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GLOBAL STRICHARTZ ESTIMATES FOR THE DIRAC
EQUATION ON SYMMETRIC SPACES

J. BEN-ARTZI, F. CACCIAFESTA, A. S. DE SUZZONI, AND J. ZHANG

Abstract. In this paper we study global-in-time, weighted Strichartz estimates
for the Dirac equation on warped product spaces in dimension n ≥ 3. In particular,
we prove estimates for the dynamics restricted to eigenspaces of the Dirac operator
on the compact spin manifolds defining the ambient manifold under some explicit
sufficient condition on the metric, and estimates with loss of angular derivatives
for general initial data in the setting of spherically symmetric and asymptotically
flat manifolds.

1. The radial Dirac Equation on symmetric manifolds

In [10, 11] the second and third authors have started the study of the dynamics
of the Dirac equation on curved spaces, the natural setting being a 4-dimensional
manifold (M, g) with signature {+,−,−,−} that decouples space and time: namely,
the metric g is assumed to take the form

(1.1) gµν =

 1 if µ = ν = 0
0 if µν = 0 and µ 6= ν
−hµν(−→x ) otherwise.

We recall that the Cauchy problem for the Dirac equation in this setting can be
written as

(1.2)

{
i∂tu−Du−mβu = 0,

u(0, x) = u0(x),

where β is a square, complex matrix such that β2 is the identity, and D is the Dirac
operator. By construction, the operator D satisfies the following property:

(1.3) D2 = −∆h +
1
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where ∆h is the Laplace-Beltrami operator for Dirac bispinors, that is, ∆h = DjDj

where Dj is the covariant derivative for Dirac bispinors that we properly define later,
and Rh is the scalar curvature associated to the spatial metric h.

In the case when (M, g) is the Minkoswki space the literature of dispersive es-
timates and related problems for solutions to (1.2) is quite extensive. To the best
of our knowledge, the first Strichartz estimates for the Dirac equation and its ap-
plication to the well posedness of some nonlinear models appeared in [25]. Some
refinements of the results were later obtained in [30], which includes the extension
to any space dimension, and in [29], in which the endpoint Strichartz estimate with
angular regularity is proved. The study of the well posedness of the cubic nonlinear
Dirac equation, which is a delicate problem as it forces to work at the level of the
endpoint Strichartz estimates, has been only recently solved in [3] (see also [4] and
[6]). Also, a lot of effort has been devoted to the study of the validity of dispersive
estimates in presence of potential perturbations: we mention at least the papers
[18, 19, 20, 7, 9, 23, 24] for ”small” electric and magnetic potentials, and [13, 8]
for scaling critical perturbations (i.e. Dirac-Coulomb potential and Aharonov-Bohm
magnetic field).

In [10] the authors exploited the classical Morawetz multiplier technique in order
to obtain local smoothing (or weak dispersive) estimates for the solutions to equation
(1.2) in the setting of asymptotically flat and (some) warped products manifolds. As
it is often the case when dealing with equations on manifolds, it is not possible to
rely on the classical Duhamel argument in order to obtain Strichartz estimates for
the flow, due to the fact that, even in the asymptotically flat case, the perturbative
term can not be regarded as a zero-order perturbation of the flat dynamics.

In the subsequent paper [11], the authors considered 3-dimensional spherically
symmetric settings, that is manifolds (M, g) defined by M = Rt × Σ where now
Σ = R+

r × S2
θ,φ is equipped with the Riemannian metric

(1.4) dr2 + ϕ(r)2dω2
S2

where dω2
S2 = (dθ2 + sin2 θdφ2) is the Euclidean metric on the 2D sphere S2. Notice

that taking ϕ(r) = r reduces Σ to the standard 3D Euclidean space, and thereforeM
to the standard Minkowski space. Within this setting, in [11] local-in-time, weighted
Strichartz estimates for the Dirac dynamics were proved, under some quite general
(and natural) assumptions on the function ϕ, that will be discussed in forthcoming
Subsection 1.1: the main strategy consisted in exploiting the spherical symmetry
of the space in order to separate variables and to reduce the problem to a “sum”
of much easier radial equations that could be regarded, after introducing weighted
bispinors, as Dirac equations on the flat space perturbed with potentials, for which
several results are available. Nevertheless, global-in-time Strichartz estimates turned
out to be out of reach, the main problem being the lack of existence of dispersive
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estimates for the Dirac equation with scaling critical potentials in the Euclidean
setting.

The purpose of this manuscript is to complement the results of [11] investigat-
ing the validity of weighted, global-in-time Strichartz estimates in the more general
setting of warped products in any space dimension n ≥ 3. We consider manifolds
(M, g) defined by M = Rt × Σ with Σ = R+

r × Kn−1 where Kn−1 is now a generic
n − 1-dimensional compact and Riemannian spin manifold, and Σ is a Riemannian
manifold equipped with the Riemannian metric

(1.5) dr2 + ϕ(r)2dω2
Kn−1 .

Here, ϕ is a map from R+ to itself and dω2
Kn−1 is the Riemannian metric on Kn−1. Of

course, this case includes the spherically symmetric one when choosing Kn−1 = Sn−1,
and thus this paper can be regarded in fact as an extension of [11]. On the other
hand, as we will see, the assumptions on the admissible functions ϕ will be much
stronger: this is due to the fact that, as mentioned, we cannot directly rely on the
theory of the flat Dirac equation with potentials, but we need to square the equation
at the radial level, in order to reduce to a system of Klein-Gordon equations and then,
via Kato smoothing arguments, rely on the existing theory for this dynamics. Let
us give some more details on the strategy. Recall that Dirac bispinors in dimension
n+1 are maps fromM to CM with M an integer bigger than 2b

n+1
2
c (in Section 2 we

will review the construction of the Dirac operator on curved spaces). Due to (1.3),
it is often useful to exploit the identity

(1.6) (i∂tu−Du−mβu)(i∂tu+Du+mβu) =
(
− ∂2

t + ∆h −
1

4
Rhu−m2

)
IMu

where IM denotes the M -dimensional identity matrix, so that if u solves equation
(1.2) then u also solves system

(1.7)


−∂2

t u+ ∆hu− 1
4
Rhu−m2u = 0.

u(0, x) = u0(x),

∂tu(0, x) = (D +m)u0(x)

which shows the close relationship between the Dirac and wave/Klein-Gordon flows.
This is sometimes referred to as the “squaring trick”, and turns out to be extremely
useful, at least in the flat case, to reduce the study of the algebraically rich dynamics
of the Dirac equation to the much easier one of the Klein-Gordon one. Let us stress
the fact that in this non-flat setting the operator ∆h is the bispinorial Laplacian, and
not the scalar one; as a consequence, it is not straightforward to adapt the results
known for the wave/Klein-Gordon equation on manifolds to deal with the Dirac one.
Nevertheless, by using separation of variables, in some symmetric cases it is possible
to bring this strategy at a “radial” level: we intend to walk this path here. However,
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this plan is not going to work in the “general” setting of assumptions (A0) (the
assumptions taken on the metric in [11], see (1.11) below), and it will force us to
impose stronger ones.

Before stating our main results, let us recall some basic (and classical) facts about
the decomposition of the Dirac operator. On 3-dimensional spherically symmetric
manifolds, i.e. if the metric enjoys the structure (1.4), the Dirac equation can be
written in the convenient form

i∂tψ = Hϕψ

where

Hϕ =

 m −iσ3

(
∂r + ϕ′

ϕ

)
+ 1

ϕ
DS2

iσ3

(
∂r + ϕ′

ϕ

)
+ 1

ϕ
DS2 −m

 .

Here σ3 is one of the Pauli matrices:

σ3 =

(
1 0
0 −1

)
and DS2 is the Dirac operator on the sphere S2 (see [36] Section 4.6 and [22]). It is
well-known that the operator DS2 can be diagonalized (see [14]) : as a consequence,
one has the following natural decomposition

(1.8) L2(R3)4 ∼=
⊕
µ,jµ

L2((0,+∞), ϕ2(r)dr)⊗Hµ,jµ

where the indexes are µ ∈ Z∗ = Z\{0}, jµ = −|µ| + 1,−|µ|, . . . , |µ| (the µ in jµ
is a standard notation in the Physics literature and aims at recalling that je range
for jµ depends on µ), and the two-dimensional Hilbert spaces Hµ,jµ are generated
by two orthogonal functions {Φ+

µ,jµ
,Φ−µ,jµ} that essentially are normalized spherical

harmonics. The action of Hϕ on the spaces H1(ϕ(r)2dr)⊗Vect(Φ+
µ,jµ

,Φ−µ,jµ) is given
by

(1.9) hµ =

 m −
(
∂r + ϕ′

ϕ

)
+ µ

ϕ(
∂r + ϕ′

ϕ

)
+ µ

ϕ
−m


where the µ ∈ Z∗ are the eigenvalues of the angular operator DS2 (notice that we are
using a slightly different but equivalent decomposition with respect to [36] and [11],
that allows a much easier generalization). More in general, this decomposition holds
in the setting of warped product metrics (1.5) in dimension n ≥ 3. Indeed, there
exists a decomposition of L2(Kn−1),

L2(Kn−1) =
⊕
µ,jµ

Hµ,jµ
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where µ is taken over the spectrum of DKn−1 (which is purely discrete) and where
jµ ∈ [1, rµ] ∩ N where rµ is the multiplicity of µ. On Hµ,jµ , the action of DΣ can
be represented by hµ. Subsection 2.1 will be devoted to present an overview of the
topic.

1.1. Admissible manifolds: discussion. Let us now briefly discuss and compare
the different assumptions we will have to take on the function ϕ in the definition of
the metric (1.5) in order to prove our estimates.

Assumptions (A0). Let (M, g) be a Lorentzian manifold of dimension n+1 ≥ 4
defined byM = Rt×Σ, with (Σ, h) a warped product, that is a Riemannian manifold
in the form Σ = R+

r × Kn−1 where Kn−1 is an (n − 1)-dimensional compact spin
manifold, and Σ is equipped with the Riemannian metric

(1.10) dr2 + ϕ(r)2dω2
Kn−1

where dω2
Kn−1 the Riemannian metric on Kn−1 and where the function ϕ : R+ → R+

is C∞(R+), is strictly positive on (0,+∞) and is such that

(1.11) ϕ(0) = ϕ(2n)(0) = 0, ϕ′(0) = 1,
ϕ′(r)

ϕ(r)
∈ L∞.

Notice that Assumptions (A0), in the case n = 3 and K = S, are essentially the
ones we retained in [11] in order to prove local-in-time Strichartz estimates.

In order to prove global-in-time Strichartz estimates for the dynamics restricted
to an eigenspace of DKn−1 , we need to complement (A0) with the following:

Assumptions (A1). Let (M, g) satisfy assumptions (A0). Assume that the
operator DKn−1 has no eigenvalue µ with |µ| < 1

2
, and let µ be in the spectrum of

DKn−1 . Let Vµ = µ(µ+ϕ′)
ϕ2 and

(1.12) δϕ(µ) = min(1, inf(4r2Vµ + 1), inf(−4r2Vµ − 4r3V ′µ + 1)).

Assume that the function ϕ in the metric (1.10) satisfies

(1.13) δϕ(−µ), δϕ(µ) > 0, r2Vµ ∈ L∞.

In order to prove global-in-time Strichartz estimates for the complete flow, we
need to strengthen our assumptions some more, having in mind as a main example
asymptotically flat manifolds. We thus set the following

Assumptions (A2). Let (M, g) be defined by M = Rt × Σ, with (Σ, h) a
spherically symmetric manifold of dimension n ≥ 3 with metric given by (1.5) with
K = S. Let ϕ ∈ C∞(R+) be such that ϕ(0) = 0, ϕ′(0) = 1, and for all k ∈ N,
ϕ(2k)(0) = 0. We assume that there exists ϕ1 ∈ C∞(R+) such that

ϕ : r 7→ r(1 + ϕ1(r))
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with the following assumptions on ϕ1:

• ϕ1 is non-negative

• supr≥0(|ϕ1(r)|+ |rϕ1(r)′|+ |r2ϕ′′1(r)|)� 1.

Remark 1.1. The map

ϕ1 = ε
rα

〈r〉β
with β ≥ α > 0, with α, β ∈ N, α even, satisfies these assumptions.

Remark 1.2. Our aim is to apply this type of result to well-known Lorentzian mani-
fold such as black holes. It is known that there are spherically symmetric back holes,
such as the Schwarzschild or the Reissner-Nordström one; in these cases, the metrics
(outside the black hole) writes

ds2 = F (r)dt2 − F−1(r)dr2 − r2dωS2

where dωS2 is the metrics on the sphere S2 and F is defined as

F (r) = 1− A

r
+
B

r2

with A,B ≥ 0 and B = 0 in the case of the Scharzschild metrics.
The metrics couples time and space but the Dirac equation does not, and in fact

it is written (we refer to [31, Eq. (12)]) as follows:[
γ0∂t + Fγ1

(
∂r +

1

r
+
F ′

4F

)
+
F 1/2

r
DS2 + iF 1/2m

]
u = 0

where DS2 is an operator acting only on the angular variable and which can be
diagonalized in the same way as we did in this paper.

By changing variables, we get an equation of the type[
γ0∂t + γ1

(
∂r + ψ1(r)

)
+ ψ2(r)DS2 + iψ3(r)m

]
u = 0

where ψj, j = 1, 2, 3 are functions of the radial variable such that

ψ1(r), ψ2(r) =
1

r
+O(1/r2), ψ3(r) = 1 +O(1/r).

The behavior as r →∞ is the same as in our current case, especially if m = 0. The
difficulty arises when one looks at the region close to the black hole, as there indeed
the functions ψ2 and ψ3 are not differentiable.

Therefore, this paper has to be thought of as a first step towards the study of the
dispersion of the Dirac operator in a spherically symmetric black hole metrics, as we
here tackle a similar case for the behavior at ∞, but we do not tackle the difficult
task of looking at what happens close to the black hole.
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1.2. Main results. We are now ready to state the main results. For a definition of
functional spaces, we refer to Subsection 1.3.

Definition 1.1. We say that the triple (p, q,m) is admissible, either if m = 0

2

p
+
n− 1

q
=
n− 1

2
, p > 2, q ∈ [2,∞),

or if m 6= 0
2

p
+
n

q
=
n

2
, p > 2, q ∈ [2,∞).

The first result we prove is a global-in-time Strichartz estimate for the Dirac flow
restricted to eigenspaces of the operator DKn−1 .

Theorem 1.2. Let (M, g) satisfy assumptions (A0) and (A1). Then, for any
admissible triple (p, q,m) in Definition 1.1 and any ε > 0, there exists a constant C

depending only on m, p, q, ϕ, ε (but not on µ) such that for all v0 ∈ H1/2
ϕ ,∥∥(ϕ(r)

r

) (n−1)
2 (1− 2

q )
e−ithµv0

∥∥
Lp(R,W 1/q−1/p,q

ϕ )

≤ C|µ|5/p+ε(δϕ(µ)1/p+ε + δϕ(−µ)1/p+ε)‖v0‖H1/2
ϕ
,

(1.14)

where W
1/q−1/p,q
ϕ and H

1/2
ϕ are Sobolev spaces on the manifold Σ for radial functions

defined in Subsection 1.3.

Remark 1.3. The need of an ε > 0 in estimate (1.14) is connected to the non-
admissibility of the endpoint triple (p, q,m), as we will briefly discuss in the proof of
Corollary 3.9.

Remark 1.4. Note that assuming that the compact manifold Kn−1 satisfies that the
(discrete) spectrum of the Dirac operator on Kn−1 is included in (−∞,−1

2
] ∪ [1

2
,∞)

ensures that the Dirac operator on Σ with ϕ = r, is self-adjoint (see [15, Theorem 3.2]
and references therein). The operator hµ being isomorphic to an L∞ perturbation of

h̃µ =

 m −
(
∂r + 1

r

)
+ µ

r(
∂r + 1

r

)
+ µ

r
−m

 ,

we get that hµ is selfadjoint. This will be further commented upon in Remark 2.1.

Remark 1.5. When Kn−1 is the (n − 1)-dimensional sphere, then the manifold Σ is
smooth and in fact geometrically complete, which ensures the self-adjointness of the
Dirac operator. Also, in this case, by relying on the endpoint Strichartz estimate
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proved in [29] and on mixed Strichartz-local smoothing estimates ([9]), it is possible to
recover the endpoint as well but with extra (global) derivatives, namely the estimates
(1.15)∥∥∥∥∥u

(
ϕ(r)

r

) (n−1)
2

∥∥∥∥∥
L2
t (I,L

∞(R+,Lp(Sn−1)))

≤ √p|µ|5/2(δϕ(µ)1/2 + δϕ(−µ)1/2)‖u0‖H2(Σ)

when m = 0, n = 3 and∥∥(ϕ(r)

r

) (n−1)
2 (1− 2

q )
e−ithµv0

∥∥
L2(R,W 1/q−1/2,q

ϕ )

≤ C|µ|5/2(δϕ(µ)1/2 + δϕ(−µ)1/2)‖v0‖H3/2
ϕ
,

where q = 2(n−1)
n−3

if m = 0 and q = 2n
n−2

otherwise.

Remark 1.6. The dependence on the angular parameter µ in our Strichartz estimates
(that can be ultimately intended as a loss of angular derivatives, and is most likely not
sharp), is due to the method of our proof: the action of the “radial Dirac operator”
(1.9) depends on the “angular” eigenvalue µ, and as a consequence the Strichartz
estimates for the flow eithµ will necessarily depend on µ. The additional ε-loss in the
massless case is due to the lack of the endpoint Strichartz estimates in this case, as
indeed these estimates will be obtained by interpolation. We refer to [11], Section 5
for all the details.

Remark 1.7. With slight additional care, the result above could be generalized in
order to include spaces with conical singularities; the study of the Dirac operator in
this context, mostly from the spectral point of view, has been developed in details in
[15]. The analysis of dispersive flows on conical spaces (and on spaces with conical
singularities) has seen increasing interest in recent years; we don’t intend to provide
a precise picture of the literature here. We mention that the present work has in fact
originally motivated the paper [5], in which we have analyzed the dispersive dynamics
of the Klein-Gordon equation on spaces with conical singularities. Anyway, we need
to stress once more the fact that it is not possible to directly adapt those results to
the context of the Dirac flow, as the Laplacian operators are in fact of a different
nature (spinorial vs scalar).

The fact that the constant on the right hand side of estimate (1.14) is a function of
µ suggests that it might be possible to prove Strichartz estimates with loss of angular
derivatives: this kind of estimates are quite classical in the context of dispersive
PDEs, and the local-in-time case (in dimension 3) has been already discussed in
the predecessor of this paper, that is [11]. For the next Theorem we shall indeed
restrict to the case Kn−1 = Sn−1, in order to be able to resort to the well-established
Littlewood-Paley theory on the sphere. It is in fact possible to “sum” the Strichartz
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estimates (1.14) in order to obtain Strichartz estimates for general initial data by
requiring additional regularity in the angular variable (we postpone to subsection 1.3
the precise definitions of the spaces Ha,b(Σ)).

The result is the following:

Theorem 1.3. Let (M, g) satisfy assumptions (A2). Let p, q ∈ [2,∞] and a, b ≥ 0.
Assume that (p, q,m) is admissible and 5

pb
+ 1

2a
< 1. Then the solutions u to (1.2)

with initial data u0 ∈ Ha,b(Σ) satisfy the estimates

(1.16)

∥∥∥∥∥
(
ϕ(r)

r

) (n−1)
2 (1− 2

q )
u

∥∥∥∥∥
Lpt (R,W 1/q−1/p,q(Σ))

≤ C‖u0‖Ha,b(Σ).

Remark 1.8. The analogous of Theorem 1.3 could be proved in the more general case
of warped products under assumption (1.13) provided one has a suitable Littlewood-
Paley theory on the manifold Kn−1. This might be the object of forthcoming works.

As a matter of fact, the starting point in the proof of Theorem 1.3 is showing that
within the assumptions (A2), the crucial condition given by (A1) is in fact satis-
fied. In other words, Assumptions (A2) (asymptotically flat, spherically symmetric
manifolds), provide an explicit example of ”admissible manifolds” for the validity of
Theorem 1.2. In Subsection 4.2 we will thus prove the following

Proposition 1.4. Let (M, g) be defined by M = Rt × Σ, with (Σ, h) a warped
product with metric given by (1.5). Let µ0 be the infimum of the positive part of the
spectrum of the Dirac operator on Kn−1, and assume that µ0 > 1/2. If ϕ satisfies
the assumptions in (A2) where the required smallness of C is determined by µ0, then
the assumptions (1.13) are fullfilled.

Remark 1.9. We will provide more precise assumptions on ϕ1 and in particular on
the size of the constant C, with explicit dependence on the space dimension, at the
beginning of Section 4.

Remark 1.10. It is a natural question to ask whether there exist other possible choices
of the function ϕ that satisfy condition (1.13). We will devote the appendix to a
small discussion.

The plan of the paper is the following: In Section 2 we review the separation of
variables procedure for the Dirac equation in the warped products setting, and show
how to reduce to the Klein-Gordon dynamics. In Section 3 we discuss the classical
Kato’s argument to obtain the Strichartz estimates for the Klein-Gordon dynamics
with potentials of critical decay. Finally, in Section 4 we show that asymptotically
flat manifolds are admissible, and we prove Strichartz estimates for general initial
data in the spherically symmetric setting.
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1.3. Notations. We will use the standard notation Lp, Ḣs, Hs, W p,q to denote,
respectively, the Lebesgue and the homogeneous/non homogeneous Sobolev spaces of
functions from Rn to CM . We will use the same notation to denote these functional
spaces on the (spatial) manifold (Σ, h), which is in our structure (1.1), i.e. with
time and space already decoupled, by adding the dependence Lp(Σ), Ḣs(Σ), Hs(Σ),
W p,q(Σ): e.g., the norm Lp(Σ) will be given by

‖f‖pLp(Σ) :=

∫
|f(x)|p

√
det(h(x))dx

and so on.
The space L2(Σ) is thus endowed with the usual Hilbertian structure.
The space Ḣ1(Σ), is induced by the norm

‖f‖2
Ḣ1(Σ)

:= ‖
√
hij〈Dif,Djf〉CM‖L2(Σ)

where the Dj are covariant derivatives for Dirac bispinors.
The space W 1,p, p ∈ [1,∞] is induced by

‖f‖W 1,p(Σ) = ‖
√
hij〈Dif,Djf〉CM‖Lp(Σ) + ‖f‖Lp(Σ).

The spaces Ḣs(Σ) and W s,p(Σ) with s ∈ [−1, 1] are defined by interpolation and
duality.

Due to the warped product structure of the metric (1.5), for a radial function
frad(|x|) we define

‖frad‖pLpϕ :=

∫ +∞

0

|frad(r)|pϕ(r)n−1dr ∼ ‖frad‖pLp(Σ).

For the Sobolev spaces, we use the compatible notations

‖frad‖Ḣ1
ϕ

:= ‖∂rfrad‖L2(Σ)

and

‖frad‖W 1,p
ϕ

:= ‖∂rfrad‖Lp(Σ) + ‖frad‖Lp(Σ).

We define Ḣs
ϕ and W s,p

ϕ , s ∈ (0, 1), by interpolation, and Ḣs
ϕ,W

s,p
ϕ , s ∈ [−1, 1], p ∈

(1,∞), by duality.
Note that since we are dealing with vectors in CM , |f(x)| should be understood as

|f(x)| =
√
〈f(x), f(x)〉CM .

The norms in time will be denoted by Lpt . The mixed Strichartz spaces will be
standardly denoted by LptL

q(Σ) = Lp(I;Lq(Σ,CM)).
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We finally introduce the spaces Ha,b for a ∈ [−1, 1], b ∈ R by defining the norms

‖f‖Ha,b(Σ) =
(
‖f‖2

Ha(Σ) + ‖(−∆Sn−1)b/2f‖L2(Σ)

)1/2

.
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2. The setup: separation of variables
and reduction to Klein-Gordon

The construction of the Dirac operator on a 4D manifold is a rather delicate task
in general, and requires the introduction of the so-called vierbein which, essentially,
define some proper frames that connect the metric of the manifold (M, g) to the
Lorentzian one η; details can be found in the predecessor of this paper, [11], and in
[32]. In order to properly define those frames, also known as Cartan’s formalism, one
needs the hypothesis that the manifold admits a spin structure: we will take this as
an assumption. The fact that admitting a spin structure is a homological property
has been proved and commented upon in [26]. In fact, Σ (and M) inherit a spin
structure from the spin structure of Kn−1; we will explain this in the next subsection.

In this section we show how to exploit separation of variables and the classical
spectral theory for the Dirac equation on compact manifolds to reduce the study of
the dynamics of Dirac equation on warped products to the one of a system of radial
Klein-Gordon equations. We refer the interested reader to [15, 1] for further details
on various aspects we will discuss. We mention the fact that most of the geometric
objects that will appear in the next pages will only have the role of allowing the
definition of the Dirac operator in a curved setting, and therefore we will be quite
sketchy on some of them, as it would be impossible to make the presentation self-
contained. Nevertheless, we will try our best to indicate precise references in order to
help the interested reader’s comprehension. Also, we include a short (and informal)
appendix at the end of the paper in which we introduce and briefly discuss the
necessary tools needed for the computations developed in this section.

For a complete derivation of the Dirac equation in curved space-time, we refer to
Section 5.6 in [32].
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2.1. The separation of variables. We start by recalling that the Dirac operator
on a Lorentzian manifold (M, g) of dimension n+ 1 admitting a spin structure1 and
with decoupled space and time writes

D = mγ0 − iγ0γjDj.

where the implicit summation on j is taken from 1 to n. In the above, m ∈ R is the
mass of the electron, γ0 is a self-adjoint matrix of size M ×M with M = 2b(n+1)/2c

with values in C whose square is the identity, γj are anti-hermitian matrix bundles
that satisfy

∀j, k = 1, . . . , n {γj, γk} = 2gjk, ∀j = 1, . . . , n {γ0, γj} = 0

and Dj are covariant derivatives for spinor bundles.
Writing (M, g) as M = Rt × Σ and

g =

(
1 (0)

(0) −h

)
where h is the (Riemannian) metric of Σ, we endow the spinorial Riemannian man-
ifold (i.e. a Riemannian manifold with a spin structure) (Σ, h) with a vierbein eja
(chosen such that for all j, k, ejaδ

abekb = hjk), we fix

γj = ejaγ
a.

The implicit summation for a is taken from 1 to n. The family (γa)0≤a≤n satisfies
the anticommutation relations:

{γa, γb} = 2ηab

where

η =


1
−1 (0)

(0)
. . .
−1


is the Minkowski metric in R1+n. Writing α0 = γ0 and αa = γ0γa, we have that the
family (αa)0≤a≤n satisfy the canonical anticommutation relations

{αa, αb} = 2δab

and are self-adjoint matrices. What is more, the Dirac operator now writes

D = mα0 − iejaαaDj.

Details on this construction (as well as the definition and the main properties of a
vierbein) can be found in [32, Section 3.9 page, 144]. The minimal dimension for

1For the definition and properties of spin manifold, spin structure and spinora in this ”geometric”
setting we refer to the Section 1 ”preliminaries” in [15, Page 6]
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such a family of matrices is 2b(n+1)/2c. An easy way to see that this dimension is big
enough is to consider for n = 2, the Pauli matrices

α0 = σ1 =

(
1 0
0 −1

)
, α1 = σ2 =

(
0 i
−i 0

)
, α2 = σ3 =

(
0 1
1 0

)
and for n = 2k + 2 even, given a family (α̃a)0≤a≤2k of self-adjoint matrices of size
K×K satisfying canonical anticommutation relations, the matrices written by block

(2.1) α0 =

(
IdK (0)
(0) −IdK

)
,

∀a = 0, . . . , 2k, αa+1 =

(
(0) α̃a

α̃a (0)

)
, αn =

(
(0) iIdK
−iIdK (0)

)
.

Therefore, a natural way to pass from dimension n = 2k even to n + 1 = 2k + 1
odd is to pass from the family of matrices (α̃a)0≤a≤n to

α0 =

(
IdK (0)
(0) −IdK

)
, ∀a = 0, . . . , 2k, αa+1 =

(
(0) α̃a

α̃a (0)

)
;

and to pass from dimension n+ 1 = 2k+ 1 odd to dimension n+ 2 even is simply to
add the matrix

αn =

(
(0) iIdK
−iIdK (0)

)
.

However, it is also natural to pass from an odd to an even dimension in the same
way as to pass from an even to an odd. The reason is that, because of the theory of
Clifford algebras, the algebra generated by the family (αa)0≤a≤n+2 defined as in (2.1)
is canonically isomorphic to the one generated by(

Id2K (0)
(0) −Id2K

)
, ∀a = 0, . . . , n+ 1,

(
(0) αa

αa (0)

)
(see [32] Section 5.6.2 pag 229 for further details). We now consider the following
setting: (Σ, σ) is a warped product, that is a Riemannian manifold in the form
Σ = R+

r ×Kn−1
φ where Kn−1 is a (n− 1)-dimensional compact spin manifold, and Σ

is equipped with the Riemannian metric

dh2 = dr2 + ϕ(r)2dφ2

where ϕ : R+ → R+ and dφ2 is the Riemannian metric over Kn−1. In other words,

h =

(
1 (0)

(0) ϕ2κ

)
where κ is the Riemannian metric of Kn−1.
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In the case that interests us, we assume that a vierbein ẽ = (ẽ aj ) has been set for

Kn−1, that we assume admits a spin structure. As the equation is covariant, we may
choose any convenient vierbein for Σ: we use as a vierbein for Σ

e =

(
1 (0)

(0) ϕ(r)ẽ

)
.

We set (α̃a)0≤a≤n−1 a family of matrices satisfying canonical anticommutation rela-
tions and

α0 =

(
Id (0)
(0) −Id

)
, ∀a = 0, . . . , n− 1, αa+1 =

(
(0) α̃a

α̃a (0)

)
.

We set also
γ0 = α0,∀a = 1, . . . , n, γa = α0αa,

and finally
γ̃0 = α̃0, ∀a = 1, . . . , n, γ̃a = α̃0α̃a.

We recall that the covariant derivatives for Dirac spinors are given by

Dµ = ∂µ + iω ab
µ Σa,b.

where ω is the spin connection and

Σa,b = − i
8

[γa, γb].

We have for all a, b = 1, . . . , n

[γa, γb] = [α0αa, α0αb] = [αb, αa] =

(
[α̃b−1, α̃a−1] (0)

(0) [α̃b−1, α̃a−1]

)
=(

[γ̃a−1, γ̃b−1] (0)
(0) [γ̃a−1, γ̃b−1]

)
.

Therefore, we have

Σa,b =

(
Σ̃a−1,b−1 (0)

(0) Σ̃a−1,b−1

)
where Σ̃a,b = − i

8
[γ̃a, γ̃b].

We also have
dea + ωab ∧ eb = 0.

Since e1 = dr, we have de1 = 0 and thus

ω1
b ∧ eb = 0.

Therefore, we get ω1
b ∼ e b for all b and then ω 1b

1 = 0 for all b ≥ 1.
Since for all a > 1, we have ea = ϕ(r)ẽa−1, we get

dea = ϕ′e1 ∧ ẽa−1 + ϕdẽa−1 = ϕ′e1 ∧ ẽa−1 − ϕω̃a−1
b ∧ ẽb
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and thus

ωab ∧ eb = ϕ′ẽa−1 ∧ e1 + ϕω̃a−1
b ∧ ẽb = ϕ′ẽa−1 ∧ e1 + ω̃a−1

b ∧ eb+1.

Therefore,

ωa1 = ϕ′ẽa−1 ∼ ea ⇒ ω a1
1 = 0 and for all j > 1, ω a1

j = ϕ′ẽa−1
j−1

and for all b > 1,

ωab = ω̃a−1
(b−1) ⇒ ω ab

1 = 0 and for all j > 1, ω ab
j = ω̃

(a−1)(b−1)
j−1 .

Summing up, we get D1 = ∂r and for all j > 1,

Dj = ∂j + 2iϕ′ẽ aj−1Σ1(a+1) + iω̃
(a−1)(b−1)
j−1 Σa,b.

Since

Σ1,(a+1) =

(
Σ̃0,a (0)

(0) Σ̃0,a

)
and Σa,b =

(
Σ̃a−1,b−1 (0)

(0) Σ̃a−1,b−1

)
,

we have

Dj =

(
D̃j−1 + 2iϕ′ẽ aj−1Σ̃0,a (0)

(0) D̃j−1 + 2iϕ′ẽ aj−1Σ̃0,a

)
where D̃j are covariant derivatives for spinor bundles over K2.

We deduce

iejbα
bDj = iα1∂r+i

1

ϕ
ẽj−1
b

(
(0) α̃b

α̃b (0)

)(
D̃j−1 + 2iϕ′ẽ aj−1Σ̃0,a (0)

(0) D̃j−1 + 2iϕ′ẽ aj−1Σ̃0,a

)
= iα1∂r +

1

r

(
(0) iẽjbα̃

b(D̃j + iẽ aj Σ̃0,a)

iẽjbα̃
b(D̃j + iẽ aj Σ̃0,a) (0)

)
.

Using that ẽjbẽ
a
j = δab and that α̃aΣ̃0,a = −in−1

4
α̃0, we deduce

D = mα0 + iα1∂r +

(
(0) 1

ϕ(r)
DKn−1 + in−1

2
ϕ′(r)
ϕ(r)

α̃0

1
ϕ(r)
DKn−1 + in−1

2
ϕ′(r)
ϕ(r)

α̃0 (0)

)
where DKn−1 is the Dirac operator on Kn−1. We thus get

(2.2) D =

 m iα̃0
(
∂r + n−1

2
ϕ′(r)
ϕ(r)

)
+ 1

ϕ(r)
DKn−1

iα̃0
(
∂r + n−1

2
ϕ′(r)
ϕ(r)

)
+ 1

ϕ(r)
DKn−1 −m

 .

Now the key step (for us) consists in ensuring that the operator DKn−1 can in fact
be diagonalized. In the case Kn−1 being the 2-dimensional unit sphere, this fact is
classical and well-known, the eigenvalues and eigenfunctions are explicit (see e.g. [36]
or [14]). In the general case, we can nevertheless evoke the following result, that can
be found e.g in [35, Theorem 5.27].
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Proposition 2.1. Let H be the Dirac operator on a smooth compact manifold Kn−1.
Then there is a direct sum decomposition of H into a sum of countably many orthog-
onal spaces Hµ, each of which is a finite-dimensional space of smooth sections and
is an eigenspace for H with eigenvalue µ. The eigenvalues µ form a discrete subset
of R.

Let µ > 0 be in the spectrum of DKn−1 , we fix (ψµ,j)j an orthogonal basis of the
eigenspace of DKn−1 with eigenvalue µ. We set ψ−µ,j = iα̃0ψµ,j. Since α̃0 anticom-
mutes with DKn−1 , we get that ψ−µ,j is an eigenfunction of DKn−1 with eigenvalue
−µ. Note that for all µ in the spectrum of DKn−1 , since (iα0)2 = −1, we have for
µ > 0, (1 + iα̃0)ψµ,j = ψµ,j + ψ−µ,j and (1− iα̃0)ψ−µ,j = ψ−µ,j − ψµ,j. Similarly,

(1− iα̃0)ψµ,j = ψµ,j − ψ−µ,j and (1− iα̃0)ψ−µ,j = ψ−µ,j + ψµ,j.

Therefore, the family

B =

((
1+iα̃0
√

2
ψµ,j

0

)
,

(
0

−1−iα̃0
√

2
ψµ,j

))
µ∈Sp(DKn−1 ),j

forms an orthonormal basis of L2(Kn−1,CM).
We deduce that we have the decomposition

L2(Σ,CM) =
⊕
µ,j

Hµ,j

where Hµ,j is the tensor product of L2
ϕ ( the L2 maps of R+ with measure ϕ2dr) and

with values in C ; and the vector space generated by((
1+iα̃0
√

2
ψµ,j

0

)
,

(
0

−1−iα̃0
√

2
ψµ,j

))
.

In other words, any map u ∈ L2(Σ,CM) may be written as

u(r, ω) =
∑
µ,j

u+
µ,j(r)

(
1+iα̃0
√

2
ψµ,j(ω)

0

)
+ u−µ,j(r)

(
0

−1−iα̃0
√

2
ψµ,j(ω)

)

where ω ∈ Kn−1, and u±µ,j ∈ L2
ϕ are such that∑

µ,j

‖u+
µ,j(r)‖2

L2
ϕ

+ ‖u−µ,j(r)‖2
L2
ϕ
<∞.
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For any µ ∈ Sp(DKn−1) and any j, and f(r) a radial test function, we have

D
[
f

(
(1 + iα̃0)ψµ,j

0

)]
=

mf

(
(1 + iα̃0)ψµ,j

0

)
+

([
−
(
∂r +

n− 1

2

ϕ′(r)

ϕ(r)

)
+

µ

ϕ(r)

]
f

)(
0

(1− iα̃0)ψµ,j

)
and

D
[
f

(
0

(1− iα̃0)ψµ,j

)]
=

−mf
(

0
(1− iα̃0)ψµ,j

)
+

([(
∂r +

n− 1

2

ϕ′(r)

ϕ(r)

)
+

µ

ϕ(r)

]
f

)(
(1 + iα̃0)ψµ,j

0

)
.

We are thus left with studying the dispersion of the equation

(2.3) i∂tF + hµF = 0,

with

(2.4) hµ =

 m −
(
∂r + n−1

2
ϕ′(r)
ϕ(r)

)
+ µ

ϕ(r)(
∂r + n−1

2
ϕ′(r)
ϕ(r)

)
+ µ

ϕ(r)
−m


for any µ ∈ Sp(DKn−1).

Remark 2.1. If we take ψµ an eigenfunction of DKn−1 on Kn−1 with eigenvalue µ 6= 0

and we suppose that θ = f(r)

(
(1 + iα̃0)ψµ

0

)
is an eigenspinor of D2 with eigenvalue

ρ2 6= 0, then we have that f satisfies the following ODE

f ′′ +
n− 1

r
+

[
ρ2 −

(
µ2 − µ− n2 − 4n+ 3

4

)
1

r2

]
f = 0

which has solutions f(r) = γcJ±ν+(ρr), where c = (2 − n)/2, ν+ = |2µ − 1|/2 and
Jν+ is the standard Bessel function of order ν+. Analogously, assuming that now

θ = f(r)

(
0

(1− iα̃0)ψµ

)
is an eigenspinor of D2 with eigenvalue ρ2 6= 0, we see that

f satisfies the ODE

f ′′ +
n− 1

r
+

[
ρ2 −

(
µ2 + µ− n2 − 4n+ 3

4

)
1

r2

]
f = 0

which has solutions f(r) = rcJ±ν+(ρr), with c as before and ν+ = |2µ+ 1|/2. These
equations recall once more the connection with the Klein-Gordon equation, which
now has been brought at the “radial” level. In particular, in [5] these equations
are the starting point in order to prove the crucial local smoothing estimates for the



18 J. BEN-ARTZI, F. CACCIAFESTA, A. S. DE SUZZONI, AND J. ZHANG

Klein-Gordon equation; nevertheless, we stress once again the fact that the argument
of deducing dispersive estimates for the Dirac flow from the corresponding Klein-
Gordon ones does not work for free, as indeed the Laplace operator that comes into
play when squaring the Dirac operator is the spinorial one (and not the standard
scalar one that we dealt with in [5]).

We can explicitly write down the positive and negative eigenspinors of the operator
DKn−1 , when we are calling “positive” (resp. “negative”) the ones corresponding to
Bessel functions of positive (resp. negative) order. It can then be shown that both
positive and negative ones fall in the domain of DKn−1 . The negative ones, though,
correspond to eigenvalues µ ofDKn−1 such that |µ| ≤ 1/2 (this can be seen by studying
the asymptotic behaviours of the Bessel functions). Finally, negative solutions in the
domain of DKn−1 prevent the operator DKn−1 from being selfadjoint. This is the
reason why we need the assumption |µ| > 1/2.

2.2. The squaring trick and weighted spinors. We now introduce weighted
spinors, the main goal being transforming the system (2.3) into a system of wave
equations on Rn perturbed by a radial, electric potential, in order to exploit the exist-
ing theory to obtain dispersive estimates. This strategy has been already employed
in [33, 2, 21] in different contexts (the Schrödinger equation on Damek ricci spaces
and on spherically symmetric manifolds, and equivariant wave maps respectively)
and in the predecessor of this paper, [11], to deal with the local-in-time case.

Take σ : R+ → R+ such that for all r > 0,

σ(r) =
r

ϕ(r)

where ϕ(r) satisfies the assumptions of Theorem 1.2 and write, for n ≥ 3,

σn = σ(n−1)/2.

Lemma 2.2. The map σ prolonged by continuity at 0 is C1 and the map

σ′

σ

is bounded on (0,∞).

Proof. Indeed, for r ≥ 0,

σ′(r) =
(1

r
− ϕ′(r)

ϕ(r)

)
σ.

The map σ at 0 converges to 1 and we have, as r ↓ 0, writing a = ϕ′′(0)
2

,

σ(r)− 1

r
=

1

r

( r

r + ar2 + o(r2)
− 1
)
→ −a
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hence σ′(0) = −a. What is more, as r → 0,

σ′(r) =
1

ϕ(r)
− rϕ′(r)

ϕ2
=

1

r
(−ar + o(r))→ −a.

Finally, since σ → 1 at 0 and σ > 0, we deduce that σ′

σ
is continuous on [0,∞).

Finally,
σ′(r)

σ(r)
=

1

r
− ϕ′

ϕ

which ensures its boundedness. �

Lemma 2.3. The multiplication by σn is an isometry from L2
r to L2

ϕ. What is more,

the multiplication by σn is an isomorphism from H1
r to H1

ϕ that satisfies[
1 + cϕ

n− 1

2

]−1

‖f‖H1
r
≤ ‖σnf‖H1

ϕ
≤
[
1 + cϕ

n− 1

2

]
‖f‖H1

r

with cϕ = ‖σ′
σ
‖L∞((0,∞)). In particular, by interpolation, we get, for all s ∈ [0, 1],[
1 + cϕ

n− 1

2

]−s
‖f‖Hs

r
≤ ‖σnf‖Hs

ϕ
≤
[
1 + cϕ

n− 1

2

]s
‖f‖Hs

r
.

Proof. The fact that σn is an isometry at the L2-level follows by the definition of the
norms, as indeed

‖σnf‖2
L2
ϕ

=

∫
σ2
nf

2ϕn−1dr =

∫
rn−1f 2dr = ‖f‖2

L2
r
.

We now estimate ‖σnf‖H1
ϕ
. We have, by the isometry in L2,

‖σnf‖H1
ϕ
≤ ‖f‖H1

r
+ ‖σ′nσ−1

n f‖L2
r
.

A direct computation yields

σ′nσ
−1
n =

n− 1

2

σ′

σ
.

By Hölder’s inequality, we get

‖σ′nσ−1
n f‖L2

r
≤ n− 1

2
cϕ‖f‖L2

r
.

We now estimate ‖σ−1
n g‖H1

r
. We have, by isometry in L2,

‖σ−1
n g‖H1

r
≤ ‖g‖H1

ϕ
+ ‖(σ−1

n )′σng‖L2
ϕ
.

We have

(σ−1
n )′σn = −σ

′
n

σn
= −n− 1

2

σ′

σ
.
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We use Hölder’s inequality to get

‖(σ−1
n )′σng‖H1

ϕ
≤ n− 1

2
cϕ‖g‖L2

ϕ
.

This concludes the proof. �

Lemma 2.4. We have

(2.5) hµ,n := σ−1
n hµσn =

(
m −∂r − n−1

2r
+ µ

ϕ

∂r + n−1
2r

+ µ
ϕ

−m

)
.

Proof. Straightforward computation. �

Proposition 2.5. Let s ∈ [−1, 1], and p, q ≥ 1. If e−ithµ,n is a continuous oper-

ator from H
1/2
r to Lp(R,W s,q

r ), then e−ithµ is a continuous operator from H
1/2
ϕ to

σ
1−2/q
n Lp(R,W s,q

ϕ ) and∥∥e−ithµ∥∥
H

1/2
ϕ →σ1−2/q

n Lp(R,W s,q
ϕ )
≤ Cϕ

∥∥e−ithµ,n∥∥
H

1/2
r →Lp(R,W s,q

r )

with a constant Cϕ that does not depend on µ.

This is a consequence of the fact that

e−ithµ = σne
−ithµ,nσ−1

n ,

of Lemma 2.3 and of the following lemma.

Lemma 2.6. The multiplication by σn is a continuous operator from

Lp(R,W s,q
r )

to
σ1−2/q
n Lp(R,W s,q

ϕ )

for any s ∈ [−1, 1] and any q ∈ (1,∞).

Proof. First of all, the norm in the t variable is not relevant in the proof, hence we

only prove that the multiplication by σn is continuous from W s,q
r to σ

1−2/q
n W s,q

ϕ for
q ∈ (1,∞) and s ∈ [−1, 1]. This is equivalent to proving that the multiplication by

σ
2/q
n is continuous from W s,q

r to W s,q
ϕ .

For non-negative s, by interpolation, we can reduce the proof to the cases, s = 0, 1.

For negative s, by duality, the continuity of the multiplication by σ
2/q
n from W s,q

r

to W s,q
ϕ is implied by the continuity of the multiplication by σ

−2/q′
n from W−s,q′

ϕ to

W−s,q′
r where q′ is the conjugated exponent of q.
Therefore, it sufficient to prove the following, for all q ∈ (1,∞) :

(1) the multiplication by σ
2/q
n is an isometry from Lqr to Lqϕ,

(2) the mutiplication by σ
2/q
n is continuous from W 1,q

r to W 1,q
ϕ ,
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(3) the multiplication by σ
−2/q
n is continuous from W 1,q

ϕ to W 1,q
r .

(1) Let f ∈ Lqr, we have by definition

‖σ2/q
n f‖q

Lqϕ
=

∫ ∞
0

σ2
nϕ

n−1|f |q

and using the definition of σn,

‖σ2/q
n f‖q

Lqϕ
=

∫ ∞
0

rn−1|f(r)|qdr = ‖f‖q
Lqr
.

(2) From (1), it is sufficient to prove that for all f ∈ W 1,q
r , we have

‖∂r(σ2/q
n f)‖Lqϕ . ‖f‖W 1,q

r
.

By the Leibniz rule, we have

‖∂r(σ2/q
n f)‖Lqϕ = ‖σ2/q

n

(n− 1

q

σ′

σ
f + ∂rf

)
‖Lqϕ

and from (1), we get

‖∂r(σ2/q
n f)‖Lqϕ = ‖n− 1

q

σ′

σ
f + ∂rf‖Lqr .

We conclude by using the fact that σ′

σ
is bounded.

(3) From (1), it is sufficient to prove that

‖∂r(σ−2/q
n f)‖Lqr . ‖f‖W 1,q

ϕ
.

By the Leibniz rule, we have

‖∂r(σ−2/q
n f)‖Lqr = ‖σ−2/q

n

(
− n− 1

q

σ′

σ
f + ∂rf

)
‖Lqr

and from (1), we get

‖∂r(σ−2/q
n f)‖Lqr = ‖ − n− 1

q

σ′

σ
f + ∂rf‖Lqϕ .

We conclude by using the fact that σ′

σ
is bounded. �

As recalled in the introduction, the (massless) Dirac operator has been constructed
as some square root of the Laplacian; in other words, every solution to the free Dirac
equation on Rn satisfies a system of decoupled free wave/Klein-Gordon equations.
This point of view can be carried at the “radial” level:
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Lemma 2.7. Let V ∈ C2(0,∞) and let

hV,n =

 m −
(
∂r + n−1

2r

)
+ V(

∂r + n−1
2r

)
+ V −m

 .

Then we have

h2
V,n =

(
m2 +Hc− 0

0 m2 +Hc+

)
with

(2.6) Hc± = −
(
∂2
r +

n− 1

r
∂r

)
+ c±

and

c± = −(n− 1)(n− 3)

4r2
+ V 2 ± ∂rV.

Remark 2.2. In other words, if v =

(
v+

v−

)
solves the equation

i∂tv = h̃µv

with initial datum v0 =

(
v0,+

v0,−

)
, then v+ and v− solve respectively

∂2
t v+ = −m2v+ −Hc−v+ and ∂2

t v− = −m2v− −Hc+v−

with initial data(
v+(t = 0)
∂tv+(t = 0)

)
=

(
v0,+

−imv0,+ + i
(
∂r + 1

r
− V

)
v0,−

)
and (

v−(t = 0)
∂tv−(t = 0)

)
=

(
v0,−

imv0,− − i
(
∂r + 1

r
+ V

)
v0,+

)
.

Proof. Straightforward computation. �

3. The wave and Klein-Gordon equation
with potentials of critical decay

In this section we review the well-known theory on dispersive estimates for critical
perturbations of the wave and Klein-Gordon flows, discussing in particular how the
available results can be adapted to deal with our problem. As the strategy and the
results below are classical, we will only sketch most of them, providing references to
fill in the details.
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3.1. General Kato-smoothing. First of all, let us recall the following definition
(see [17, Definition 2.1])

Definition 3.1. Let H1 and H2 be Hilbert spaces and H a selfadjoint operator on
H1. Let R be the resolvent operator of H. A closed operator A from H1 to H2 with
dense domain D(A) is called

(1) H-smooth with constant a if there exists ε0 such that for every ε, λ ∈ R with
0 < |ε| < ε0 the following uniform bound holds:

|(=R(λ+ iε)A∗v, A∗v)H1| ≤ a‖v‖2
H2
, v ∈ D(A∗).

(2) H-supersmooth with constant a if there exists ε0 such that for every ε, λ ∈ R
with 0 < |ε| < ε0 the following uniform bound holds:

|(R(λ+ iε)A∗v, A∗v)H1| ≤ a‖v‖2
H2
, v ∈ D(A∗)

We prove the following proposition:

Proposition 3.2. Let n ≥ 3 be the dimension, and let c ∈ C1((0,∞)) and r = |x|.
Assume that r2c ∈ L∞ and

(3.1) δc := min
[1

4
, inf

(
cr2 +

(n− 2)2

4

)
, inf

(
− r3c′ − r2c+

(n− 2)2

4

)]
> 0.

Then the operator Hc defined in (2.6) is positive on the Hilbert space L2(Rn) and the
operator |x|−1 (from L2(Rn) to L2(Rn)) is Hc super-smooth with constant δ−1

c .

Proof. Because we have

inf
(
cr2 +

(n− 2)2

4

)
≥ δc

we get, for any v ∈ C∞((0,∞)) with compact support

〈v,Hcv〉L2 ≥ 〈v,
(
− ∂2

r −
n− 1

r
∂r

)
v〉L2 − 〈v, (n− 2)2

4r2
v〉L2 + δc〈v, r−2v〉L2

and by Hardy’s inequality, as we are in dimension n ≥ 3,

〈v,Hcv〉L2 ≥ δc〈v, r−2v〉L2 .

Therefore, Hc is positive.
The fact that |x|−1 is Hc super-smooth is a consequence of [21, Theorem 3.3] with

a = n−1
r

. Indeed, for v in the domain of |x|−1, write f = |x|−1v; writing R(λ + iε)
the resolvent of Hc with ε 6= 0, we have that R(λ+ iε)|x|−1v is the solution to

u′′ +
n− 1

r
u′ + (λ+ iε)u− cu = −f

from which we deduce

‖ |x|−1u‖L2(Rn) ≤ δ−1
c ‖ |x|f‖L2(Rn) = δ−1

c ‖v‖L2(Rn).
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We get from this

〈R(λ+ iε)|x|−1v, |x|−1v〉L2 = 〈|x|−1u, v〉L2 ≤ ‖ |x|−1u‖L2(Rn)‖v‖L2(Rn)

which yields
〈R(λ+ iε)|x|−1v, |x|−1v〉L2 ≤ δ−1

c ‖v‖2
L2(Rn)

and concludes the proof. �

Proposition 3.3. Under the same assumptions as Proposition 3.2, we have that
|x|−1(Hc + ν)−1/4 is

√
Hc + ν super-smooth for any ν ∈ R+ with constant C2

c =
(3 + π)δ−1

c and in particular, for all v in the domain of (Hc + ν)1/4 we have that∥∥ |x|−1e−it
√
ν+Hcv

∥∥
L2(R×Rn)

≤ Cc‖(Hc + ν)1/4v‖L2(Rn).

Proof. This is a direct consequence of [17, Theorem 2.4]. �

Proposition 3.4. Under the assumptions of Proposition 3.2 and assuming ν non-
negative, set Uc(t) to be the flow of the equation

(3.2)

{
∂2
t v +Hcv + νv = 0,
v(t = 0) = v0, ∂tv(t = 0) = v1.

Set also Xc,ν and H1/2
c,ν to be spaces respectively induced by the norms

‖(f, g)‖2
Xc,ν = ‖ |x|−1f‖2

L2(R×Rn) + ‖ |x|−1(Hc + ν)−1/2g‖2
L2(R×Rn)

and
‖(v0, v1)‖2

H1/2
c,ν

= ‖(Hc + ν)1/4v0‖2
L2(Rn) + ‖(Hc + ν)−1/4v1‖2

L2(Rn).

Then we have for all (v0, v1) ∈ H1/2
c,ν ,

‖Uc(t)(v0, v1)‖Xc,ν ≤ Cc‖(v0, v1)‖H1/2
c,ν
.

Proof. The proof follows the usual lines assuming, without loss of generality, that v
is real and use the transform

U = v + i(Hc + ν)−1/2∂tv.

�

3.2. Application to the Dirac equation with critical potentials.

Proposition 3.5. Let V ∈ C2((0,∞)). Write c± = − (n−1)(n−3)
4r2

+ V 2 ± V ′. Set
SV,n(t) to be the flow of equation i∂tu = hV,nu with hV,n as in Lemma 2.7. Assume
that
(3.3)

δ±V := min
[1

4
, inf

(1

4
+ r2(V 2 ± V ′)

)
, inf

(1

4
− r3(2V V ′ ± V ′′)− r2(V 2 ± V ′)

)]
> 0.
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Then we have that for all u0 ∈ H1/2
c+,c−,m the solution SV,n(t)u0 satisfies

‖|x|−1SV,n(t)u0‖L2(R×Rn) ≤ 3(Cc+ + Cc−)‖u0‖H1/2
c+,c−,m

,

where H1/2
c+,c−,m is the space induced by the norm∥∥∥∥(fg

)∥∥∥∥
H1/2
c+,c−,m

= ‖(m2 +Hc−)1/4f‖L2(Rn) + ‖(m2 +Hc+)1/4g‖L2(Rn).

Finally, we have δc± = δ±V .

Proof. Set

u0 =

(
f0

g0

)
and SV,n(t)(u0) =

(
f
g

)
.

Write V± = V ±
(
∂r + n−1

2r

)
. By a straightforward computation we get that V−V+ =

Hc− and V+V− = Hc+ . Therefore, we recall that

(3.4) h2
V,n =

(
m2 +Hc− 0

0 m2 +Hc+

)
.

and that f is the solution to ∂2
t f +Hc−f +m2f = 0 with initial datum

f(t = 0) = f0 and ∂tf(t = 0) = f1 := −imf0 − iV−g0.

A direct computation yields δ±V = δc± and thus

‖ |x|−1f‖L2
t,x
≤ Cc−

(
‖(m2 +Hc−)1/4f0‖L2

x
+ ‖(m2 +Hc−)−1/4f1‖L2

x

)
We have that

‖(m2 +Hc−)−1/4mf0‖L2 ≤
√
|m|‖f0‖L2

since m2 +Hc− ≥ m2.
What is more

‖(m2 +Hc−)−1/4V−g0‖2
L2 = 〈(m2 +Hc−)−1/4V−g0, (m

2 +Hc−)−1/4V−g0〉L2 .

Since m2 +Hc− ≥ Hc− , we have

‖(m2 +Hc−)−1/4V−g0‖2
L2 ≤ 〈H−1/4

c− V−g0, H
−1/4
c− V−g0〉L2 .

By taking adjoints, we get

‖(m2 +Hc−)−1/4V−g0‖2
L2 ≤ 〈V+H

−1/2
c− V−g0, g0〉L2 .

Let A = V+H
−1/2
c− V−. The operator A is positive and

A2 = V+H
−1/2
c− V−V+H

−1/2
c− V−.
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Since V−V+ = Hc− we get

A2 = V+H
−1/2
c− Hc−H

−1/2
c− V− = V+V− = Hc+ .

Finally,

‖ |x|−1f‖L2 ≤ Cc−

(
2‖(m2 +Hc−)1/4f0‖L2 + ‖(m2 +Hc+)1/4g0‖L2

)
.

With a similar computation, we get

‖ |x|−1g‖L2 ≤ Cc+

(
2‖(m2 +Hc+)1/4g0‖L2 + ‖(m2 +Hc−)1/4f0‖L2

)
.

�

We can now exploit the powerful Rodnianski-Schlag argument (see [34]) to deduce
Strichartz estimates from Proposition 3.5.

Proposition 3.6. Assume that (p, q,m) is admissible, as in Definition 1.1. Then

there exists a constant C = C(p, q,m) such that for all u0 ∈ H1/2
r ∩H1/2

c+,c−,m, we have

(3.5) ‖SV,n(t)u0‖Lp,W 1/q−1/p,q
r

≤ C
(

(1 + ‖rV ‖L∞((0,∞)))‖u0‖H1/2

+ (‖r2c+‖L∞((0,∞)) + ‖r2c−‖L∞((0,∞)))((δ
+
V )−1 + (δ−V )−1)‖u0‖H1/2

c+,c−,m

)
.

Proof. REMOVE, IF YOU AGREE:For c ∈ C1, write Vc(t) the projection on the
first coordinate of the flow of{

∂2
t u+m2u+ h2

V,nu = 0
u(t = 0) = u0, ∂tu(t = 0) = u1

where h2
V,n is given by (3.4). Set

SV,n(t)u0 =

(
f
g

)
and u0 =

(
f0

g0

)
.

Then we have

f = Vc−(t)(f0, f1) = V0(t)(f0, f1)−
∫ t

0

sin((m2 +H0)1/2(t− τ)

(m2 +H0)1/2
(c−f(τ))dτ

with f1 = −imf0 − i(V − (∂r + n−1
2r

))g0. I think we can rewrite the above, and put
it as follows:
Let

SV,n(t)u0 =

(
f
g

)
and u0 =

(
f0

g0

)
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where, we recall, SV,n(t) is the flow of equation i∂tu = hV,nu with hV,n as in Lemma
2.7. We then have

f = Vc−(t)(f0, f1) = V0(t)(f0, f1)−
∫ t

0

sin((m2 +H0)1/2(t− τ)

(m2 +H0)1/2
(c−f(τ))dτ

with f1 = −imf0 − i(V − (∂r + n−1
2r

))g0, and where we are denoting with Vc(t) the
projection on the first component of the flow of the equation ∂2

t u+m2u+h2
V,nu = 0.

From standard arguments, we get the following estimate on f :

‖f‖
Lp,W

1/q−1/p,q
r

≤ C
(
‖f0‖H1/2

r
+ ‖f1‖H−1/2

r
+ ‖rc−f‖L2(R×Rn)

)
.

This estimate can be obtained by combining standard Strichartz estimates for Klein-
Gordon (see e.g. [19]), the Christ-Kiselev Lemma (p > 2) and local smoothing on

ei
√
m2+H0t (by e.g. taking the dual form of estimate (3.7) in [17]). Indeed, we have

‖V0(t)(f0, f1)‖
Lp,W

1/q−1/p,q
r

. ‖f0‖H1/2
r

+ ‖f1‖H−1/2
r

due to the Strichartz inequality for the Klein-Gordon equation. We also have that∥∥∫ ∞
0

sin((m2 +H0)1/2(t− τ)

(m2 +H0)1/2
(c−f(τ))dτ

∥∥
Lp,W

1/q−1/p,q
r

.
∥∥∫ ∞

0

sin((m2 +H0)1/2(t− τ)

(m2 +H0)1/2
(c−f(τ))dτ

∥∥
H1/2(Rn)

.

Since H0 and the Laplacian commute (0 corresponding to the flat case), we get∥∥∫ ∞
0

sin((m2 +H0)1/2(t− τ)

(m2 +H0)1/2
(c−f(τ))dτ

∥∥
H1/2(Rn)

=∥∥∫ ∞
0

sin((m2 +H0)1/2(t− τ)(c−f(τ))dτ
∥∥
H−1/2(Rn)

We then use the dual form of local smoothing to get∥∥∫ ∞
0

sin((m2 +H0)1/2(t− τ)(c−f(τ))dτ
∥∥
H−1/2(Rn)

. ‖|x|c−f‖L2(R×Rn).

Now, exploiting the Christ-Kiselev lemma, we get that since

F 7→
∫ ∞

0

sin((m2 +H0)1/2(t− τ)

(m2 +H0)1/2
(|x|−1F (τ))dτ

is continuous from L2(R× Rn) to Lp,W
1/q−1/p,q
r and since p > 2, so is

F 7→
∫ t

0

sin((m2 +H0)1/2(t− τ)

(m2 +H0)1/2
(|x|−1F (τ))dτ.



28 J. BEN-ARTZI, F. CACCIAFESTA, A. S. DE SUZZONI, AND J. ZHANG

We get that∥∥∫ t

0

sin((m2 +H0)1/2(t− τ)

(m2 +H0)1/2
(c−f(τ))dτ

∥∥
Lp,W

1/q−1/p,q
r

. ‖rc−f‖L2(R×Rn).

Because of the Hardy inequality, we have

‖f1‖H−1/2
r
. ‖f0‖L2 + (1 + ‖rV ‖L∞)‖g0‖H1/2

r
.

Besides,
‖rc−f‖L2(R×Rn) ≤ ‖r2c−‖L∞‖r−1f‖L2(R×Rn).

Because of local smoothing on SV,n(t), we get

‖r−1f‖L2(R×Rn) . (Cc+ + Cc−)‖u0‖H1/2
c+,c−,m

.

A similar computation on g yields the result. �

3.3. Application to the Dirac equation in curved manifolds. In this section,
we set V = Vµ = µ

ϕ
, δ±(µ) = δ±Vµ and

c±(µ) = −(n− 1)(n− 3)

4r2
+ V 2

µ ± V ′µ = −(n− 1)(n− 3)

4r2
+ µ

µ∓ ϕ′

ϕ2
.

Finally, we set H±(µ) = Hc±(µ). Here, we are assuming that ϕ satisfies assumptions
(A0)-(A1).

Lemma 3.7. For any |s| ≤ 1 we have the bound

‖(m2 +H±(µ))s/2v‖L2(Rn) .ϕ,m (1 + µ2)s/2‖v‖Hs(Rn)

In particular, we have

‖u0‖H1/2
c+(µ),c−(µ),m

.ϕ,m
√
|µ|‖u0‖H1/2

r,n

Remark 3.1. Differently from [21], we need to keep track on the dependence on µ of
the inequalities above: indeed, if on one hand for the purpose of Theorem 1.2 such
a dependence is irrelevant (as it is in [21]), in view of Theorem 1.3 it will play an
important role, as powers of µ will be traded with angular derivatives on the initial
data.

Proof. We have that, for any µ,

(3.6) c±(µ)(r) ≤ Cϕµ
2

r2
, |c±(µ)(r)| ≤ (n− 1)(n− 3)

4r2
+
Cϕµ

2

r2

due to assumption (1.13) with

Cϕ = max
(
‖ r

2

ϕ2
‖L∞((0,∞)), 2‖

r2ϕ′

ϕ2
‖L∞((0,∞))

)
.
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As done in [21, Section 2], the result follows from the application of Hardy inequality
and interpolation in a standard way. We omit the details. �

We deduce from Proposition 3.6 the following result.

Proposition 3.8. Assume that (p, q,m) is admissible, as in Definition 1.1. Then

there exists a constant C = C(p, q,m, ϕ) such that for all u0 ∈ H1/2
r , we have

(3.7) ‖SVµ,n(t)u0‖Lp,W 1/q−1/p,q
r

≤ C|µ|5/2((δ+
Vµ

)−1/2 + (δ−Vµ)−1/2)‖u0‖H1/2
r
.

Proof. Estimate (3.7) is a direct consequences of Proposition 3.6, Lemma 3.7, and
the bounds

‖rVµ‖L∞ .ϕ |µ|, ‖r2c±‖L∞ .ϕ µ2.

The bound on c is due to (3.6). For the bound on Vµ, we recall that

Vµ =
µ

ϕ

and thus

‖rVµ‖L∞ ≤ |µ| ‖
r

ϕ
‖L∞ .

�

By interpolation, we get the following

Corollary 3.9. Assume that (p, q,m) is admissible, as in Definition 1.1 and let

ε > 0. There exists C = C(p, q,m, ϕ, ε) such that for all u0 ∈ H1/2
r , we have

(3.8) ‖SVµ,n(t)u0‖Lp,W 1/q−1/p,q
r

≤ C|µ|5/p+ε((δ+
V )−1/2 + (δ−V )−1/2)2/p+ε‖u0‖H1/2

r

Proof. If θ := 2
p
+ε > 1, then the result is a consequence of estimate (3.7). Otherwise,

we obtain (3.9) by interpolating (3.7) taking p close enough to 2 with the standard
L∞Hs estimate. Notice that the assumption ε > 0 is needed because the endpoint
couple is not admissible: we refer to the proofs of Lemmas 5.1 and 5.5 in [11]. �

Exploiting Proposition 2.5, we eventually get Theorem 1.2. In Proposition 2.5, we

used the notation e−ithµ,n for SVµ,n(t) and σn(r) =
(

r
ϕ(r)

)(n−1)/2

. Hence, this propo-

sition allows to pass from Strichartz estimates for SVµ,n(t) to Strichartz estimates for
the operator hµ.
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4. Strichartz estimates in the asymptotically flat case

In this section we specialize to the “asymptotically flat” case. First of all, we
provide a slightly more precise version of Assumptions (A2) and in particular of
the constant C. As a consequence, we are able to give some explicit condition in
order for hypothesis (1.13) to be satisfied. Then, after further restricting to the case
Kn−1 = Sn−1, we prove Theorem 1.3.

4.1. Assumptions. Let us assume that the infimum of the positive part of the
spectrum of the Dirac operator on Kn−1, denoted by µ0, is strictly bigger than 1

2
,

and that ϕ is asymptotically flat, in other words, that

ϕ = r(1 + ϕ1)

with the following assumption on ϕ1 :

• ϕ1 is non-negative and bounded,
• Aϕ = ‖ϕ1 + rϕ′1‖∞ and

Bϕ = ‖rϕ′1 + (1 + ϕ1)(ϕ1 + rϕ′1)‖∞ + ‖2r2(ϕ′1)2 + (1 + ϕ1)r2ϕ′′1‖∞
are well-defined,
•

max(Aϕ, Bϕ)

{
≤ 1 if µ0 ≥ 2

< min(1
4

+ µ2
0 − µ0,

1
8
) otherwise

.

4.2. Asymptotically flat manifolds are admissible. In this subsection we prove
Proposition 1.4: if ϕ(r) satisfies assumptions above, condition (1.13) is satisfied, and
therefore the Strichartz estimates proved in Theorem 1.2 hold. The only thing we
need to prove is the following.

Lemma 4.1. Under the above assumptions on ϕ1, we have for all µ ≥ µ0,

δ±(µ) ≥
{

1
4

if µ0 ≥ 2,
min(1

4
+ µ2

0 − µ0,
1
8
)−max(Aϕ, Bϕ) otherwise.

.

Proof. We have

I(r) :=
1

4
+ r2(Vµ ± V ′µ) =

1

4
+

µ2 ∓ µ
(1 + ϕ1)2

∓ µϕ1 + rϕ′1
(1 + ϕ1)2

.

Therefore,

I(r) ≥ 1

4
+

µ2 − µ
(1 + ϕ1)2

− µ Aϕ
(1 + ϕ1)2

.

Case 1 : µ ≥ 2, we have since µ2 − µ ≥ µ,

I(r) ≥ 1

4
+

µ

(1 + ϕ1)2
(1− Aµ)
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and since Aµ ≤ 1, we have I(r) ≥ 1
4
.

Case 2 : µ ∈ [1, 2), we have since ϕ1 ≥ 0 and µ2 − µ ≥ 0,

I(r) ≥ 1

4
− 2Aϕ ≥

1

8
− Aϕ

which is positive since Aϕ <
1
8
.

Case 3 : µ ∈ [µ0, 1), we have, since ϕ1 > 0 and µ2 − µ ≥ µ2
0 − µ0,

I(r) ≥ 1

4
+ µ2

0 − µ0 − Aϕ

which is positive.
Set

Q±(r) =
1

4
− r3(2VµV

′
µ ± V ′′µ )− r2(V 2

µ ± V ′µ).

We have

Q±(r) =
1

4
+

µ2 ∓ µ
(1 + ϕ1)2

+
µ2 ∓ µ

(1 + ϕ1)3
f(r)∓ µ

(1 + ϕ1)3
g(r)

with

f(r) = rϕ′1 + (1 + ϕ1)(ϕ1 + rϕ′1) and g(r) = 2r2(ϕ′1)2 + (1 + ϕ1)r2ϕ′′1.

Case 1 : We consider Q+(r). We have

Q+(r) =
1

4
+

µ2 + µ

(1 + ϕ1)2
+

µ2 + µ

(1 + ϕ1)3
f(r) +

µ

(1 + ϕ1)3
g(r)

hence

Q+(r) ≥ 1

4
+

µ2 + µ

(1 + ϕ1)2
(1−Bϕ)

and since Bϕ ≤ 1, we have Q+(r) ≥ 1
4
.

Case 2 : we consider Q−(r). We have

Q−(r) =
1

4
+

µ2 − µ
(1 + ϕ1)2

+
µ2 − µ

(1 + ϕ1)3
f(r)− µ

(1 + ϕ1)3
g(r).

Case 2.1 : µ ≥ 2, we have µ2 − µ ≥ µ, hence

Q−(r) ≥ 1

4
+

µ2 − µ
(1 + ϕ1)2

(1−Bϕ)

and since Bϕ ≤ 1, we have Q−(r) ≥ 1
4
.

Case 2.2 : µ ∈ [1, 2). We have µ2 − µ ≤ 2 and µ ≤ 2, hence

Q−(r) ≥ 1

4
− 2Bϕ.
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Finally, case 2.3 : µ ∈ [µ0, 1), we have 0 > µ2−µ ≤ µ2
0−µ0 and |µ2−µ| ≤ 1 hence

Q−(r) ≥ 1

4
+ µ2

0 − µ0 −Bϕ

which concludes the proof. �

4.3. Local smoothing in the asymptotically flat case. From this subsection,
we assume that Kn−1 is Sn−1. We have that the positive spectrum of the Dirac
operator on the sphere is n−1

2
+N. We see hence that in dimension higher that 5, we

have that δ±(µ) ≥ 1
4

for all µ in the spectrum. In any case, for a fixed ϕ satisfying
Assumptions in (A2), we have that δ is uniformly bounded in µ by below.

For µ in the spectrum of the Dirac operator on the sphere, we write Hµ the space
generated by {(

(1 + iα̃0)ψµ
0

)
,

(
0

(1− iα̃0)ψµ

)
, DSn−1ψµ = µψµ

}
.

For 0 ≤ a < b we set

Ha,b =
⊕
|µ|∈[a,b]

Hµ

and pa,b the orthogonal projection onto L2
r ⊗Ha,b.

We recall that σ−1
n DΣσn is entirely described by the hµ,n and thus commute with

pa,b. We write Sn(t) the flow of

i∂t − σ−1
n DΣσn = 0.

We deduce the following proposition.

Proposition 4.2. Let u0 ∈ H1/2(Rn), we have

‖r−1pa,bSn(t)u0‖L2(R×Rn) .m,ϕ,n b
1/2‖pa,bu0‖H1/2(Rn).

Proof. Let u0,µ to be the orthogonal projection of u0 over L2
r⊗Hµ and uµ = Sn(t)u0,µ.

Because the orthogonal projection over L2
r ⊗Hµ and Sn(t) commute, we get

‖r−1pa,bSn(t)u0‖2
L2(R×Rn) =

∑
|µ|∈[a,b]

‖r−1uµ‖2
L2(R×Rn).

From Proposition 3.5, we have

‖r−1uµ‖L2(R×Rn) ≤ 3(Cc+(µ) + Cc−(µ))‖u0,µ‖Hc+(µ),c−(µ),m

where, by abuse of notation, we identified u0,µ with∑
j

fj√
2

(
(1 + iα̃0)ψµ,j

0

)
+

gj√
2

(
0

(1− iα̃0)ψµ,j

)
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where the (finite) family (ψµ,j)j is an orthonormal basis of the eigenspace of DSn−1

associated to µ, and we identified ‖u0,µ‖2
Hc+(µ),c−(µ),m

with∑
j

∥∥(fj
gj

)∥∥2

Hc+(µ),c−(µ),m
.

From Lemma 3.7, we have for all j,∥∥(fj
gj

)∥∥
Hc+(µ),c−(µ),m

.m,ϕ
√
|µ|
∥∥(fj

gj

)∥∥
H1/2(Rn)

from which we deduce

‖u0,µ‖Hc+(µ),c−(µ),m
.m,ϕ

√
|µ|‖u0,µ‖H1/2(Rn) ≤

√
b‖u0,µ‖H1/2(Rn).

We conclude by using the fact that Cc+(µ) and Cc−(µ) are uniformly bounded in µ. �

4.4. Restricted Strichartz estimates in the asymptotically flat case. In this
subsection, we prove the following proposition.

Proposition 4.3. Let 0 ≤ a < b and let m, p, q be admissible. We have, for all
u0 ∈ H1/2(Rn) and all ε > 0,

‖pa,bSn(t)u0‖Lp(R,W s,q(Rn))

{
.m,ϕ,n,ε,p,q b5/p+ε‖pa,bu0‖H1/2 if n = 3,m = 0
.m,ϕ,n,p,q b5/p‖pa,bu0‖H1/2 otherwise ,

with s = 1
q
− 1

p
.

Proof. We prove that

‖pa,bSn(t)u0‖Lp(R,W s,q(Rn)) .m,ϕ,n, b
5/2‖pa,bu0‖H1/2

for all admissible triplets (m, p, q) and conclude by interpolation.
First, we have

σ−1
n DΣσn = DRn + V

with V the operator

V =
( 1

ϕ
− 1

r

)(
0 DSn−1

DSn−1 0

)
.

Writing u = Sn(t)u0, we get that u satisfies

∂2
t u+ (DRn + V)2u = 0

with initial data u(t = 0) = u0 and ∂tu(t = 0) =: u1 = −i(DRn + V)u0.
We have

(DRn + V)2 = D2
Rn +W = m2 −∆Rn +W

with
W = {V ,DRn}+ V2.
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By the Rodnianski-Schlag argument that we previously used, we get

‖pa,bu‖Lp,W s,q(Rn) .n,p,q ‖pa,bu0‖H1/2(Rn) + ‖pa,bu1‖H−1/2(Rn) + ‖rWpa,bu‖L2(Rn+1).

By the commutativity of pa,b and DRn + V we get

‖pa,bu1‖H−1/2 = ‖(DRn + V)pa,bu0‖H−1/2

and since r( 1
ϕ
− 1

r
) is bounded, by Hardy’s inequality, we get

‖pa,bu1‖H−1/2 .n,ϕ ‖pa,bu0‖H1/2 .

For the other part, we use that

‖rWpa,bu‖L2(Rn+1) ≤ ‖pa,brWrpa,b‖L2→L2‖r−1pa,bu‖L2(Rn+1).

It remains to use Proposition 4.2 and prove that pa,brWrpa,b is a bounded operator
from L2(Rn+1) to itself and compute the dependence of its norm in a, b to conclude.

Because the multliplication by a radial function and the Dirac operator on the
sphere commute, we get that

pa,brV2rpa,b =
( r
ϕ
− 1
)2
(
pa,bD2

Sn−1pa,b 0
0 pa,bD2

Sn−1pa,b

)
and we deduce

‖pa,brV2rpa,b‖L2→L2 ≤ ‖
( r
ϕ
− 1
)2

‖∞b2

which is finite because of the assumptions on ϕ.
What is more, we have

DRn =

 m iα̃0
(
∂r + n−1

2r

)
+ 1

r
DSn−1

iα̃0
(
∂r + n−1

2r

)
+ 1

r
DSn−1 −m


We deduce

{DRn ,V} =

(
L 0
0 L

)
with

L = {iα̃0
(
∂r +

n− 1

2r

)
+

1

r
DSn−1 ,

( 1

ϕ
− 1

r

)
DSn−1}

We have that iα̃0 and DSn−1 anticommute, that ∂r and DSn−1 commute, and that the
multiplication by a radial function commutes with DSn−1 . Hence we get

L = iα̃0DSn−1

[
∂r +

n− 1

2r
,

1

ϕ
− 1

r

]
+ 2
( 1

ϕ
− 1

r

)1

r
D2

Sn−1 .

We deduce

pa,br{V ,DRn}rpa,b =

(
La,b 0

0 La,b

)
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with

La,b = ipa,bα̃
0DSn−1pa,br

2∂r

( 1

ϕ
− 1

r

)
+ 2r

( 1

ϕ
− 1

r

)
pa,bD2

Sn−1pa,b.

Because

r2∂r

( 1

ϕ
− 1

r

)
=

ϕ1

1 + ϕ1

− rϕ′1
(1 + ϕ1)2

belongs to L∞, and so does r
(

1
ϕ
− 1

r

)
= 1

1+ϕ1
− 1, we get

‖pa,br{V ,DRn}rpa,b‖L2→L2 .ϕ b
2.

This concludes the proof. �

4.5. Set-up for the Littlewood-Paley argument. In this subsection, we draw a
link between the spherical harmonics and the eigenfunctions of the Dirac operator
on the sphere.

Proposition 4.4. Let πj be the orthogonal projection on Sj⊗L2
r⊗CM where Sj are

the spherical harmonics of degree in [2j, 2j+1) and let u ∈ L2(Rn,CM), we have

πju = πjpaj ,bju

with aj = n−1
2

+ 2j − 1 and bj = n−1
2

+ 2j+1.

Before proving this proposition, we prove the following short lemma.

Lemma 4.5. We have for all µ in the spectrum of the Dirac operator on the sphere
Sn−1,

Hµ ⊆ (S|µ|−n−1
2
⊕ S|µ|−n−1

2
+1)⊗ CM .

Proof. Let ψµ be an eigenfunction of DSn−1 with eigenvalue µ and write

Ψ+
µ =

(
(1 + iα̃0)ψµ

0

)
, Ψ−µ =

(
0

(1− iα̃0)ψµ

)
.

We have

DRnΨ+
µ =

(
µ− n− 1

2

)1

r
Ψ−µ

and thus

−∆RnΨ+
µ = D2

RnΨ+
µ = DRn

(
µ− n− 1

2

)1

r
Ψ−µ =

(
µ− n− 1

2

)(
µ+

n− 1

2
− 1
) 1

r2
Ψ+
µ .

Because Ψ+
µ does not depend on r, we deduce that it is a spherical harmonics of

degree µ− n−1
2

if µ > 0 and −µ− n−1
2

+ 1 otherwise.
The same type of computation yields

−∆RnΨ−µ =
(
µ+

n− 1

2

)(
µ− n− 1

2
+ 1
) 1

r2
Ψ−µ
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hence Ψ−µ is a spherical harmonics of degree µ − n−1
2

+ 1 if µ > 0 and −µ − n−1
2

otherwise.
In other words

Hµ ⊆ (S|µ|−n−1
2
⊕ S|µ|−n−1

2
+1)⊗ CM .

�

Proof of Proposition 4.4. We have

πju =
∑
µ

πjuµ

where uµ is the orthogonal projection of u over Hµ ⊗ L2
r. If |µ| > bj, then

|µ| − n− 1

2
> 2j+1

hence uµ is a combination of spherical harmonics of degree higher than 2j+1 hence
πjuµ = 0.

If |µ| < aj then

|µ| − n− 1

2
+ 1 < 2j

hence uµ is a combination of spherical harmonics of degree lesser than 2j, we have
πjuµ = 0 therefore

πju =
∑

|µ|∈[aj ,bj ]

πjuµ = πjpaj ,bju.

�

4.6. Proof of Theorem 1.3. As done in [11], by relying on Littlewood-Paley theory
on the sphere we are able to prove Strichartz estimates for the Dirac equation with
general initial conditions in the setting of spherically symmetric manifolds. As the
proof is very similar, we omit some details.

Proposition 4.6. Let m, p, q be admissible. Let a, b > 0 be such that

1

2a
+

5

pb
< 1.

We have for all u0 ∈ Ha,b(Rn),

‖Sn(t)u0‖Lp(R,W s,q(Rn)) .n,ϕ,m,p,q,a,b ‖u0‖Ha,b .

Proof. We have by the Littlewood-Paley theory (q ∈ [2,∞))

‖Sn(t)u0‖2
Lp(R,W s,q(Rn)) .

∑
j

‖πjSn(t)u0‖2
Lp(R,W s,q(Rn)).
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By Proposition 4.4, we have

‖πjSn(t)u0‖2
Lp(R,W s,q(Rn)) = ‖πjpaj ,bjSn(t)u0‖2

Lp(R,W s,q(Rn)).

Again by Littlewood-Paley theory, we have

‖πjpaj ,bjSn(t)u0‖2
Lp(R,W s,q(Rn)) . ‖paj ,bjSn(t)u0‖2

Lp(R,W s,q(Rn)).

We apply Proposition 4.3, we get

‖πjpaj ,bjSn(t)u0‖2
Lp(R,W s,q(Rn)) . b

10/p+ε
j ‖paj ,bju0‖2

H1/2

with ε > 0 if m = 0 and n = 3 (and 0 otherwise). From the inequality

xy ≤ xc + yd

for any x, y ∈ [1,∞) and 1
c

+ 1
d
≤ 1, we deduce

‖πjpaj ,bjSn(t)u0‖2
Lp(R,W s,q(Rn)) . b

(10/p+ε)d
j ‖paj ,bju0‖2

L2 + ‖paj,bju0‖2
Hc/2 .

Because [aj, bj] is localized around 2j, we get

‖Sn(t)u0‖Lp(R,W s,q(Rn)) . ‖u0‖Hc/2,(5/p+ε/2)d .

Setting a = c/2 and b = (5/p+ ε/2)d, the condition on c and d becomes

1

2a
+

5/p+ ε/2

b
≤ 1

which is equivalent to the hypothesis of Proposition 4.6 by discussing the possible
values of ε. �

We now extend Lemmas 2.3 and 2.6 to include the angular dependence.

Lemma 4.7. The multiplication by σn is an isometry from L2(Rn) to L2(Σ). The
multiplication by σn is an isomorphism from H1(Rn) to H1(Σ), the immediate con-
sequence of which that for all a ∈ [0, 1], b ∈ R, the multiplication by σn is an
isomorphism from Ha,b(Rn) to Ha,b(Σ).

Proof. The fact that the multiplication by σn is an isometry from L2(Rn) to L2(Σ)
in already present in Lemma 2.3.

We have for all F ∈ C∞(Σ,CM), writing

F =

(
f
g

)
with f and g in C∞(Σ,CM/2)

hij〈DiF,DjF 〉CM = 〈∂rF, ∂rF 〉CM +
1

ϕ2

(
h̃ij〈Dϕ

i f,D
ϕ
j f〉CM/2 + h̃ij〈Dϕ

i g,D
ϕ
j g〉CM/2

)
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where Dϕ
j = D̃j + 2iϕ′ẽajΣ̃0,a with D̃ the covariant derivatives for spinors on the

sphere and h̃ is the metric of the sphere.
The fact that

‖〈∂r(σnF ), ∂r(σnF )〉CM‖L1(Σ) ∼ ‖∂rF‖2
L2(Rn)

is due to Lemma 2.3.
We have

Dϕ
j = Dr

j + 2i(ϕ′ − 1)ẽajΣ̃0,a.

Thanks to the Cauchy-Schwarz inequality applied to the scalar product x, y 7→ hijxiyj
we get

(4.1)

√
1

ϕ2
h̃ij〈Dϕ

i ,D
ϕ
j f〉CM/2 .

r

ϕ

√
1

r2
h̃ij〈Dr

i ,Dr
jf〉CM/2 +

|ϕ′ − 1|
ϕ

√
〈f, f〉CM/2

and conversely√
1

r2
h̃ij〈Dr

i ,Dr
jf〉CM/2 .

ϕ

r

√
1

ϕ2
h̃ij〈Dϕ

i ,D
ϕ
j f〉CM/2 +

|ϕ′ − 1|
r

√
〈f, f〉CM/2

Because D and σn commute, we get

Dϕ
j (σnf) = σnDr

jf + σn2i(ϕ′ − 1)ẽajΣ̃0,a.

To ensure that ∥∥ 1

ϕ2
h̃ij〈Dϕ

i σnf,D
ϕ
j σnf〉CM/2

∥∥
L1(Σ)

it is thus sufficient to prove that ϕ
r
, r
ϕ

and ϕ′−1
ϕ

are bounded. But ϕ = r(1 +ϕ1) with

ϕ1 non negative, bounded, a O(r) in 0 and thus that ϕ′1 is bounded, hence

ϕ

r
= 1 + ϕ1,

r

ϕ
=

1

1 + ϕ1

,
ϕ′ − 1

ϕ
=

ϕ1

r(1 + ϕ1)
+

ϕ′1
1 + ϕ1

are bounded. �

Lemma 4.8. The multiplication by σn is a continuous operator from Lp(R,W s,q(Rn))

to σ
1−2/q
n Lp(R,W s,q(Σ)) for any p ∈ [1,∞], q ∈ (1,∞), s ∈ [−1, 1].

Proof. As in Lemma 2.6, we reduce our proof to the proof of, for all q ∈ (1,∞),

(1) the multiplication by σ
2/q
n is an isometry from Lq(Rn) to Lq(Σ),

(2) the multiplication by σ
2/q
n is continuous from W 1,q(Rn) to W 1,q(Σ),

(3) the multiplication by σ
−2/q
n is continuous from W 1,q(Σ) to W 1,q(Rn).



STRICHARTZ ON CURVED SPACE 39

(1) The proof of (1) is similar to what we have already done in the proof of Lemma
2.6.

(2) With the same notations as in the proof of Lemma 4.7, and keeping in mind
(2) in Lemma 2.6, it remains to prove (with a slight abuse of notation) that for all
f ∈ W 1,q(Rn),∥∥√ 1

ϕ2
h̃ij〈Dϕ

i (σ
2/q
n f),Dϕ

j (σ
2/q
n f)〉CM/2

∥∥
Lq(Σ)

. ‖f‖W 1,q(Rn).

But because of (1) and the fact that σ
2/q
n and Dϕ commute, it sufficient to prove that∥∥√ 1

ϕ2
h̃ij〈Dϕ

i f,D
ϕ
j f〉CM/2

∥∥
Lq(Rn)

. ‖f‖W 1,q(Rn).

We now use the inequality (4.1) and the fact that r
ϕ

and ϕ′−1
ϕ

are bounded to get the

result.
(3) Similar to (2). �

Therefore, combining Proposition 4.6 with Lemma 4.8 eventually yields the Proof
of Theorem 1.3.

Appendix A. Comments on admissible manifolds

It is natural to ask wether conditions (1.13) are fullfilled by other natural choices
of the function ϕ(r), as e.g. ϕ(r) = sinh(r) (which corresponds to hyperbolic spaces),
or ϕ(r) = r + r2 + · · ·+ rp with p > 2 (manifolds with polynomial growth). It turns
out that with both these choices conditions (1.13) are only satisfied for large r; more
precisely, the following result holds

Proposition A.1. Let (M, g) defined by M = Rt×Σ, with (Σ, σ) a warped product
manifold with metric given by (1.5), and let ϕ(r) = sinh(r) or ϕ(r) = r+r2 + · · ·+rp

with p ∈ N and p > 2. Then, condition (1.13) is not satisfied.

Proof. It is quite immediate to see that condition

4r2Vµ + 1 > 0⇔ 4r2µ2 ± 4r2µ cosh(r) + sinh(r)2 > 0,

is true for any µ if and only if (
ϕ′(r)

ϕ(r)

)2

<
1

r2
,

and this last condition is not satisfied by the choices ϕ(r) = sinh(r) or ϕ(r) =
r + r2 + · · ·+ rp. We omit the details. �
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Remark A.1. As a matter of fact, it might be possible to prove that with the choices
of ϕ(r) of Proposition A.1, condition (1.13) is actually satisfied for r larger than
a sufficiently large R = R(µ); as a consequence, it would be tempting to consider
manifolds that are flat inside some balls, and then present different asymptotic be-
haviors (like, for instance, asymptotically hyperbolic manifolds). These cases would
correspond to choosing a function ϕ(r) ∈ C∞(R+) that takes the form

(A.1) ϕ(r) =


r if r ≤ R,

ψ(r) if R ≤ r ≤ 2R,

sinh(r) if r > 2R,

(and analogous in the case of manifolds with polynomial growth). The existence of
such a function is quite standard; on the other hand, we are not able to show that
condition (1.13) is satisfied everywhere. In any case, the fact that the quantity R
will depend on µ makes the analysis in these cases not so relevant from a geometrical
point of view, and therefore we prefer to leave the study of these other geometries
to future investigations.

Appendix B. Comments on the construction of the Dirac operators

Before stating anything, let us precise that our aim here is to provide tools to do
the computations of Section 2. We do not pretend to provide precise geometrical
definitions. In particular, we assume that we have chosen a set of coordinates and
present different notions within this choice of coordinates. We sometimes simplify
definitions in a way that fits our context.

We recall that a Lorentzian manifold of dimension n+1 is a differentiable manifold
M equipped with a metric tensor g of signature (1, n). In the rest of this discussion,
we setM, g to be a Lorentzian manifold that admits an orientation and a causality,
that is ”a time arrow”. This manifold is said to have a spin structure if there exists
a matrix bundle e aµ (µ and a belong to N ∩ [0, n]) such that

e aµ ηabe
b
ν = gµν

and that is coherent with the orientation and causality. This matrix bundle fixes
a frame bundle for the tangent space of M. It relates this tangent space to the
Minkowski tangent space. It is called a vierbein (as it was originally used in dimension
1+3) or sometimes vielbein. Notice that this bundle is not uniquely defined : indeed,
if L b

a is a Lorentz transform, that is a linear map belonging to SO0(1, n) (the connex
component of the identity of SO(1, n)), then

f a
µ = L a

b e
b
µ
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satifies the same equation as e aµ and the coherence with orientation and causality is
due to the fact that Lorentz transforms preserve orientation and causality.

The spin connection is given by the formula

ω ab
µ = e aν Γνσµe

σb + e aν ∂µe
νb

where

Γνσµ =
1

2
gρν
[
∂σgρµ + ∂µgρσ − ∂ρgσµ

]
are the Christoffel symbols (or affine connection). Notice that Γνµσ = Γνσµ, and also

ω ab
µ = −ω ba

µ (long but straightforward computations).
One important property of the spin connection is that it satisfies the Leibniz rule

dea + ωab ∧ eb = 0

where d is the exterior derivative, ∧ is the exterior product and

ωab = ω a
µ bdx

µ, ea = e aµ dx
µ.

In terms of coordinates, this means

H a
µν −H a

νµ = 0

with

H a
µν = ∂µe

a
ν + ω ab

ν eµc.

This is called the Leibniz rule because ω is used to define (covariant) derivatives
and this property ensures that these derivatives satisfy the Leibniz rule. One can
compare with the requirement that the Christoffel symbols satisfy

∂µgνσ − gρσΓρνµ − gρνΓρσµ.

In the same way, one can compute ω using that it is skew-symetric in a and b and
that it satisfies the Leibniz rule.

To define the Dirac operator, let us recall that it models the free evolution of a pair
electron-positron. The behavior of this pair of particles is dictated by a (specific)
linear representation U of the Lorentz group SO0(1, n). Roughly speaking, U dictates
how the representation of a pair of electron/positron changes when the referential is
changed under the action of a Lorentz transform. More pragmatically, this means
that the Dirac operator should commute with U . The Dirac operator is given, in
analogy with the flat case by

D = iγµDµ

where γµ = eµaγ
a with γa the standard gamma matrices described in Section 2 and

Dµ is the “covariant” derivative for Dirac spinors. When letting a Lorentz transform
L act on D we change the vierbein e into f a

µ = Labe
b
µ . This change D into D′. For
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the Dirac equation to be invariant under the action of Lorentz transforms, we thus
require

D′U(L) = U(L)D.
This condition can be absorbed into the covariant derivative and becomes

D′µU(L) = U(L)Dµ.

This is where the spin connection intervenes. For Dµ to be a derivative satisfying
the above condition one sets

Dµ = ∂µ + ω ab
µ Σab

where the Σab are the generators of U . In our case, we have

Σab = −1

8
[γa, γb].

This is a generic way to define covariant derivatives for spin particles and this con-
cludes our heuristic about the Dirac operator.
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