

SKIT

Science

Karlsruher Institut für Technologie

The Potential of Refractory Alloys for **Solar Applications**

L. Charpentier¹, A. Kaufmann², C. Escape¹, E. Bêche¹, A. Soum-Glaude¹, B. Gorr² and M. Heilmaier²

¹ PROMES-CNRS, 7 rue du Four Solaire, 66120 Font-Romeu Odeillo, France

2 IAM-KIT, Campus South, Engelbert-Arnold-Straße 4, Building 10.91, 76131 Karlsruhe, Germany

Context

Research hypotheses

Objectives Improving current solar receivers

Solar loop developed in the frame of the POLYPHEM project

In CSP plants with solar tower system:

- The maximal temperature of the heat transfer fluid : 1000 K (due to the limitations of the currently used Ni-based alloys for the solar receiver)
- Increasing this working point would request materials that stand:
	- Thermal cycling
	- **Oxidation**

…above 1100 K, without significant degradation of their radiative properties

Oxidation kinetics Three different behaviors

PROMES

1. Gaseous compounds (ex: $MoO₃$) : linear mass loss

$$
\frac{\Delta m}{S} = -k_{-l} \cdot t
$$

2. Solid oxide layer with fast diffusion of the oxydant through it (ex: TiO $_2)$: linear mass gain

$$
\frac{\Delta m}{S} = k_l \cdot t
$$

3. Solid oxide layer with diffusion-controlled growth of the oxide layer (SiO $_2$, Al $_2$ O $_3)$: semi-parabolic kinetic

> Δm $\frac{\partial}{\partial s} = k_p \cdot \sqrt{t}$

=> Interest of Si or Al to reduce the oxidation in time

Proposed solution Refractory alloys Mo-Si-Ti

Investigations performed on Mo-20Si-52.8Ti (at.%) (MST)

- Combining endurance to thermal cycling, spectral selectivity and oxidation resistance (Si).
- Oxidation performed using muffle furnace (6h, continuous) and solar furnace (2h divided into 8 cycles)

As-received sample (ø 25 mm, th. 2 mm)

As-received samples **SEM** image (SE mode) at the center

Results

Oxidation in muffle and solar furnace

Oxidation in muffle furnace (6h at 1400K) Picture and mass change

As-received sample mⁱ = 8.5484 g

6 h in air at 1400 K

Oxidized sample m^f = 8.5342 g

Mass change : - 2,89 mg cm-2 after 6h oxidation

 \blacksquare Mass loss probably due to the volatilization of MoO₃

Oxidation in muffle furnace (6h at 1400 K) Comparison of spectral emissivities (RT)

Spectral emissivities, Visible – NIR range (RT measurement with Perkin Elmer Lambda 950)

In the 0.25-5 µm range:

- Lower spectral emissivity for the oxidized sample
- Lower absorptivity of the solar spectrum (-)
- Lower spectral emissivity in the BB emittance area (++)
- \Rightarrow To be confirmed with emissivity measurements at 1400 K

PROMES

Spectral emissivities, Visible – NIR - IR range (RT measurement with Perkin Elmer Lambda 950 + SOC 100)

Oxidation in muffle furnace (6h at 1400 K) Post-experimental SEM/EDS **cps/eV**

SEM image, oxidized sample

EDS spectrum from the scanned surface

- Revelation of grains during oxidation
- **EDS** on the scanned surface => oxidation with volatilization of MoO₃
- EDS on the grey grains => oxidized Ti phase
- EDS on the white phase => Mo-Ti-Si-O phases, with Cu enrichment

cps/eV Oxidation in muffle furnace (6h at 1400 K) Post-experimental SEM/EDS

SEM image, oxidized sample

EDS spectrum from one grey grain

- Revelation of grains during oxidation
- EDS on the scanned surface \Rightarrow oxidation with volatilization of MoO₃
- EDS on the grey grains => oxidized Ti phase
- EDS on the white phase => Mo-Ti-Si-O phases, with Cu enrichment

cps/eV Oxidation in muffle furnace (6h at 1400 K) Post-experimental SEM/EDS

SEM image, oxidized sample

EDS spectrum from the white phases

- Revelation of grains during oxidation
- **EDS** on the scanned surface => oxidation with volatilization of MoO₃
- EDS on the grey grains => oxidized Ti phase
- EDS on the white phase => Mo-Ti-Si-O phases, with Cu enrichment

Oxidation in solar furnace (REHPTS), 2h at 1400 K Pictures and mass change

REHPTS set-up (REacteur Hautes Pression et Température Solaire)

PROMES

Evolution of the mass variation with time

 $t = 0$ min. *(as-received) m = 8.8869 g*

t = 30 min. (after cycle 2) m = 8.8820 g

t = 120 min. (after cycle 8) m = 8.8777 g

Oxidation in solar furnace (REHPTS), 2h at 1400 K Video captions – Condensation

 Ω -0.5

 $\Delta m/S \text{ (mg cm}^{-2})$

 -2.5 -3 -3.5 Ω

PROMES

Time (min)

*CaF*² *window at t = 10 min.*

*CaF*₂ *window at t = 120 min. (cycle 8)*

- Smoke production during the first oxidation cycle, condensation on the upper window (MoO₃)
- Production decreasing with the oxidation time, with a less important condensation after 2h (protective oxide layer ?)
- \Rightarrow On-going characterizations (XRD, Raman, XPS, SEM/EDS) to analyze the structure of the oxide layer after 2 and 120 min. oxidation time

Conclusions - perspective

Conclusions - perspectives

The oxidations of the Mo-20Si-52.8Ti alloys at 1400 K in air have shown:

- Significant mass loss with production of smoke (MoO_3 volatilization and condensation ?)
- Surface oxidation with different phase formation (Ti-O, and complex Mo-Si-Ti-O phase identified with SEM/EDS)
- Diminution of the spectral emissivity that may affect solar absorptivity (-) and thermal radiative losses (++) for solar concentrated applications

Future works:

- Complementary analyses (XRD, Raman, XPS, cross-section SEM/EDS…) on MST samples at different oxidation time to confirm the oxidation mechanisms
- Comparison with other equimolar alloys: Ta-Mo-Cr-Al and Ta-Mo-Cr-Ti-Al

Thank you for your attention!

This work was supported by the French "Investments for the future" program funded by the French National Research Agency (ANR) under contracts ANR-10- LABX-22-01-SOLSTICE and ANR-10- EQPX-49-SOCRATE

SEM imaging and EDS analyses achieved by Y. Gorand, UPVD.

SOLSTICE

www.promes.cnrs.fr

www.cnrs.fr