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Target calculations in geophysical fluid dynamics

Surface water breaking waves : air/water coastal flow

Mythic Surf spot in Atlantic ocean at Belhara (Pays Basque, France)
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Target calculations in geophysical fluid dynamics

Kelvin-Helmholtz instability :
one stratified fluid-phase or two-phase (liquid/gas) gravity
waves

Kelvin-Helmholtz clouds in atmosphere

Introduction Objectives 3



How to construct an efficient numerical method ?

Essential features for numerical solutions of multiphase flows :

Variable density Navier-Stokes incompressible or low Mach number
flows
Two-phase flows with large density/viscosity ratios : ρw/ρa ≈ 103

Moving interface Σ (between fluid immiscible phases) with large
shape deformations
Surface tension with possibly large capillarity coefficient on Σ

Coriolis rotation + suitable turbulence modelling
Multi-physics coupling : temperature, salinity, Marangoni effect...

Reference books :

A. Prosperetti and G. Tryggvason (2007). Computational methods for
multiphase flow
G. Tryggvason, R. Scardovelli, and S. Zaleski (2011). Direct numerical
simulations of Gas-Liquid multiphase flows
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How to construct an efficient numerical method ?
Main ingredients of a numerical solver in a bounded domain Ω with
Γ := ∂Ω = ΓD ∪ ΓN (ΓD ∩ ΓN = ∅) :

1 Efficient velocity-pressure coupling with divergence-free constraint ?
for large density/viscosity ratios
for Dirichlet boundary condition on velocity : v = vD on ΓD,
e.g. vD = 0
for Neumann open boundary condition : given stress vector
σ(v, p)·n = g on ΓN , e.g. g = −po n

2 Accurate sharp (6= diffuse) interface capturing or front tracking methods ?
Volume of Fluid (VOF) methods : Hirt & Nichols (1981) –
e.g. VOF-PLIC of Youngs (1982), Sarthou et al. (2008)
Level-set methods (LSM) :
Thomasset & Dervieux (1979), Osher & Sethian (1988), Sethian
(1999), Osher & Fedkiw (2002)
Immersed Interface Methods :
Leveque & Li (1994), Li & Ito (2006), PhA. & Li (2017), Sarthou et
al. (2020)
Arbitrary Lagrangian-Eulerian (ALE) methods
Lagrangian front tracking with advected interface markers :
Hua & Tryggvason (2013) – Angot et al. (2016)
Phase-field (diffuse interface) methods, e.g. with Cahn-Hilliard
models Introduction Main features and ingredients 5
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Objectives : efficient velocity-pressure coupling ?

Focus on the constraint of free velocity divergence div v = 0

Fully-coupled solver : ill-conditioned matrix of indefinite type
⇒ Need efficient local preconditioners that are specific to the space
discretization elements (FV, FE, DG,...)

How to efficiently deal with the free-divergence constraint with
splitting methods (prediction-correction steps) ?

How to overcome most drawbacks of
Uzawa-augmented Lagrangian iterative methods
Hestenes (1969) – Powell (1969) – Fortin & Glowinski (1983) ...
Khadra et al., Int. J. Numer. Meth. Fluids (2000) (for MAC mesh)
scalar incremental projection or pressure correction methods
Chorin (1968) – Temam (1969) – Goda (1979) – Van Kan (1986) ...
Review : Guermond, Minev, Shen, CMAME (2006)

Some improvements with the scalar penalty-projection method
Open Neumann stress B.C. : Jobelin et al., J. Comput. Phys. (2006)
– PhA. et al., Int. J. Finite Volumes (2009)
Variable-density flow : Jobelin et al., Comput. Mech. (2008)

Velocity-pressure coupling with div v = 0 State of the art 7



The orthogonal H.H. decomposition of L2(Ω)d

Basics of pressure correction methods, e.g. Temam’s book 1986
in a bounded open set Ω of Rd

L2(Ω)d = H⊕G with
H =

{
u ∈ L2(Ω)d; divu = 0, u·n|Γ = 0 on Γ

}
G = H⊥ =

{
u ∈ L2(Ω)d; u = ∇φ, φ ∈ H1(Ω)/R

}
Hence, for all vector field v ∈ L2(Ω)d, we have the unique
decomposition :

v = vψ + vφ with vφ = ∇φ ∈ G
and vψ = rotψ ∈ H, divψ = 0 if Ω simply connected

Standard solution for a scalar potential φ if v ∈ Hdiv(Ω) :
Poisson problem with Neumann B.C.

∆φ = div v in Ω

∇φ·n|Γ = v·n on Γ, since
∫

Ω

div v dx = 〈v·n, 1〉−1/2,Γ

Then : vφ = ∇φ and vψ = v −∇φ
Velocity-pressure coupling with div v = 0 Scalar incremental projection (SIP) methods 8



The Navier-Stokes problem with given density

with Dirichlet or open (Neumann) B.C. and ρ := ρ(x, t) given

Ω ⊂ Rd (d ≤ 3), bounded and connected Lipschitz domain
with the Lipschitz continuous boundary Γ = ∂Ω = ΓD ∪ ΓN and
ΓD ∩ ΓN = ∅



ρ (∂tv + (v· ∇)v)− µ∆v +∇p = f in Ω× (0, T )

div v = 0 in Ω× (0, T )

v = vD on ΓD × (0, T )

−pn+ µ∇v·n = g on ΓN × (0, T )

v(t = 0) = v0 in Ω

Neumann B.C., i.e. pseudo-stress or full stress vector given :

σ(v, p)·n := −pn+ 2µd(v)·n = g on ΓN × (0, T )

where d(v) :=
1

2

(
∇v + (∇v)T

)
symmetric part of velocity gradient

Velocity-pressure coupling with div v = 0 Scalar incremental projection (SIP) methods 9



The scalar incremental projection (SIP) method

with Dirichlet or open (Neumann) B.C. and ρ := ρ(x, t) given
e.g. first-order time accuracy (Euler), extension to 2nd-order...
Originally introduced for ρ = cst and v = 0 on Γ and ad-hoc extended...

(1)


ρn+1

(
ṽn+1 − vn

δt
+ (vn· ∇)ṽn+1

)
− µ∆ṽn+1 +∇pn = fn+1

ṽn+1
|ΓD

= vD

(−pn n+ µ∇ṽn+1·n)|ΓN
= g

(2)

ρ
n+1 v

n+1 − ṽn+1

δt
+∇φn+1 = 0, with φn+1 = pn+1 − pn

div vn+1 = 0

=⇒ (3)


div

(
δt

ρn+1
∇φn+1

)
= div ṽn+1

∇φn+1·n|ΓD
= 0

φn+1
|ΓN

= 0

Velocity-pressure coupling with div v = 0 Scalar incremental projection (SIP) methods 10



Motivation : overcome most drawbacks of SIP

Main drawbacks of any projection method including a scalar
pressure correction step with a Poisson-like equation

spurious pressure boundary layer in space with velocity Dirichlet
B.C. due to the artificial B.C. introduced on pressure inherently !
non optimal pressure error estimate for 2nd-order time schemes :
splitting errors : velocity O(δt2) – pressure O(δt

3
2 )

poor accuracy for open (or outflow) boundary conditions :
splitting errors : velocity O(δt) – pressure O(δt

1
2 ) (standard SIP)

or O(δt
3
2 ) – O(δt) (rotational version)

poor convergence and locking effect for large density, viscosity,
permeability ratios...

Conjecture : mainly due to the inherent scalar formulation of the method
and to the spatial derivative of mass density
⇒ It degrades the original vector formulation and produces a loss of
consistency...
⇒ Design a fully vector-consistent splitting method for the velocity

Velocity-pressure coupling with div v = 0 Scalar incremental projection (SIP) methods 11



Objective : efficient velocity-pressure coupling ?

Focus on the constraint of free velocity divergence div v = 0

⇒ Key idea : introduce a splitting penalty method for the velocity...
both prediction and correction steps now solved for the velocity
vector
⇒ Fully vector consistent splitting method with velocity correction

⇒ New point of view :
Instead of determining the pressure field p (the Lagrange multiplier)
Calculate an accurate and curl-free approximation of ∇p
(the force inducing motion)

⇒ Primary unknowns are now (v, ∇p) instead of (v, p)

⇒ Counterpart : approximate divergence-free projection in the
semi-discrete setting but the penalty parameter ε can be taken as
small as desired.

Velocity-pressure coupling with div v = 0 New approach : Vector Penalty-Projection (VPP) 12
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A new fast decomposition of L2(Ω)d : DHHD I
PhA., Caltagirone and Fabrie, Appl. Math. Lett. (2013)

Key idea : design a suitable approximation by penalization of the
curl-free component vφ = ∇φ such that :

div vφ = div v and rot vφ = 0 in Ω with vφ·n|Γ = v·n on Γ

⇒ The so-called vector penalty-projection elliptic problem for all ε > 0 :

(VPPn)

ε v
ε
φ −∇

(
div vεφ

)
= −∇ (div v) in Ω

vεφ·n|Γ = v·n on Γ

⇒


vεφ =

1

ε
∇
(
div (vεφ − v)

)
:= ∇φε, rot vεφ = 0

φε =
1

ε
div (vεφ − v)

N.B. Extra regularity : (vφ − vεφ) ∈ H0,div(Ω) ∩Hrot(Ω) ↪→ H1(Ω)
⇒ Very well-conditioned whatever the mesh step h for ε small enough :
effective conditioning independent of both ε and h due to adapted
right-hand side !
Theoretical foundations of VPPε methods Fast discrete Helmholtz-Hodge decompositions 14



A new fast decomposition of L2(Ω)d : DHHD I

Weak form of (VPPn) with the adapted right-hand side
For any v ∈ Hdiv(Ω), using a standard Green’s formula (integration by
part), vεφ ∈ Hdiv(Ω) satisfies :

ε

∫
Ω

vεφ·ϕdx+

∫
Ω

(div vεφ) (divϕ) dx

−
〈
div (vεφ − v), ϕ·n

〉
−1/2,Γ

=

∫
Ω

(div v) (divϕ) dx,

for all ϕ ∈ Hdiv(Ω)

Notice a posteriori that (VPPn) implies that : div (vεφ − v) ∈ H1(Ω)

Then, the boundary term vanishes with :
1 Essential B.C. : ϕ·n = 0 on Γ, then ϕ ∈ H0,div(Ω)
2 Natural B.C. : div (vεφ − v) = 0 on Γ, i.e. "do nothing" for

Neumann stress B.C.
⇒ Apply Lax-Milgram theorem for the solvability analysis in Hdiv(Ω)
⇒ Then (VPPn) supplies the extra regularity :
vεφ ∈ H0,div(Ω) ∩Hrot(Ω) ↪→ H1(Ω)

Theoretical foundations of VPPε methods Fast discrete Helmholtz-Hodge decompositions 15



Optimal accuracy of fast DHHD methods
PhA., Caltagirone and Fabrie, Appl. Math. Lett. (2013)

Theorem (Analysis of the vector penalty-projection (VPPn).)

For any v ∈ Hdiv(Ω) and all ε > 0, there exists a unique solution vεφ in
Hdiv(Ω) to the vector penalty-projection (VPPn).

Moreover, vεφ is curl-free : rot vεφ = 0, vεφ = ∇φε ∈ G and
div (vεφ − v) ∈ H1(Ω) ∩ L2

0(Ω) for all ε > 0. Then, we can choose
φε ∈ H1(Ω) ∩ L2

0(Ω) such that div (vεφ − v) = ε φε.

Besides, we have the following error estimates for all ε > 0 :

‖vφ − vεφ‖1 + ‖φ− φε‖2 + ‖div (v − vεφ)‖1 ≤ c(Ω) ‖v‖0 ε

N.B. Extra regularity : (vφ − vεφ) ∈ H0,div(Ω) ∩Hrot(Ω) ↪→ H1(Ω)

⇒ Approximate divergence-free projection
⇒ Optimal accuracy of (VPPn) as O(ε) with ε as small as desired up
to machine precision

Typically : ε = 10−14 with double precision

Theoretical foundations of VPPε methods Fast discrete Helmholtz-Hodge decompositions 16



Conservation properties on edge-based generalized
MAC-type unstructured meshes

Discrete exterior calculus identities on a random Delaunay mesh for any typical
analytic scalar field φ or vector field ψ.
Left : rot h(∇hφ) = ±1.7 10−15 in Ω
Right : div h(rot hψ) = ±1.4 10−14 in Ω.

Theoretical foundations of VPPε methods Fast discrete Helmholtz-Hodge decompositions 17



Solution cost of fast DHHD : (VPP) or (RPP)

Convergence history of normalized residual of ILU(0)-BiCGstab2 solver for (RPP) or
(VPP) problems with ε = 10−14 for different MAC mesh sizes 32× 32 (red),
128× 128 (green), 512× 512 (blue) and 2048× 2048 (black)
Left : Rotational Penalty-Projection (RPP)
Right : Vector Penalty-Projection (VPP)
⇒ Asymptotic optimal solver convergence within 2 or 3 iterations whatever h with ε
as small as desired up to machine precision !
Theoretical foundations of VPPε methods Fast discrete Helmholtz-Hodge decompositions 18



Solution cost of (VPP) step by PCG solvers

PhA. and Cheaytou, Commun. in Comput. Phys. (2019)
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Convergence history of the normalized residual (by initial residual) of PCG solver for
(VPP) problem at T = 2δt with δt = 1 and ε = 10−10 for different mesh sizes
Left : Standard Conjugate Gradient (no preconditioner)
Right : Incomplete Choleski Preconditioned CG : IC(0)-PCG

⇒ Asymptotic optimal solver convergence within 4 iterations of IC(0)-PCG when ε is
small enough whatever the mesh size h
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A splitting method for saddle-point problems

Recall : convergence rate of conjugate gradient method
Solve with I = Id matrix of order n,
B = −Divh : m× n matrix with rank(B) = m < n,
BT = Gradh :

(εI +BTB)v̂ε = −BTBṽ
Aε := εI +BTB system matrix

We have :

κ := cond2(Aε) =
ε+ λmax(BTB)

ε
= O

(
1

ε

)
Number of iterations of preconditioned conjugate gradient solver :

Niter ≤ O
(√
κ
)

bound for the worst case...

The splitting penalty method :
the system matrix Aε is ill-conditioned for ε� 1

but the system itself can be extremely well-conditioned due to the
adapted right-hand side !

Theoretical foundations of VPPε methods A splitting penalty method for saddle-point 20



P.D.E. with adapted r.h.s. : a simple example

The simplified invertible case (continuous setting) :
Let Ω ⊂ Rd be a bounded open domain, u ∈ H1

0(Ω) given and ε > 0

Let us consider the problem (toy model) : find uε ∈ H1
0(Ω) such that :{

ε uε −∆uε = −∆u, in Ω

uε = 0, on Γ := ∂Ω

We have the weak form, for all v ∈ H1
0(Ω) :

ε

∫
Ω

(uε − u) v dx+

∫
Ω

∇(uε − u) · ∇v dx = −ε
∫

Ω

u v dx

and thus taking v = uε − u, we easily get with Poincaré inequality :

‖uε − u‖1,Ω ≤ c(Ω) ‖∇(uε − u)‖0,Ω ≤ C(Ω) ‖u‖0,Ω ε.

N.B. Here −∆ with Dirichlet B.C. is an invertible operator
⇒ Hence we can take ε = 0 and the solution is then trivial u0 = u !

Theoretical foundations of VPPε methods A splitting penalty method for saddle-point 21



P.D.E. with adapted r.h.s. : a simple example

The simplified invertible case (discrete setting) :
⇒ asymptotic expansion of the solution uε
Let A := −∆h be the n× n symmetric positive definite matrix of the
discrete Laplacian operator with homogeneous Dirichlet B.C.

It amounts to solve the linear system with an adapted r.h.s. :

(ε I +A)uε = Au.

We have :
Aε := (ε I +A) = A

(
I + εA−1

)
κ := cond2(Aε) =

ε+ λmax(A)

ε+ λmin(A)
−→ε→0 cond2(A) = O

(
1

h2

)
If ε < 1/‖A−1‖, we get the asymptotic expansion with a Neumann
geometric serie :(
I + εA−1

)−1
=

∞∑
k=0

(−1)kεkA−k

⇒ uε =
(
I + εA−1

)−1
u = u− εA−1u+ ε2A−2u− · · ·

Theoretical foundations of VPPε methods A splitting penalty method for saddle-point 22



P.D.E. with adapted r.h.s. : a simple example

The simplified invertible case (discrete setting) :
⇒ asymptotic expansion of the solution uε

Thus, with an adapted r.h.s. and ε� 1 :

(ε I +A)uε = Au ⇒ uε = u+O(ε)

⇒ zero-order term independent on A and the mesh step h !

But recall with a non adapted r.h.s. (usual case) and ε� 1 :

(ε I +A)uε = f ⇒ uε = A−1 u+O(ε)

Theoretical foundations of VPPε methods A splitting penalty method for saddle-point 23



The nice and surprising result for saddle-point

Non-invertible case with A := BTB (B := −div h) : sketch of
proof for a splitted saddle-point system with an adapted r.h.s.

PhA., Caltagirone and Fabrie, Appl. Math. Lett. 1 (2012)

(ε I +BTB) v̂ε = −BTB ṽ
Aε := ε I +BTB system matrix

A key formula : Woodbury’s formula (1949), a generalization of
Sherman-Morrison’s formula :(

I +
1

ε
BTB

)−1

= I −BT
(
ε I +BBT

)−1
B, ε > 0

Theorem : for any m× n matrix B with rank(BT ) = rank(B) = m
⇒ ker(BT ) = {0}
⇒ the Schur complement S := BBT (Lagrange multiplier operator)
is non singular
and if ε < 1/‖S−1‖, we can do the asymptotic expansion with Neumann
geometric serie and after either SVD or QR factorization, we get :

v̂ε = −I0 ṽ +O(ε), I0 = diagonal matrix with only 1 or 0 entries
Theoretical foundations of VPPε methods A splitting penalty method for saddle-point 24
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First-order vector penalty-projection method
Fast and fully vector-consistent VPPε splitting method :
PhA., C. and F., FVCA6 (2011) – Appl. Math. Lett. 2 (2012)
PhA. & C., CiCP (2019) : 2nd-order with BDF2 for open B.C.

(1)


ṽn+1 − ṽn

δt
+ (vn·∇)ṽn+1 − 1

Re
∆ṽn+1 +∇pn = fn+1 in Ω

ṽn+1 = vn+1
D on ΓD

σ(ṽn+1, pn)·n := −pn n+ 2µd(ṽn+1)·n = gn+1 on ΓN

(2)



ε
v̂n+1 − v̂n

δt
−∇

(
div v̂n+1

)
= ∇

(
div ṽn+1

)
in Ω

v̂n+1·n = 0 or enforce v̂n+1 = 0 on ΓD

v̂n+1·n = 0 on ΓN

or div v̂n+1 = −div ṽn+1 i.e. "do nothing" : (div vn+1)|ΓN
= 0 on ΓN

vn+1 = ṽn+1 + v̂n+1 and pn+1 = pn − 1

ε
div vn+1 in Ω

Pressure gradient correction to avoid round-off errors for very small ε

∇pn+1 = ∇pn − v̂n+1 − v̂n

δt
in Ω

The family of VPPε methods Approximate divergence-free splitting methods 26



The fast vector penalty-projection method

The artificial compressibility method revisited within two steps

ṽn+1 − ṽn

δt
+ (vn· ∇)ṽn+1 −

1

Re
∆ṽn+1 +∇pn = fn+1

v̂n+1 − v̂n

δt
−

1

ε
∇
(
div v̂n+1

)
=

1

ε
∇
(
div ṽn+1

)
vn+1 = ṽn+1 + v̂n+1

∇(pn+1 − pn) = −
v̂n+1 − v̂n

δt
= −

1

ε
∇
(
div vn+1

)
VPPε ⇔ a new two-step artificial compressibility method

vn+1 − vn

δt
+ (vn· ∇)ṽn+1 −

1

Re
∆ṽn+1 +∇pn+1 = fn+1

(ε δt)
pn+1 − pn

δt
+ div vn+1 = 0

⇒ Better convergence than the one-step artificial compressibility method
of Chorin-Temam, see [PhA. and Fabrie, Disc. Cont. Dyn. Syst. (2012)]

The family of VPPε methods The artificial compressibility method revisited 27



Unconditional stability of the VPPε method

PhA., Caltagirone and Fabrie, Hal manuscript (2015)

Theorem (Global solvability and stability of the VPPε method.)

For any f ∈ L2(0, T ;H−1(Ω)d), v0 ∈ L2(Ω)d and p0 ∈ L2
0(Ω) given, the

VPPε method is well-posed for all 0 < δt ≤ T and ε > 0, i.e. for all n ∈ N
such that (n+ 1) δt ≤ T , there exists a unique solution
(ṽn+1, vn+1, pn+1) ∈ H1

0(Ω)d ×H1
n(Ω)d × L2

0(Ω) to the VPPε scheme
such that :

vn+1 − vn

δt
+ (vn·∇)ṽn+1 − 1

Re
∆ṽn+1 +∇pn+1 = fn+1 in Ω

(ε δt)
pn+1 − pn

δt
+ div vn+1 = 0 in Ω

which is the discrete problem effectively solved by the splitting scheme.
Moreover, we have unconditional stability of the VPPε method for both velocity
and pressure in the natural norms l∞(0, T ;L2(Ω)d) ∩ l2(0, T ;H1(Ω)d) and
l2(0, T ;L2(Ω)), respectively.

⇒ with compactness arguments (Aubin-Lions-Simon), we have :
Convergence to N.S. weak solutions in 3-D when ε = δt tends to 0

The family of VPPε methods Convergence analysis of VPPε for Navier-Stokes 28



Optimal error estimates of the VPPε method

Second-order time accuracy with BDF2 scheme and open B.C. :
See [PhA. and Cheaytou, SINUM 2019 (submitted)]

Theorem (Error estimates of VPPε for Stokes with open B.C.)

With suitable sufficient regularity of the continuous solution (v, p) and
well-prepared initial conditions, we have for all 0 < δt ≤ max(1, T ) and
0 ≤ ε ≤ O(δt) : for all n ∈ N such that (n+ 1)δt ≤ T ,

(i) ‖en+1‖20 + εδt ‖πn+1‖20 +
n∑

k=0

δt

Re
‖∇ek+1‖20 ≤ C

(
δt4 + ε δt

)
(ii)

n∑
k=0

δt ‖πk+1 − 1

|Ω|

∫
Ω

πk+1 dx‖20 ≤ C
(
δt4 + ε δt

)
(iii)

n∑
k=0

δt ‖div vk+1‖20 =

n∑
k=0

δt ‖div ek+1‖20 ≤ C
(
δt3 + ε

)
ε δt2.

⇒ Better splitting errors for Dirichlet B.C. in O(ε δt3 + ε2 δt3/2)
instead of O(ε δt), see [PhA. and Cheaytou, Math. Comp. (2018)]
⇒ Error bounds confirmed by numerical results
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Numerical results with MAC Cartesian mesh
Green-Taylor vortices : Navier-Stokes with Dirichlet B.C.
Divergence (discrete l∞(0, T ;L2(Ω)) norm) versus penalty ε
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Divergence at Re=100, t=10 - h=1/512, |res|2 < 10−10

⇒ ||div vn||L2 = O(ε δt) = O(χT ) ; velocity & pressure errors as O(δt2)
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Numerical results with MAC Cartesian mesh
Stokes flow with homogeneous Neumann stress B.C.

10
−3

10
−2

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

time step

V
e

lo
c
it
y
 e

rr
o

r−
L

2
−

n
o

rm

 

 

r=0

slope 2

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

time step

G
ra

d
ie

n
t 

P
re

s
s
u

re
 e

rr
o

r 
L

2
−

n
o

rm

 

 

r=0

slope 1.8

slope 2

BDF2-VPPε with OBC2 : time convergence rates at T=2, mesh size h = 1/128,
ε = 10−10 and r = 0
Left : velocity error L2-norm
Right : pressure gradient error L2-norm
⇒ Optimal second-order accuracy : both velocity & pressure gradient
errors as O(δt2)
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A model for incompressible multiphase
Navier-Stokes problems with capillary effects


ρ(ϕ) (∂t v + (v· ∇)v)− 2 div (µd(v)) +∇p = f in Ω× (0, T )

div v = 0 in Ω× (0, T )

∂t ϕ+ v· ∇ϕ = 0 in Ω× (0, T )

or ∂t ρ+ v· ∇ρ = 0 in Ω× (0, T )

with :

the strain rate tensor : d(v) :=
1

2

(
∇v + (∇v)T

)
f includes gravity force : ρ g and surface tension on Σ : σ κnΣ δΣ

⇔ stress jump embedded conditions : [[σ(v, p)·n]]Σ = σ κnΣ

phase fraction (color) function : ϕ ∈ [0, 1] – at interface Σ :
ϕ = 0.5 with VOF-PLIC method or use a level-set function ϕ = 0

possibly coupled with the advection-diffusion equation for
temperature T or salinity S
given laws : ρ = ρ(T , S) and µ = µ(T , S) for each phase
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A model for incompressible multiphase
Navier-Stokes problems with capillary effects

The fast VPPε method, first-order linearly implicit scheme :

PhA., Caltagirone and Fabrie, 6th F.V.C.A. Conf. (2011) –
Appl. Math. Lett. 2 (2012)

ρn

(
ṽn+1 − vn

δt
+ (vn· ∇)ṽn+1

)
− 2 div

(
µn d(ṽn+1)

)
+∇pn = fn

ε

δt
ρn v̂n+1 −∇

(
div v̂n+1

)
= ∇

(
div ṽn+1

)
vn+1 = ṽn+1 + v̂n+1

φn+1 := pn+1 − pn from ∇φn+1 := ∇(pn+1 − pn) = −
ρn

δt
v̂n+1

VOF-PLIC interface capturing :
ϕn+1 − ϕn

δt
+ vn+1· ∇ϕn = 0

or by Lagrangian front tracking :
ρn+1 − ρn

δt
+ vn+1· ∇ρn = 0
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Kinematic version K-VPPε for edge-based MAC

PhA., Caltagirone and Fabrie, C.R. Math. Acad. Sci. (2016)

ρn

(
ṽn+1 − vn

δt
+ (vn·∇)ṽn+1

)
− div

(
2µ(ρn) d(ṽn+1)

)
+∇pn = fn in Ω

ṽ
n+1
|Γ = 0 on Γ

(b) Divergence-free velocity penalty-projection (VPP) : purely kinematic step

ε v̂n+1 −∇
(
div v̂n+1

)
= ∇

(
div ṽn+1

)
in Ω

v̂
n+1
|Γ = 0 on Γ

(c) Velocity correction : vn+1 = ṽn+1 + v̂n+1 in Ω

(d) Find the inertial density ρn such that :∇(ρn φn+1) = ρn v̂n+1 in Ω

with φn+1 reconstructed from its gradient v̂n+1 := ∇φn+1

(e) Explicit locally consistent pressure gradient correction : dynamic step

∇(pn+1 − pn) = −
ρn

δt
v̂n+1 = −

1

δt
∇(ρn φn+1) in Ω

(f) Advection by Lagrangian front-tracking of density :

ρn+1 − ρn

δt
+ vn+1·∇ρn = 0 in Ω
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Edge-based generalized MAC unstructured mesh

A.C.F., Appl. Math. Lett. (2013) – C.R. Math. Acad. Sci. 2016

Topology of the 3-D primal mesh with vertices, edges, faces and an interface Σ :
p, ρ, φ unknowns located at all vertices a or b and velocity components v· t on each
edge [a, b]

⇒ Important properties exactly satisfied in the discrete way :
rot h(∇hφh) = 0 and div h(rot hψh) = 0, ∀h > 0 for any scalar φ or
vector potential ψ (up to machine precision)
⇒ Discrete compatibility condition satisfied ∇h(ρφ) = ρ v̂ with :
rot h(ρ v̂) = ρ rot hv̂ +∇hρ∧v̂ = ∇hρ∧v̂ = 0 since rot hv̂ = 0
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Reconstruction of potential φ such that : v̂ := ∇φ

Scalar potential φ reconstructed by integrating its known gradient v̂
along all the edges in the primal mesh
Starting from one point where φ := 0 arbitrarily, we have along any
edge [a, b] :∫ b

a

v̂· t dx :=

∫ b

a

∇φ· t dx = φb − φa, on any edge [a, b]

which gives the value φb when φa is already known and so on...
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Calculation of density ρ such that : ∇(ρφ) = ρ v̂

Primary mesh topology and interface Σ represented by a chain of connected
Lagrangian markers
From one side using the generalized average formula, there exists ρ
constant along the segment [a, b] such that :∫ b

a

ρ v̂· t dx = ρ

∫ b

a

v̂· t dx = ρ (φb − φa) =

∫ b

a

∇(ρφ)· t dx

⇒ ρ satisfies the compatibility condition : ∇(ρφ) = ρ v̂ = ρ∇φ along
the edge [a, b]
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Calculation of density ρ such that : ∇(ρφ) = ρ v̂

From another side, with c := Σ ∩ [a, b] and the distance d(a, b) := |b− a| :∫ b

a

ρ v̂· t dx =

∫ c

a

ρ v̂· t dx+

∫ b

c

ρ v̂· t dx = (ρa |c− a|+ ρb |b− c|) v̂· t

=
(ρa |c− a|+ ρb |b− c|)

|b− a|

∫ b

a

v̂· t dx

= (αρa + (1− α) ρb) (φb − φa), with α :=
|c− a|
|b− a| .

Comparing the two expressions, we get ρ associated to the edge [a, b] as a
weighted average :

ρ[a,b] = αρa + (1− α) ρb, on any intersected edge [a, b], 0 ≤ α ≤ 1.
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An accurate front-tracking Lagrangian advection
a) Calculate the barycentric velocity vb(x) of each marker point x from the velocity

components vn+1· t on the edges bordering the primal cell where the marker lies
b) Move the markers such that x′(t) = vb(t, x) by calculating the new position with

the Heun Runge-Kutta explicit scheme (RK2 or RK4 with the K-VPP method of
second-order in time) :

x
n+1

= x
n

+
δt

2

(
v
n
b (x

n
) + v

n+1
b (x

n
+ δt v

n
b (x

n
))

)
.

c) Detect the cells in the primal mesh which are crossed by the updated marker chain
with a ray-tracing technique issued from computer graphics procedures and according
to that, update the phase function ξ at the vertices

d) Calculate the intersection points xΣ ∈ [a, b] between the marker chain segments and
the edges [a, b] of the crossed cells in the primal mesh

e) From xΣ, calculate the dividing function α on each edge [a, b] oriented by t and
cutted across by Σ

f) Update the density ρ(ξ), the viscosity µ(ξ) and the mass density
ρ[a,b] = αρa + (1− α) ρb, on any intersected edge [a, b]

g) Compute the local curvature κ(x) at each marker point x using the osculator circle
crossing three consecutive points

h) Compute the force source term modelling the capillary effects fc := σ κ∇ξ on Σ
to be included in the force balance on any intersected edge

i) Solve for the flow at time tn+1 = (n+ 1)δt with the method of velocity-pressure
coupling.

⇒ Good mass conservation of the different phases observed practically
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Accurate calculation of the local curvature κ(x)

Local curvature κ(x) calculated at each marker point x by using the
osculator circle defined by x and its two neighbours in 2-D

Exact when the interface Σ is a circle of radius R or a sphere in 3-D :
κ = 1/R (circle) or κ = 2/R (sphere)
⇒ Numerically verified up to machine precision
For an ellipse of radius a and b in the polar coordinates :

κ(θ) =
a b

(a2 sin2 θ + b2 cos2 θ)3/2
, with θ ∈ [0, 2π].

⇒ Second-order accuracy in the L2-norm w.r.t. the mean distance between two
connected interface-markers
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Sharp test case for fluid-structure interaction
ACF11-ball : free fall of an heavy rigid ball in air at time
t = 0.15 and Re = 7358
VPPε method with ε = 10−6, mesh size=256× 512, δt = 0.0002

Cylinder diameter d = 0.05, ρs = 106, ρf = 1, µs = 1012, µf = 10−5, domain
0.1× 0.2, cylinder initially with no motion at height y = 0.15.
Left : isobars and isoline ϕ = 0.5 of the phase function at interface.
Right : vertical velocity field and horizontal velocity isolines.
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Static equilibrium of a droplet : Laplace’s law

First numerical method which eliminates the spurious eddies !
See e.g. book [Tryggvason, Scardovelli and Zaleski (2011)]

Laplace uniform capillary pressure pc = σ κ = σ/R = 400Pa (whatever density)
in a disk droplet of radius R = 2.5 10−3m for a constant surface tension
σ = 1N/m (no gravity force, only the capillary force fc := σ κ∇ξ on Σ)
Left : Unstructured mesh non-fitted to the interface-markers circle
Right : Unstructured mesh fitted to the interface Σ

⇒ Null velocity field in both cases with no parasite current
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Multiphase flows : two-phase bubble dynamics

2-D gas bubble rising in a liquid : dimensionless numbers
Hysing et al., IJNMF (2009) : two benchmark problems with
different density/viscosity ratios and surface tension σ

d

H

L

g

a i r

s t e e l

Air bubble initial diameter d in a vertical cavity L×H, g = 9.81m/s2

ρl/ρg = 10 to 103, µl/µg = 10 to 100, surface tension coefficient
σgas/liquid = 0.07197N/m (at 25 ◦C) to 2.50N/m (large surface tension)

Characteristic gravitational velocity Ug :=
√
g d,

Reynolds number Re := ρl Ug d/µl, Eötvös number Eo := ρl U
2
g d/σ
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Standard benchmark for multiphase flows I

2-D dispersed two-phase bubble dynamics
Hysing et al., IJNMF (2009) : first benchmark pb with small
density/viscosity ratios and surface tension
VPPε method with ε = 10−8, mesh size=128× 256,
δt = 0.007143 and VOF-PLIC interface capturing

Motion of a circular bubble with surface tension at time t = 3 - bubble initial
diameter d = 0.05m, ρ1/ρ2 = 1000/100 = 10, µ1/µ2 = 1/0.1 = 10,
σ = 2.45N/m, domain 0.1× 0.2, bubble initially circular with no motion at height
y = 0.05 – g = 9.81m/s2, ref. gravitational velocity Ug :=

√
g d = 0.700m/s,

Reynolds number Re := ρ1 Ug d/µ1 = 35, Eötvös number Eo := ρ1 U2
g d/σ = 10

Left : isobars and isoline ϕ = 0.5 of the phase fraction function at interface
Center : horizontal velocity field
Right : superposition of isoline ϕ = 0.5 at interface for (UAL), (SIP), (VPP) and
vertical velocity field (in absolute referential)
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Sharp benchmark of two-phase bubble dynamics II

Air bubble rising in a liquid melted steel with VPPε or K-VPPε
PhA., Caltagirone and Fabrie, 4th T.I. Conf. (Hal, 2015)

d

H

L

g

a i r

s t e e l

Air bubble initial diameter d = 1 cm, L = 4 cm, H = 10 cm, g = 9.81m/s2

ρl/ρg ≈ 8500 or 104, µl/µg ' 54, σair/steel = 1.50N/m (large surface tension)

Ug :=
√
g d = 0.313m/s, Re = 26 632, Eo := ρ1 U2

g d/σ = 5.55

Isothermal computations at T = 800− 900 ◦C (melted steel) – ε = 10−8

Symmetric/Non-symmetric flows with large shape deformations
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Sharp benchmark of two-phase bubble dynamics II

K-VPPε with ε = 10−10, mesh size=128× 256, N = 128
Lagrangian front tracking markers, δt such that CFL = 0.5

Left : pressure field p ∈ [−9235, 0]Pa (p = 0 at bottom left) at time t = 0.05 s
Center : vertical velocity field vz ∈ [−0.48, 1.55]m/s and streamlines at
t = 0.05 s – Right : Some bubble positions and shapes during time and vertical
velocity field vz at final time t = 0.2 s.
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Summary

Vector penalty-projection methods for low-Mach variable
density and multiphase flows or fluid-structure interaction

⇒ Methods VPPε/K-VPPε efficient to solve Darcy and
Navier-Stokes/Brinkman problems :

whatever density, viscosity or anisotropic permeability jumps
under strong stresses : large surface tension and shape deformation
with Dirichlet or Neumann stress boundary conditions

⇒ Design with 4 key ideas or features :
Fully vector-consistent formulation for primary unknowns (v,∇p) :
⇒ accurate and curl-free component v̂n+1 := vn+1− ṽn+1 of ṽn+1

⇒ get rid of scalar pressure Poisson equation and its spurious B.C.
New fast Helmholtz-Hodge decompositions of L2-vector fields :
⇒ splitting penalty method for saddle-point with adapted r.h.s.
VPPε : mass density ρ only included in the diagonal term :
⇒ cheap diagonal preconditioning for variable density
K-VPPε : kinematic VPP completely independent of ρ
on edge-based MAC mesh :
⇒ Robustness : insensitive to large variations of density ρ

⇒ Accurate, Fast and Robust methods
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Conclusion

See my Google Scholar profile for the preprints

Second-order accuracy in time with BDF2 or Crank-Nicolson
schemes : Ok
Open (Neumann stress) boundary conditions : Ok
Optimal error estimates for Navier-Stokes problems with Dirichlet
or Neumann B.C. : Ok

VPPε/K-VPPε methods for low Mach number flows
now the parameter ε must be chosen such that :

ε δt = χT = γ χS =
γM2

ρV 2
or γM2 = ρV 2 (ε δt)� 1

where
χT , χS : isothermal or isentropic compressibility coefficients of the
fluid
γ := cp/cv ≥ 1, i.e. ratio of heat capacities of the fluid
Mach number : M := V/c
V : given reference velocity
c : speed of acoustic waves in the fluid
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Some perspectives...

Other preconditioner than IC/ILU : SSOR, Multigrid, DDM ...
Parallel efficiency, scalability ...

Theoretical analysis for homogeneous Navier-Stokes :
unconditional stability, convergence, error estimates
⇒ Ok for both Dirichlet and open boundary conditions
Theoretical analysis for non-homogeneous multiphase Navier-Stokes :
open problem without regularization : Ok for K-VPPε

Magnetohydrodynamics (MHD) or plasma transport problems :
⇒ divB = 0

fluid-structure interaction problems with Discrete Mechanics :
Caltagirone and PhA., Turbulence & Interactions Conf. (2018)
in Proceedings book, Springer (2021)

Thank you for attention
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