this basic implementation of the spline model is, like in the decision tree case, overfitting. To avoid giving too much weight to idiosyncratic patterns occurring at the sampled locations, one typically incorporates a penalisation term designed to force the sum of the squared bs to stay below a threshold (Ruppert et al. 2003, p. 65). The criterion to be minimised then becomes of the form
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Following Ruppert et al. (2003, p. 73) 

    2 Var Var   ε u .
This means that we can fit the model using any software designed to fit linear mixed effect models, as long as the software interface allows us to specify a custom design matrix. Implementations using Bayesian software are available [START_REF] Crainiceanu | Bayesian analysis for penalized spline regression using WinBUGS[END_REF], including within capture-recapture models that account for imperfect detection of individuals [START_REF] Gimenez | Semiparametric regression in capture-recapture modeling[END_REF][START_REF] Péron | Nonparametric spatial regression of survival probability: visualization of population sinks in Eurasian woodcock[END_REF].

Autoregressive models

This section is also going to be more technical than the rest of the chapter. Note, however, that autoregressive models are readily available in R packages spdep and nlme [START_REF] Pinheiro | nlme: linear and nonlinear mixed effects models[END_REF]) and are extensively used in ecology [START_REF] Dormann | Methods to account for spatial autocorrelation in the analysis of species distributional data: a review[END_REF]). The underlying assumption of this class of model is that the value of the target variable Y at location (x, y) can be predicted from the value at any nearby location (x+dx, y+dy) and inversely. There are two nonexclusive options to implement that principle [START_REF] Cressie | Statistics for Spatial Data[END_REF].

 In a spatial lag model, the observations are directly regressed against each other:
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, where μ is a mean term that usually depends on spatially explicit linear predictors, ρ is the autocorrelation coefficient, W is a weight matrix typically corresponding to the Euclidian distances between samples, and ε contains individually and independently distributed (IID) error terms.

 In a spatial error model, the spatial autocorrelation affects the error term only:
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We . This type of model is typically used when the sampling noise is spatially autocorrelated. If this autocorrelation in the sampling error was not accounted for, the estimation of μ , that is, the ecological process of how the dependent variable Y depends on environmental covariates at location   , xy , would be biased, sometimes severely [START_REF] Beale | Regression analysis of spatial data[END_REF]. Importantly, however, spatial error models work under the assumption that only the sampling error is autocorrelated. If it is not the case, that is, there is a biological process of spatial autocorrelation, using a spatial error model will assign too much spatial variance to the error and not enough variance to the mean.

In terms of R implementation, one may use the functions lagsarlm for the spatial lag model and errorsarlm for the spatial error model, both from package spdep. The spatial lag and spatial error models can also be merged together to obtain the simultaneous autoregressive models (SAR) that features both autocorrelation structures. There is also the conditional autoregressive model (CAR) or autologistic model, a variant of the spatial lag model. CAR is often preferred in ecological applications because of its flexibility and ability to accommodate missing data [START_REF] Yackulic | Neighborhood and habitat effects on vital rates: expansion of the barred owl in the Oregon Coast Ranges[END_REF][START_REF] Péron | Coupled range dynamics of brood parasites and their hosts responding to climate and vegetation changes[END_REF]. CAR is obtained by designing the weight matrix according to user-specified lists of 'neighbours' for each sample, for example, the adjacent cells in a raster. We specify W as the adjacency matrix with a 1 if two samples are neighbours and 0 otherwise, and D is the normalisation matrix, a diagonal matrix with ii ij j DW  

. Then the CAR model is a Gaussian random field [START_REF] Gelfand | Proper multivariate conditional autoregressive models for spatial data analysis[END_REF], of mean μ and variance   [START_REF] Cressie | Statistics for Spatial Data[END_REF]. Following [START_REF] Besag | Spatial interaction and the statistical analysis of lattice systems[END_REF], there is an analytical solution under some constraints. In practice, implementations like the function spautolm from the spdep package rely on numerical optimisation to offer more flexibility regarding what goes in μ and how the W matrix is defined, at the cost of increased risk of numerical errors and optimisation failures. Many ecological applications furthermore include the CAR structure within a more complex hierarchical structure, for example, a partially observed colonisation/extinction process [START_REF] Yackulic | Neighborhood and habitat effects on vital rates: expansion of the barred owl in the Oregon Coast Ranges[END_REF][START_REF] Péron | Coupled range dynamics of brood parasites and their hosts responding to climate and vegetation changes[END_REF].
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Recent implementations in spatial demography

Spatially explicit matrix population models By 'spatially explicit matrix population model' I mean an array of grid cell-specific matrix population models (cf. Chapter 9), parameterised using the nonparametric estimation techniques outlined above in section 15.2.1. They describe the spatial variation in intrinsic population growth rate but do not account for dispersal. Actually, I will only review the studies of spatial variation in survival rate, not in intrinsic population growth rate per se. This is because I could not locate any study of the spatial variation in fecundity that used a nonparametric technique. However, see data sets of passerine clutch size and nest fate [START_REF] Baillie | Integrated population monitoring of breeding birds in Britain and Ireland[END_REF][START_REF] Brickhill | Spatio-temporal variation in European starling reproductive success at multiple small spatial scales[END_REF][START_REF] Eglington | Latitudinal gradients in the productivity of European migrant warblers have not shifted northwards during a period of climate change[END_REF], acorn production in oak (Quercus sp.) forests [START_REF] Koenig | Large-scale spatial synchrony and cross-synchrony in acorn production by two California oaks[END_REF][START_REF] Touzot | The ground plot counting method: a valid and reliable assessment tool for quantifying seed production in temperate oak forests?[END_REF], and egg or foetus mass in harvested individuals from exploited species like commercial fish [START_REF] Bell | Spatial variation in reproduction, and occurrence of non-reproductive adults, in orange roughy, Hoplostethus atlanticus Collett (Trachichthyidae), from south-eastern Australia[END_REF][START_REF] Kraus | Fecundity of Baltic cod: temporal and spatial variation[END_REF][START_REF] Stige | Effect of a fish stock's demographic structure on offspring survival & sensitivity to climate[END_REF] and game [START_REF] Karns | Spatiotemporal Breeding Strategies within a High Density, Male-Skewed White-Tailed Deer Population[END_REF][START_REF] Gamelon | Does multiple paternity explain phenotypic variation among offspring in wild boar?[END_REF].

Even survival studies are quite rare to the best of my knowledge. [START_REF] Saracco | Modeling spatial variation in avian survival and residency probabilities[END_REF] 2018) also used the autoregressive method to perform a spatially explicit population viability analysis of the Sonoran desert tortoise (Gopherus morafkai) based on spatially explicit survival rates. In this desert-adapted species, their results provide a demographic explanation for the 'abundant centre hypothesis' (Péron and Altwegg 2015b), that is, demographic performance was best at the core of the species' range and worst near the edge of the species' range. Interestingly, a decrease in the age at maturity near the edge of the range failed to compensate for the decreased survival rates.

To my knowledge, there is no study to date using the random forest method to estimate spatial variation in survival rates. This is because the cross-validation part of the random forest algorithm is not straightforwardly compatible with the state-space modelling framework required to estimate survival from capture-recapture data with imperfect detection.

Modelling the population growth rate from count data When the vital rates themselves are not available, and if time-specific and spatially-explicit population count data are available, these counts may be interpolated both spatially and temporally to compute the spatial variation in the population growth rate directly [START_REF] Renner | Modeled distribution and abundance of a pelagic seabird reveal trends in relation to fisheries[END_REF][START_REF] Rushing | Using demographic attributes from long-term monitoring data to delineate natural population structure[END_REF]). However, in most cases, data sets have proven too sparse and authors have either estimated the spatial and temporal components separately (i.e. using additive effects) or they pooled the data at a coarse ecoregion level. In the latter case, random forest algorithms appear well suited to delineate these ecoregions based on the demographic data themselves [START_REF] Brickhill | Spatio-temporal variation in European starling reproductive success at multiple small spatial scales[END_REF][START_REF] Rushing | Using demographic attributes from long-term monitoring data to delineate natural population structure[END_REF]. In any case, as reviewed further in section 15.3 on dispersal, in vertebrates it is extremely rare to collect exact population counts at a fine spatial resolution and over large geographical areas. What is typically available instead is crowd-sourced, rasterised presence/absence or minimum count data (e.g. Péron and Altwegg 2015a). Using the link between the overall abundance in the landscape and the probability that any given location is occupied, or alternatively the link between the local abundance and the probability that at least one individual is detected [START_REF] Royle | Estimating abundance from repeated presence-absence data or point counts[END_REF], we may use these data as a proxy for the local abundance [START_REF] Williams | An integrated data model to estimate spatiotemporal occupancy, abundance, and colonization dynamics[END_REF]) and compute the spatial variation in the population growth rate that way.

Discussion

Empirical discrepancies between the three nonparametric regression methods

Empirically, the outputs of the three nonparametric methods are often significantly different (e.g. 'RF' vs. 'MARS' in Figure 6 in [START_REF] Renner | Modeled distribution and abundance of a pelagic seabird reveal trends in relation to fisheries[END_REF]. This is in part because of differences in the amount of smoothing. As illustrated by [START_REF] Kie | A rule-based ad hoc method for selecting a bandwidth in kernel home-range analyses[END_REF] in the context of kernel density estimators, the smoothing parameter is of paramount importance (see also 'GAM' vs. 'MARS' in Figure 6 in [START_REF] Renner | Modeled distribution and abundance of a pelagic seabird reveal trends in relation to fisheries[END_REF]and 'KDE' vs. 'KDEr' and vs. 'AKDE' in Figure 1 in Péron 2019b). Therefore, the fact that the three methods are not strictly equivalent in terms of the amount of smoothing that they apply is critical. If the noise/signal ratio is large, that is, if nonspatial variance exceeds spatial variance in the data, the random forest is the most likely to overfit the data, and researchers should therefore prefer either the spline or the autoregressive method. But by contrast, if there are discontinuities or locally sharp gradients in the focal variable, the random forest method is the most relevant because other methods will smooth out these discontinuities, and this might lead to lack of fit.

What about fully parametric approaches?

Instead of a nonparametric, descriptive approach, researchers are often keen on using spatial covariates to predict spatial demography and infer the underlying ecological mechanisms [START_REF] Beale | Regression analysis of spatial data[END_REF][START_REF] Germain | Adult survival and reproductive rate are linked to habitat preference in territorial, year-round resident song sparrows Melospiza melodia[END_REF]. This is especially the case when extrapolating mortality factors from telemetry data which have a natural spatial component to them [START_REF] Schwartz | Hazards affecting grizzly bear survival in the Greater Yellowstone ecosystem[END_REF][START_REF] Basille | Selecting habitat to survive: the impact of road density on survival in a large carnivore[END_REF][START_REF] Péron | The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor[END_REF]). However, researchers should be acutely aware that, especially in our data-rich times, it is often possible to find combinations of climate and vegetation covariates that adequately predict the observed spatial variation in demography, but without capturing any significant biological mechanism, in other words, only by coincidence [START_REF] Journé | Correlative climatic niche models predict real and virtual species distributions equally well[END_REF]. Such correlations are therefore potentially great for interpolating gaps in coverage, but they should not be overinterpreted or used for predictions and extrapolations. For example, within a population of red-billed chough (Pyrrhocorax pyrrhocorax), the between-site variation in survival probability was caused by the different natal origin of the individuals in the different sites, not by the environmental attributes of the sites [START_REF] Reid | Spatial variation in demography and population growth rate: the importance of natal location[END_REF]). In an archipelago population of great tits (Parus major), the spatial variation in demography was driven by an evolutionary 'island syndrome', not directly by the variation in climate between islands and the continent [START_REF] Postma | Gene flow maintains a large genetic difference in clutch size at a small spatial scale[END_REF]. To avoid the pitfall of overinterpreting correlations, one may define broad ecoregions and compute spatial variation in demographic rate at this resolution. Alternatively, all the nonparametric approaches described in section 15.2.1 can be made into semiparametric tools that combine a regression against spatial covariates and a nonparametric spatial structure in the error term of the regression [START_REF] Gimenez | Semiparametric regression in capture-recapture modeling[END_REF]).

On spatial capture-recaptures

In the context of spatial demography, beware that the phrase 'spatial capture-recaptures' [START_REF] Borchers | Spatially explicit maximum likelihood methods for capture-recapture studies[END_REF][START_REF] Royle | Spatial capturerecapture models for jointly estimating population density and landscape connectivity[END_REF]) usually refers to a type of model that is indeed spatially explicit but does not typically yield an estimate of spatial variation in survival. Spatial capture-recapture models are designed to improve the estimation of the population size by accommodating the decrease in individual capture probability with the distance between the home range centroid of the animal and the capture locations. They thereby provide a better fit to the capture-recapture data. They can inform spatial variation in population density [START_REF] Gardner | Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies[END_REF]), but spatial variation in survival probability remains largely out of bounds for this type of model and data.

Estimating dispersal fluxes

Dispersal is defined as movement that has the potential to lead to gene flow [START_REF] Clobert | Dispersal[END_REF]. Movements within individual home ranges and seasonal migrations are not considered dispersal. In many taxa, adults are site-faithful either by constraint (plants, sessile animals) or due to philopatric behaviour [START_REF] Greenwood | Mating systems, philopatry and dispersal in birds and mammals[END_REF], and thereby gene flow mostly occurs through natal dispersal, that is, the movements of immatures or propagules [START_REF] Greenwood | Mating systems, philopatry and dispersal in birds and mammals[END_REF].

Importantly, especially with a vertebrate focus, dispersal is the result of a series of decisionsfrom the decision to leave the current location to the choice of the new location among the locations that were explored [START_REF] Grosbois | Modeling dispersal with capture-recapture data: disentangling decisions of leaving and settlement[END_REF]. These different decisions may use different environmental cues, and different individuals may make different decisions based on the same cues. These decisions, summed over time and across individuals, yield the dispersal kernel: the probability that an individual in location ( 11 , xy ) at time t1 will disperse to location ( 22 , xy ) at time t2. One often also refers to 'dispersal fluxes' when the population is spatially structured (the number of individuals dispersing from one site to another site, per unit of time)

or to 'dispersal rates' (number of individuals dispersing from one site to another, per unit of time and per individual in the site of origin) (Table 15.1). Dispersal may be recorded directly by documenting the changes in individual locations from one breeding attempt to the next or from the place of birth to the first breeding attempt [START_REF] Doligez | Public information and breeding habitat selection in a wild bird population[END_REF][START_REF] Ducros | Beyond dispersal versus philopatry? Alternative behavioural tactics of juvenile roe deer in a heterogeneous landscape[END_REF].

But this type of data remains rare and therefore I will also review less direct methodologies.

Integrated population models

In this method, the target variable is the net flux of individuals that exit or enter a given study region over a given period of time. The net flux is the difference between the number of emigrants and the number of immigrants. That flux is estimated as the difference between the overall population growth ( N  ) minus the intrinsic population growth (bd, where b is the number of births and d is the number of deaths). In practice, the best approach is to jointly analyse capture-recapture data, fecundity survey data, and population survey data in an integrated population model [START_REF] Abadi | Estimation of immigration rate using integrated population models[END_REF], as described in Chapter 14. Because it remains extremely challenging to collect these three types of data together and at the same time, examples are still rare in the literature [START_REF] Millon | Quantifying the contribution of immigration to population dynamics: a review of methods, evidence and perspectives in birds and mammals[END_REF]. Importantly, however, several lessdata-hungry approaches have been proposed for special cases. For example, [START_REF] Nichols | Estimation of recruitment from immigration versus in situ reproduction using Pollock's robust design[END_REF] described how to use a 'robust design' of the capture-recapture protocol for voles (Microtus pennsylvanicus) that relies on the precise ageing of the juveniles upon capture to separate local recruits from immigrants during the post-dispersal capture events of the same year. [START_REF] Peery | Combining demographic and countbased approaches to identify source-sink dynamics of a threatened seabird[END_REF] combined the observed rate of recruitment of locally born chicks of marbled murrelets Brachyramphus marmoratus and [START_REF] Pradel | Utilization of capture-mark-recapture for the study of recruitment and population growth rate[END_REF] estimate of anteriority within the breeding adults to compute the immigration rate as the difference between local and total recruitment. Note that both of the latter approaches only quantify immigration; emigration is confounded with mortality in these two approaches. Potential users should furthermore carefully consider the model assumptions and the fieldwork requirements that the above authors listed.

Multisite capture-recapture models and integrated metapopulation models

In these methods, individuals are monitored over discrete population units or 'sites', such as seabird colonies or forest fragments. When an individual is recorded to move from one site to another, this represents a recorded dispersal event. The data are processed through a multisite capture-recapture model to allow for missing observations of some individuals in some years [START_REF] Lebreton | Modeling Individual Animal Histories with Multistate Capture-Recapture Models[END_REF], as described in Chapter 13, yielding an estimate of dispersal rates. To further study the dispersal decision process, the dispersal rates may be decomposed into the probability of site-fidelity and the site selection conditioned on the lack of site-fidelity [START_REF] Grosbois | Modeling dispersal with capture-recapture data: disentangling decisions of leaving and settlement[END_REF]. The model may feature a 'memory effect' of the location of birth (Péron et al. 2010b) or of the previous dispersal decision [START_REF] Lagrange | Estimating dispersal among numerous sites using capture-recapture data[END_REF]).

In addition, to accommodate the fact that researchers in the field may not be able to monitor all the sites in a metapopulation, a 'ghost' population unit may be incorporated in the model, representing unmonitored population units where an individual may temporarily reside and therefore temporarily escape detection [START_REF] Schaub | Estimating survival and temporary emigration in the multistate capture-recapture framework[END_REF]. Statistical inference in this case may be facilitated if the unmonitored population units that form the ghost state can be surveyed for population size. These data may be jointly analysed with the capture-recapture data in an 'integrated metapopulation model' (Péron et al. 2010a). The key benefit of the integrated approach is improved accuracy of parameter estimates and the ability to extrapolate the dispersal information from a subset of sites where marked individuals are monitored to a larger ensemble of sites where only population count data are collected (Péron et al. 2010a). Lastly, when the interest lies only in the decision to leave or stay in the current site [START_REF] Schmidt | Site fidelity in temporally correlated environments enhances population persistence[END_REF]), the dispersal information may be simplified into a binary variable-site-faithful or siteunfaithful-thereby discarding the information about the site identities [START_REF] Lagrange | Estimating dispersal among numerous sites using capture-recapture data[END_REF].Lastly, note that the dispersal rates in these models do not account for permanent emigration out of the survey area, which is confounded with death but may be age-specific.

In practice, multisite capture-recapture models are best implemented using dedicated software as described in Chapter 13. Integrated metapopulation models are best implemented in the Bayesian framework (e.g. Péron et al. 2012 and references therein), although initial implementations were in the frequentist framework using the Kalman filter to compute the likelihood of the population count data (Péron et al. 2010a and references therein).

Dispersal as a diffusion process along resistance surfaces

The main drawback of the two previous methods is that they require clear boundaries delineating population units. In most cases, these do not exist. The population is instead distributed in a continuous manner along ecological gradients. The dispersal process is then more akin to a diffusion process than to a discrete state-switching process [START_REF] Ovaskainen | Bayesian methods for analyzing movements in heterogeneous landscapes from mark-recapture data[END_REF][START_REF] Jongejans | Importance of individual and environmental variation for invasive species spread: a spatial integral projection model[END_REF][START_REF] Foltête | A graph-based approach to investigating the influence of the landscape on population spread processes[END_REF][START_REF] Williams | An integrated data model to estimate spatiotemporal occupancy, abundance, and colonization dynamics[END_REF]). Nevertheless, dispersal may still be spatially structured by landscape features [START_REF] Mcrae | Using circuit theory to model connectivity in ecology, evolution, and conservation[END_REF][START_REF] Spear | Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis[END_REF][START_REF] Berthier | Dispersal, landscape and travelling waves in cyclic vole populations[END_REF][START_REF] Hanks | Circuit theory and model-based inference for landscape connectivity[END_REF] or by the social cues that the individuals use to decide where to move, such as conspecific population density and conspecific breeding success [START_REF] Doligez | Public information and breeding habitat selection in a wild bird population[END_REF]Péron et al. 2010b).

Traditionally, this type of ecological landscape structure is documented either by landscape genetics, whereby the genetic structure of the population is compared to a landcover map, mostly to infer the barriers to dispersal but also the dispersal corridors that promoted genetic homogenisation [START_REF] Mcrae | Using circuit theory to model connectivity in ecology, evolution, and conservation[END_REF][START_REF] Spear | Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis[END_REF][START_REF] Hanks | Circuit theory and model-based inference for landscape connectivity[END_REF], or by movement data analysis, whereby the tracked movements of focal individuals are extrapolated to infer the barriers to movement and the corridors that would facilitate the movements of potential dispersers [START_REF] Ovaskainen | Habitat-specific movement parameters estimated using mark-recapture data and a diffusion model[END_REF][START_REF] Panzacchi | Predicting the continuum between corridors and barriers to animal movements using step selection functions and randomized shortest paths[END_REF][START_REF] Scharf | Habitat suitability does not capture the essence of animal-defined corridors[END_REF][START_REF] Zeller | Using step and path selection functions for estimating resistance to movement: pumas as a case study[END_REF][START_REF] Wang | Topographic path analysis for modelling dispersal and functional connectivity: calculating topographic distances in the topoDistance R package[END_REF]). The result is a resistance surface.

The resistance surface may also be estimated from demographic data. The spatial and temporal variation in the rasterised population abundance N may be modelled as a partial differential equation or diffusion equation [START_REF] Skellam | Random dispersal in theoretical populations[END_REF]Okubo and Levin 2001;[START_REF] Ovaskainen | Bayesian methods for analyzing movements in heterogeneous landscapes from mark-recapture data[END_REF][START_REF] Foltête | A graph-based approach to investigating the influence of the landscape on population spread processes[END_REF]; see also [START_REF] Neubert | Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations[END_REF][START_REF] Jongejans | Importance of individual and environmental variation for invasive species spread: a spatial integral projection model[END_REF]. That framework allows an elegant partition of the local population growth rate 
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The diffusion parameters in D directly quantify the resistance surface. R and K represent the population growth rates and carrying capacities, and 2  is the Laplace operator that computes the sum of the second partial derivatives relative to geographical coordinates. In practice the diffusion term is approximated by its rasterised formulation, with adjacency matrix W and raster grid resolution h:
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The rasterisation transforms the diffusion equation into a set of ordinary differential equations, making it solvable within any numerical solver that can manage large systems of equations. As formulated above, the dispersal kernel does not feature a preferential dispersal direction. In wind-dispersed plants [START_REF] Jongejans | Importance of individual and environmental variation for invasive species spread: a spatial integral projection model[END_REF], and in the theoretical situation where individuals would have been selected by climate change to systematically disperse in a particular direction, the contributions to the sum over j in the above equation could be weighted according to the dispersal direction.

Another major caveat, which is not always recognised, is that the diffusion equation as written above assumes that movements are most likely between adjacent grid cells. The framework does not really accommodate long-distance dispersal. Depending on the behaviour of the species at stake, this model may therefore grossly misrepresent the biological process. This may explain some apparent lack of fit of that model to the patterns that occur along the colonisation front of species that routinely perform long-distance dispersal [START_REF] Louvrier | A mechanistic-statistical species distribution model to explain and forecast wolf (Canis lupus) colonization in South-Eastern France[END_REF]. Alternative formulations of the diffusion term in the above equation therefore appear warranted. Avenues of research in this direction include the Riesz fractional derivatives, as used to represent the infamous (for movement ecologists) 'Lévy flight' [START_REF] Mandelbrot | The Fractal Geometry of Nature[END_REF][START_REF] Sims | Scaling laws of marine predator search behaviour[END_REF][START_REF] Çelik | Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative[END_REF].

Eventually, the main issue with this approach is going to be the data requirements, but a new era seems to have opened in that respect. Recently, [START_REF] Williams | An integrated data model to estimate spatiotemporal occupancy, abundance, and colonization dynamics[END_REF] proposed to leverage the link between the abundance of a species and the probability that it is detected during any one visit to a location of occurrence [START_REF] Royle | Estimating abundance from repeated presence-absence data or point counts[END_REF]. This makes it possible to fit the above model to presence/absence data, which are much easier to obtain nowadays by crowd-sourcing than population survey data which would require an intense professional field effort. The parameters of the dynamic occupancy model (colonisation rates, extinction rates, and detection probabilities; [START_REF] Yackulic | Neighborhood and habitat effects on vital rates: expansion of the barred owl in the Oregon Coast Ranges[END_REF][START_REF] Péron | Coupled range dynamics of brood parasites and their hosts responding to climate and vegetation changes[END_REF]) are expressed as functions of R, K, and D, allowing the estimation of the latter. Recent examples include the description of the colonisation of a newly ice-free bay by sea otters (Enhydra lutris) [START_REF] Williams | The rise of an apex predator following deglaciation[END_REF]) and the recolonisation of south-eastern France by wolves (Canis lupus) [START_REF] Louvrier | A mechanistic-statistical species distribution model to explain and forecast wolf (Canis lupus) colonization in South-Eastern France[END_REF]. The main limiting assumption of that presence-absence framework is that the population must remain well below carrying capacity. In other words, the framework applies to rare species or species that are currently expanding. When the population enters the density-dependent regime, most of the study area is occupied, the detection of at least one individual does not depend on abundance anymore [START_REF] Royle | Estimating abundance from repeated presence-absence data or point counts[END_REF], and the intrinsic growth rate is mostly influenced by K rather than R. This makes the model unidentifiable, that is, the parameters cannot be separately estimated in this biological configuration. This is called weak identifiability.

In conclusion, the diffusion equation approach to the estimation of resistance surfaces currently rests on several strong assumptions. Although this represents a limit to its applicability today, the framework nevertheless appears extremely promising as an approach to analyse crowd-sourced data and therefore warrants more attention from mathematically inclined ecologists.

The feedback between space use and fitness

In the previous sections, I described how to estimate the link between the geographic location of an individual, its demographic performance, and its dispersal kernel. Now I will outline how to use this information to parameterise an integral projection model (IPM) to forecast the future distribution of the population based on its spatial demography.

Principles of integral projection models as pertaining to spatial demography

In IPM parlance (cf. Chapter 10), natal dispersal corresponds to 'inheritance' and adult or breeding dispersal corresponds to 'growth'. Besides that, spatial IPMs are not conceptually very different from unidimensional IPMs designed to study the dynamics of quantitative traits like body mass [START_REF] Lewis | A guide to calculating discrete-time invasion rates from data[END_REF][START_REF] Jongejans | Importance of individual and environmental variation for invasive species spread: a spatial integral projection model[END_REF][START_REF] Merow | On using integral projection models to generate demographically driven predictions of species' distributions: development and validation using sparse data[END_REF] , where   t n denotes the population distribution at time t. In the following I will outline how to analyse the properties of K, but first I will review a lingering question in spatial ecology, that is, the fundamental difference between contingency and agency.

Space use or resource selection?

One of the critical decisions that eventual applications of the above principles will have to make is whether to model space use per se-for example, the focal variable is the geographical coordinates of the individual [START_REF] Lewis | A guide to calculating discrete-time invasion rates from data[END_REF][START_REF] Jongejans | Importance of individual and environmental variation for invasive species spread: a spatial integral projection model[END_REF])-or whether to model a behavioural trait that governs space use-for example, resource selection coefficients, personality traits, or 'movement syndromes'. 'Movement syndromes' refer to covariations between movement rates and between movement rates and other behavioural traits, often labelled as personalities, for instance explorative or competitive personality [START_REF] Wolf | Life-history trade-offs favour the evolution of animal personalities[END_REF][START_REF] Spiegel | What's your move? Movement as a link between personality and spatial dynamics in animal populations[END_REF]. Species-and individual-specificity in these syndromes is known to enhance coexistence [START_REF] Vanak | Moving to stay in place: behavioral mechanisms for coexistence of African large carnivores[END_REF][START_REF] Péron | The two oxpecker species reveal the role of movement rates and foraging intensity in species coexistence[END_REF]) and population viability in fragmented landscapes (Zheng et al. 2009;[START_REF] Zera | The biochemical basis of life history adaptation: gryllus studies lead the way[END_REF]).

In the first case, the model describes the interaction between geographical coordinates and fitness. For geographical coordinates, one may use the centroid of an animal's home range. One may also replace the coordinates with the proportion of a given landcover in the home range (Péron 2019b) or the environmental covariates where a plant is growing [START_REF] Merow | On using integral projection models to generate demographically driven predictions of species' distributions: development and validation using sparse data[END_REF], thereby swapping the geographic coordinates for the ecological coordinates. In this type of application, the IPM will become a relatively phenological model, forecasting the population distribution if current reaction norms are maintained into the future [START_REF] Neubert | Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations[END_REF][START_REF] Lewis | A guide to calculating discrete-time invasion rates from data[END_REF][START_REF] Merow | On using integral projection models to generate demographically driven predictions of species' distributions: development and validation using sparse data[END_REF]. However, the spatial variation in demography will just get described, not explained.

In the second case, one first estimates behavioural traits and in a second step links these traits to spatial demography. But in this case, researchers may need to incorporate plastic reaction norms describing how the behavioural trait changes depending on the context. For example, resource selection coefficients depend on what is available for selection, often in a nonlinear way [START_REF] Forester | Accounting for animal movement in estimation of resource selection functions: sampling and data analysis[END_REF]. A typical example is roe deer (Capreolus capreolus), which today are commonly found in open agricultural landscapes but will revert to selecting forest edges if given the opportunity. The realised resource selection coefficients may therefore need to be interpreted with caution and may perhaps best be replaced by alternative behavioural metrics that capture the plasticity of resource selection by each individual [START_REF] Bonnot | Boldness-mediated habitat use tactics and reproductive success in a wild large herbivore[END_REF].

Importantly, the two approaches (geographical coordinates and behavioural traits) are not mutually exclusive. They are opposed here to reflect on the underlying philosophy and lingering challenges in terms of data acquisition. Lastly, the interpretation of spatial IPMs in terms of evolutionary dynamics is not always straightforward. Similar to the way that offspring may inherit the large or small body mass of their mother because they feed on the same resource, not because they share the same genotype, the inheritance parameter in spatial IPMs combines true heritability and nongenetic inheritance. The nongenetic inheritance stems from the fact that offspring are expected to settle closer to their parents than expected at random, due to physical constraints on movement distance..

Formal analysis of IPMs

IPMs, once parameterised with field data, can be formally analysed for inference about equilibrium distribution, spatially explicit population growth, sensitivity of the population growth rate to variation in model parameters, individual variation, transitory dynamics [START_REF] Ellner | Integral projection models for species with complex demography[END_REF], and the speed of the range shift under some additional conditions [START_REF] Lewis | A guide to calculating discrete-time invasion rates from data[END_REF]. As an illustration, I will focus on a well-worked example that pertains to monocarpic perennial plants [START_REF] Rose | Demographic and evolutionary impacts of native and invasive insect herbivores on Cirsium canescens[END_REF][START_REF] Ellner | Integral projection models for species with complex demography[END_REF][START_REF] Rebarber | Global asymptotic stability of density dependent integral population projection models[END_REF].

The keys to this model are that (1) the distribution of the focal trait among propagules is independent from the trait value of their parents; and (2) density dependence occurs among seedlings/propagules only, meaning that the recruitment rate declines with the number of candidates to recruitment, not the number of adults. There is usually a stable distribution of the trait in such a system [START_REF] Ellner | Integral projection models for species with complex demography[END_REF][START_REF] Rebarber | Global asymptotic stability of density dependent integral population projection models[END_REF] Seeds are more likely to fall in an arid spot (cf. grey curve). Compared to the distribution among seedlings (grey curve), the stable population distribution is shifted towards wetter locations (black curve), mostly because the seedlings that grow in the driest locations fail to survive. This means that over time the population is expected to shift its range centroid towards wetter locations, at a pace that can be estimated, but that there will always be a few individuals growing in arid locations because that is where they fell as a seed. Right: a wetter scenario. The stable population distribution is barely different from the expectation from the seed rain. This means that the population range is not expected to change much over time. Note also among the model outputs the forecast of the average population fitness and reproductive rates. In detail, the model was specified by the survival function     represents the eventual population distribution along the aridity gradient, as caused by the demographic performance of the individuals (Figure 15.1). There is, however, no evolution involved: at each generation the seedlings are redistributed at random along the aridity gradient (using the grey curves in Figure 15.1). As a side note, the complex mathematics underlying the formal analysis of density-dependent IPMs [START_REF] Rebarber | Global asymptotic stability of density dependent integral population projection models[END_REF]) render the framework somewhat costly to tailor to specific situations, which might restrict the type of study systems for which it is relevant and the type of evolutionary questions that can be tackled with it.

Individual-based simulation approach

As highlighted in section 15.4.3, the formal analysis of IPMs may not offer enough flexibility in practice to accommodate the complexity of ecological processes and to easily tailor the IPMs to specific case studies. In the context of spatial demography, a more flexible alternative is individual-based modelling (Chapter 12). The simulation focuses on individual movement decisions and their consequences in terms of survival and reproduction. The simulation parameters are informed by analyses from section 15.2 about spatially explicit survival and fecundity and from section 15.3 about dispersal kernels. The IPM properties are then computed as emergent properties of the individual-based simulation (e.g. [START_REF] Wiens | Spatial demographic models to inform conservation planning of golden eagles in renewable energy landscapes[END_REF]). The movement model do not need to be more complex than a step selection model [START_REF] Signer | Estimating utilization distributions from fitted stepselection functions[END_REF]Péron 2019a). However,the interest of the framework lies in its flexibility, for example, to incorporate interactions between individuals, to take into account the cost of movement Importantly, the kernel functions may depend on heritable individual traits that govern the spatial behaviour, rather than directly on the geographical coordinates. For example, data permitting, the trait under study could be the preferential direction of the natal dispersal kernel, and the model would provide inference about the selection pressure on dispersal direction.

Technical bottlenecks that currently hamper the more widespread empirical implementation of spatial IPMs to vertebrates include the need to track the movements and demographic performance of a large number of individuals with known parentage and over long enough periods of time that the repeatability, reaction norms, and age specificity of their space use patterns and fitness components can be estimated. Despite the democratisation of geotracking technologies, these conditions remain hard to meet.

Conclusions

Although spatial demography is firmly located at the core of eco-evolutionary thinking, it does not appear to have given rise to a rich empirical literature yet, even if many methods are now readily available. The reasons include on the one hand the prohibitive data requirements and on the other hand the relative lack of communication between method-heavy 'quantitative ecology' projects and concept-heavy theoretical initiatives. This overall makes it challenging to adopt a comprehensive empirical outlook on spatial demography. The increasing availability of crowd-sourced species distribution data and the democratisation of geotracking technologies represent exciting opportunities. The fact that spatial demography bridges some currently isolated subfields like movement ecology and evolutionary biodemography may also open fruitful interfaces.
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  The b parameters represent the weights associated to each of the K splines. The  parameters represent clinal variation. To fit that model, we need to minimise the least-square criterion  contains the N observations of the focal variable, X is a N×3 matrix containing the coordinates at the sampling locations preceded by a 1 for the intercept, and Z is a N×K matrix, with , ik Z the value of spline k at sampling location i.

  used autoregressive models to generate maps of survival probability for the wood thrush (Hylocichla mustelina), a migratory passerine. The way survival increased in the northern and especially northwesternmost sections of the range is congruent with the observed increase in abundance in the northwestern part of the range[START_REF] Rushing | Using demographic attributes from long-term monitoring data to delineate natural population structure[END_REF]) and aligns with predictions from climate change. The particularity of the Saracco et al. study is that they accommodated transience at the bird ringing locations, that is, an excess of individuals captured only once[START_REF] Pradel | Capture-recapture survival models taking account of transients[END_REF])-an important nuisance parameter to accommodate when individuals are not site-faithful.[START_REF] Péron | Nonparametric spatial regression of survival probability: visualization of population sinks in Eurasian woodcock[END_REF] used the spline method to delineate population sinks as areas where the predicted overwinter survival probability of Eurasian woodcocks (Scolopax rusticola) fell below the population renewal rate, itself a function of spatially invariant fecundity and summer survival rates. Their results confirm the additive nature of hunting mortality[START_REF] Péron | Compensation and additivity of anthropogenic mortality: life-history effects and review of methods[END_REF]) and imply that the dispersal of juveniles into population sinks is critical to the persistence of the species in the sinks.Campbell et al. (

  growth on the one hand and on the other hand a diffusion term representing the flux of individuals from or into neighbouring locations:
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  . The basic principle is to define a kernel function k representing the probability that an individual at location ( 11 , xy ) at time t1 will yield an individual at location ( 22 , xy ) at time t2. The kernel function combines all the information about how the individual survived, where it moved, whether it reproduced, and where the offspring moved. Further defining the function to function operator

  Figure 15.1 Simulation inspired by Rebarber et al. (2012) of a perennial plant population with

  be modified to accommodate any other analytical form for these functions (Appendix S1; please go to www.oup.com/companion/SalgueroGamelonDM). Now, to make this model a model of spatial demography, the trait may, for example, represent the aridity at the specific location where the plant is growing. Then, b represents the relative frequency of arid and wet places in the landscape where seeds are randomly dispersed by wind, for example; that is, b represents the environmental constraints. The stable distribution
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  Figure 15.2 Principles of the simulation approach to analyse complex IPMs. The simulated

  

  , we use for Ω the K×K distance matrix with

	 Ω, k l , k D  κκ .  is the smoothing parameter controlling how much the idiosyncrasies will  l
	be smoothed out, to be estimated directly from the data themselves.  is akin to the bandwidth
	parameter in kernel density estimators or the penalisation coefficient in lasso regularised
	regressions. To estimate the parameters, following Ruppert et al. (2003, p. 108ff), we exploit
	the fact that the criterion  C b ,,  β		is the same as that of a linear mixed model with predictor
	X, fixed-effect regression coefficient β , design matrix	1/2   Ω ZZ	, Gaussian random effects
	1/2   Ω ub , and individually and independently distributed Gaussian error term ε such that