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Brain-computer interfaces (BCIs) can be separated into two main types: active and passive BCIs (Clerc et 

al. 2016). A BCI can be qualified of passive when the system uses signals involuntarily generated by the 

user. More specifically, this type of BCI is often used with the aim to assess the mental workload of users 

performing various task with different levels of mental demand, especially with electroencephalography 

(EEG) (Wang et al. 2015, Appriou et al. 2018, Shalchy et al. 2020). In most cases those systems are built 

with a classifier that classifies brain signals into different categories. This relies on having collected labelled 

data beforehand. However, those systems are often developed in laboratory settings, where both the train 

and test set have known labels. The “Grand Challenge: Passive BCI Hackathon” organised for the 

Neuroergonomics 2021 conference enables to challenge researchers with a real-life scenario of a passive 

BCI: classifying data from unseen sessions, with labels concealed for them, preventing any kind of fine 

tuning on the test set. The dataset provided for this challenge (Hinss et al. 2021) was composed of EEG 

recordings of 15 participants performing in 3 distinct sessions the Multi-Attribute Task Battery-II (MATB-

II) developed by the NASA. Each session is decomposed in blocks of different difficulties: easy, medium 

and difficult. The data provided consists in epochs of 2 seconds (with a sampling frequency of 250 Hz) from 

those blocks for a total 447 epochs for each session and each participant. Difficulty labels were provided 

only for the 2 first sessions. 

EEG signals measured on scalp can be represented as a linear combination of signals produced by sources 

situated in different cortical regions. Depending on function and position of the sources, signals are 

characterized by different temporal and spatial patterns. Assuming that the head can be modelled by a 

sphere, spatial patterns can be represented as a linear combination of spherical harmonics. In order to 

perform the classification, we propose a deep learning model based on a convolutional neural network 

(CNN) with rank-1 constraint (Dupré la Tour et al. 2018, Kim et al. 2018) with spherical spatial patterns, 

which significantly reduces number of trainable parameters. We denote input EEG signals as 

where N is the number of sensors (number of sampling points over the sphere), and T is the number of 

sampling points over time. Firstly, spatial signals are expressed in terms of spherical harmonic (SH) basis 

for each time point as , where L is the number of SH basis elements and 

 is the matrix containing inverted SH basis. This step is performed in order to reduce inter-

subject and inter-session variability due to differences in electrode positions. In addition, under the 

assumption that EEG signals do not contain very high spatial frequency components, this step allows us to 

reduce the dimensionality of input data from N × T to 16 × T. Further, we assumed that relevant frequency 

components are below 20 Hz, which requires sampling rate of at least 40 Hz, so the signals are 

downsampled by factor 6 over time, denoted as . The architecture of the model is illustrated in Figure 

1. It is composed of 3 convolutional layers, each followed by a max-pooling layer and ReLU. In the first one, 

convolutions are performed with rank-1 kernels which are outer products of spatial and temporal weights, 

where spatial weights  are represented in terms of SH coefficients and temporal weights  in 



terms of discrete cosine coefficients, which are transformed to signal domain as , where  

contains discrete cosine basis. The number of kernels is 5, each containing 16 trainable weights for both 

spatial and temporal weights and 5 bias terms (165 trainable parameters). In the two following layers, 

convolutions are performed with standard and shorter convolutional filters, 3 kernels of size 5 × 3 and 3 

kernels of size 3 × 3 respectively, and 3 bias terms each (48 + 30 = 78 trainable parameters). The 

convolutional layers are followed by 3 fully connected layers with ReLu activations for the 2 first and 

softmax for the last one. The sizes of fully connected layers are 15 × 4, 4 × 4 and 4 × 3 respectively, with 4, 

4 and 3 bias terms (64 + 20 + 15 = 99 trainable parameters). Total number of trainable parameters is 342. 

The model uses a cross-entropy loss and Adam optimiser. The learning rate was set to 0.001 and the 

training was stopped after 25 epochs to avoid overfitting. 

 

Figure 1. Rank 1 convolutional neural network architecture for passive BCI signal classification 

For validation, the 2 labelled sessions for each of the 15 participants were assigned to the train or 

validation set randomly (the third session was unlabelled and reserved for test set). The model was then 

trained and validated based on this split for all the participants at once, in a generalised manner. This 

approach was chosen because the dataset only contained 2 different labelled sessions per participant, 

making it hard for the model to generalise with a personalised approach. The training graphs can be seen 

in Figure 2. The overall accuracy on the validation set averaged over 3 experiments with random 

train/validation split was 46.46 %. The performance is consistently higher than the chance level of 33.33 % 

as seen in Figure 1 with the confidence interval, however this remains far from being robust, highlighting 

the difficulty of classification of unseen sessions. Finally, the model was re-trained on the 2 labelled 

sessions in order to produce the final results consisting of a prediction for each epoch of the unlabelled 

test set of each participant. The proposed method lets room for improvement, with future work possibly 

focused on fine tuning the model for each participant individually after the generalised training. 



 

Figure 2. Training graphs of the CNN rank-1 model (loss on the left, accuracy on the right), using one labelled session for the train 
set and the other labelled session for the validation set (assigned randomly for each participant). The bands represent the 95 % 
confidence intervals on 3 repetitions of the procedure with random train/validation splits. 
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Non-Cognitive Predictors of Student Success:
A Predictive Validity Comparison Between Domestic and International Students

BACKGROUND
Brain signals spontaneously generated by subjects while 
performing various tasks can be analysed by a passive BCI 
system. More specifically, this type of BCI is often used with the aim 
to assess the mental workload of users performing tasks with 
different levels of mental demand, especially with 
electroencephalography (EEG) (Wang et al. 2015, Appriou et al. 
2018, Shalchy et al. 2020). In this work we propose a convolutional 
neural network (CNN) model for classifying mental workload levels 
from the EEG signals.

METHODS
Data
Three sessions of EEG recordings of 15 participants performing the 
Multi-Attribute Task Battery-II (MATB-II). Each session is 
decomposed in blocks of different difficulties: easy, medium and 
difficult. The blocks are split into epochs of 2 seconds (250 Hz) 
giving 447 epochs for each session and participant. Difficulty labels 
were provided only for the 2 first sessions.

Model
The model is based on a CNN with rank-1 constraint (Dupré La 
Tour et al. 2018, Kim et al. 2018) and spherical spatial patterns. We 
denote input EEG signals XNxT, where N and T are the numbers of 
spatial and temporal sampling points. Signals are expressed in 
terms of spherical harmonics as Ŝ=YinvX over spatial axis, where 
Yinv contains inverted SH basis. Signals Ŝ are downsampled to Ŝds 
by a factor of 6 over time axis. The detailed architecture of the 
proposed model is given in Figure 1. The model is composed of 3 
convolutional layers including one with rank-1 constraint and 3 fully 
connected layers, resulting in a total number of trainable 
parameters of 342.

Procedure
For validation, the 2 labelled sessions for each of the 15 
participants were assigned to the train or validation set randomly. 
The model was then trained and validated based on this split for all 
the participants at once, in a generalised manner. This approach 
was chosen because the dataset contains only 2 different labelled 
sessions per participant, making it hard for the model to generalise 
to an unseen session with a personalised approach.
Finally, the model was re-trained on the 2 labelled sessions in order 
to produce the final results consisting of a prediction for each epoch 
of the unlabelled test set of each participant.
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Figure 3. Training graphs of the CNN rank-1 model (loss on the left, accuracy on the right), using one labelled session for the 
train set and the other labelled session for the validation set (assigned randomly for each participant). The bands represent the 
95 % confidence intervals on 3 repetitions of the procedure with random train/validation splits.

Figure 1. Rank-1 CNN for passive BCI EEG signal classification. 

Figure 2. Overall confusion matrix of the CNN 
rank-1 model on  3 repetitions of the procedure 
with random train/validation splits 
(0: easy, 1: medium, 2: difficult)

Model architecture and hyperparameters
●convolutional layer: 5 rank-1 kernels, 16 spherical harmonics spatial 

weights, 16 discrete cosine temporal weights (ŵt
i) transformed to 

signal domain as wt
i=DTŵt

i (D containing the discrete cosine basis), 
bias of 5, ReLu activation, max-pooling

●convolutional layer: 3 standard kernels of size 5x3, bias of 3, ReLu 
activation

●convolutional layer: 3 standard kernels of size 3x3, bias of 3, ReLu 
activation

●2 fully connected layer of sizes 15x4 (bias 4), 4x4 (bias 4), ReLu 
activation

●last fully connected layer of size 4x3 (bias 3), softmax activation

Cross-entropy loss and Adam optimiser (learning rate 0.001).

Training performed over 25 epochs.

RESULTS
The accuracy on the validation set averaged over 3 experiments 
with random train/validation split was 46.46%. 
The performance is consistently higher than the chance level of 
33.33% as seen in Figure 3, however this remains far from being 
robust, highlighting the difficulty of classification of unseen 
sessions. The confusion matrix presented Figure 2 also highlight 
the fact that the accuracy is very different from class to class, with a 
tendency towards classifying signals into the easy task difficulty 
category.
The accuracy on the test set with hidden labels was 48.2%. 

DISCUSSION
It appears that electrode orientations are  not consistent, and some 
are either misplaced on the scalp or mislocated.

We fixed the axis inversions, however some inconsistencies 
remain, and further investigation regarding the registration of 
electrode position needs to be performed.

Regardless, we noticed that training the same model again using 
standard electrode positions makes it more stable when 
reproducing the experiment 3 times with random train/validation 
splits, as can be seen on the loss and accuracy graphs below. With 
this electrode positioning, the model averages a validation 
accuracy of 50.6% (as opposed to 46.46 % with the provided 
positions).

FUTURE WORK
Future work could focus on hyperparameter tuning with more 
exhaustive techniques such as grid search and per-subject tuning 
after generalised training.
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