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Target calculations in geophysical fluid dynamics Kelvin-Helmholtz instability : one stratified fluid-phase or two-phase (liquid/gas) gravity waves Kelvin-Helmholtz clouds in atmosphere How to construct an efficient numerical method ? Essential features for numerical solutions of multiphase flows : Variable density Navier-Stokes incompressible or low Mach number flows Two-phase flows with large density/viscosity ratios : ρ w /ρ a ≈ 10 3 Moving interface Σ (between fluid immiscible phases) with large shape deformations Surface tension with possibly large capillarity coefficient on Σ Coriolis rotation + suitable turbulence modelling Multi-physics coupling : temperature, salinity, Marangoni effect...
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Velocity-pressure coupling with div v = 0

The orthogonal H.H. decomposition of L 2 (Ω) d

Basics of pressure correction methods, e.g. Temam's book 1986 in a bounded open set

Ω of R d L 2 (Ω) d = H ⊕ G with H = u ∈ L 2 (Ω) d ; div u = 0, u• n |Γ = 0 on Γ G = H ⊥ = u ∈ L 2 (Ω) d ; u = ∇φ, φ ∈ H 1 (Ω)/R
Hence, for all vector field v ∈ L 2 (Ω) d , we have the unique decomposition :

v = v ψ + v φ with v φ = ∇φ ∈ G and v ψ = rot ψ ∈ H, div ψ = 0 if Ω simply connected
Standard solution for a scalar potential φ if v ∈ H div (Ω) :

Poisson problem with Neumann B.C.

   ∆φ = div v in Ω ∇φ• n |Γ = v• n on Γ, since Ω div v dx = v• n, 1 -1/2,Γ
Then : v φ = ∇φ and v ψ = v -∇φ

Velocity-pressure coupling with div v = 0 Scalar incremental projection (SIP) methods

The Navier-Stokes problem with given density The scalar incremental projection (SIP) method

Γ D ∩ Γ N = ∅                ρ (∂ t v + (v• ∇)v) -µ ∆v + ∇p = f in Ω × (0, T ) div v = 0 in Ω × (0, T ) v = v D
with Dirichlet or open (Neumann) B.C. and ρ := ρ(x, t) given e.g. first-order time accuracy (Euler), extension to 2nd-order... Originally introduced for ρ = cst and v = 0 on Γ and ad-hoc extended...

(1)

             ρ n+1 v n+1 -v n δt + (v n • ∇) v n+1 -µ ∆ v n+1 + ∇p n = f n+1 v n+1 |ΓD = v D (-p n n + µ ∇ v n+1 • n) |ΓN = g (2)      ρ n+1 v n+1 -v n+1 δt + ∇φ n+1 = 0, with φ n+1 = p n+1 -p n div v n+1 = 0 =⇒ (3)            div δt ρ n+1 ∇φ n+1 = div v n+1 ∇φ n+1 • n |ΓD = 0 φ n+1 |ΓN = 0
Velocity-pressure coupling with div v = 0 Scalar incremental projection (SIP) methods

Motivation : overcome most drawbacks of SIP poor convergence and locking effect for large density, viscosity, permeability ratios... Conjecture : mainly due to the inherent scalar formulation of the method and to the spatial derivative of mass density ⇒ It degrades the original vector formulation and produces a loss of consistency... ⇒ Design a fully vector-consistent splitting method for the velocity Objective : efficient velocity-pressure coupling ?

Focus on the constraint of free velocity divergence div v = 0 ⇒ Key idea : introduce a splitting penalty method for the velocity... both prediction and correction steps now solved for the velocity vector ⇒ Fully vector consistent splitting method with velocity correction ⇒ New point of view : Instead of determining the pressure field p (the Lagrange multiplier) Calculate an accurate and curl-free approximation of ∇p (the force inducing motion)

⇒ Primary unknowns are now (v, ∇p) instead of (v, p)

⇒ Counterpart : approximate divergence-free projection in the semi-discrete setting but the penalty parameter ε can be taken as small as desired.
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Theoretical foundations of VPPε methods

A new fast decomposition of L 2 (Ω) d : DHHD I PhA., Caltagirone and Fabrie, Appl. Math. Lett. ( 2013)

Key idea : design a suitable approximation by penalization of the curl-free component v φ = ∇φ such that :

div v φ = div v and rot v φ = 0 in Ω with v φ • n |Γ = v• n on Γ
⇒ The so-called vector penalty-projection elliptic problem for all ε > 0 :

(VPP n )    ε v ε φ -∇ div v ε φ = -∇ (div v) in Ω v ε φ • n |Γ = v• n on Γ ⇒        v ε φ = 1 ε ∇ div (v ε φ -v) := ∇φ ε , rot v ε φ = 0 φ ε = 1 ε div (v ε φ -v) N.B. Extra regularity : (v φ -v ε φ ) ∈ H 0,div (Ω) ∩ H rot (Ω) → H 1 (Ω)
⇒ Very well-conditioned whatever the mesh step h for ε small enough : effective conditioning independent of both ε and h due to adapted right-hand side !

Theoretical foundations of VPPε methods

Fast discrete Helmholtz-Hodge decompositions

A new fast decomposition of L 2 (Ω) d : DHHD I Weak form of (VPP n ) with the adapted right-hand side For any v ∈ H div (Ω), using a standard Green's formula (integration by part), v ε φ ∈ H div (Ω) satisfies :

ε Ω v ε φ • ϕ dx + Ω (div v ε φ ) (div ϕ) dx -div (v ε φ -v), ϕ• n -1/2,Γ = Ω (div v) (div ϕ) dx, for all ϕ ∈ H div (Ω) Notice a posteriori that (VPP n ) implies that : div (v ε φ -v) ∈ H 1 (Ω)
Then, the boundary term vanishes with :

1 Essential B.C. : ϕ• n = 0 on Γ, then ϕ ∈ H 0,div (Ω) 2 Natural B.C. : div (v ε φ -v) = 0 on Γ, i.e. "do nothing" for Neumann stress B.C. ⇒ Apply Lax-Milgram theorem for the solvability analysis in H div (Ω) ⇒ Then (VPP n ) supplies the extra regularity : v ε φ ∈ H 0,div (Ω) ∩ H rot (Ω) → H 1 (Ω)
Optimal accuracy of fast DHHD methods

PhA., Caltagirone and Fabrie, Appl. Math. Lett. ( 2013)

Theorem (Analysis of the vector penalty-projection (VPP n ).)

For any v ∈ H div (Ω) and all ε > 0, there exists a unique solution v ε φ in H div (Ω) to the vector penalty-projection (VPP n ).

Moreover, v ε φ is curl-free : rot v ε φ = 0, v ε φ = ∇φ ε ∈ G and div (v ε φ -v) ∈ H 1 (Ω) ∩ L 2 0 (Ω) for all ε > 0. Then, we can choose φ ε ∈ H 1 (Ω) ∩ L 2 0 (Ω) such that div (v ε φ -v) = ε φ ε .
Besides, we have the following error estimates for all ε > 0 :

v φ -v ε φ 1 + φ -φ ε 2 + div (v -v ε φ ) 1 ≤ c(Ω) v 0 ε N.B. Extra regularity : (v φ -v ε φ ) ∈ H 0,div (Ω) ∩ H rot (Ω) → H 1 (Ω)
⇒ Approximate divergence-free projection ⇒ Optimal accuracy of (VPP n ) as O(ε) with ε as small as desired up to machine precision Typically : ε = 10 -14 with double precision

Conservation properties on edge-based generalized MAC-type unstructured meshes

Discrete exterior calculus identities on a random Delaunay mesh for any typical analytic scalar field φ or vector field ψ.

Left : rot h (∇ h φ) = ±1.7 10 -15 in Ω Right : div h (rot h ψ) = ±1.4 10 -14 in Ω.
Solution cost of fast DHHD : (VPP) or (RPP) 

(B) = m < n, B T = Grad h : (εI + B T B) v ε = -B T B v A ε := εI + B T B system matrix
We have :

κ := cond 2 (A ε ) = ε + λ max (B T B) ε = O 1 ε
Number of iterations of preconditioned conjugate gradient solver :

N iter ≤ O √ κ
bound for the worst case...

The splitting penalty method : the system matrix A ε is ill-conditioned for ε 1 but the system itself can be extremely well-conditioned due to the adapted right-hand side ! 

ε u ε -∆u ε = -∆u, in Ω u ε = 0, on Γ := ∂Ω
We have the weak form, for all v ∈ H 1 0 (Ω) :

ε

Ω (u ε -u) v dx + Ω ∇(u ε -u) • ∇v dx = -ε Ω u v dx
and thus taking v = u ε -u, we easily get with Poincaré inequality : It amounts to solve the linear system with an adapted r.h.s. :

u ε -u 1,Ω ≤ c(Ω) ∇(u ε -u) 0,Ω ≤ C(Ω) u 0,Ω ε.
(ε I + A) u ε = Au.
We have :

A ε := (ε I + A) = A I + ε A -1 κ := cond 2 (A ε ) = ε + λ max (A) ε + λ min (A) -→ ε→0 cond 2 (A) = O 1 h 2 If ε < 1/ A -1
, we get the asymptotic expansion with a Neumann geometric serie :

I + ε A -1 -1 = ∞ k=0 (-1) k ε k A -k ⇒ u ε = I + ε A -1 -1 u = u -ε A -1 u + ε 2 A -2 u -• • •
Theoretical foundations of VPPε methods A splitting penalty method for saddle-point

The simplified invertible case (discrete setting) : ⇒ asymptotic expansion of the solution u ε Thus, with an adapted r.h.s. and ε 1 :

(ε I + A) u ε = Au ⇒ u ε = u + O(ε)
⇒ zero-order term independent on A and the mesh step h ! But recall with a non adapted r.h.s. (usual case) and ε 1 :

(ε I + A) u ε = f ⇒ u ε = A -1 u + O(ε)
Theoretical foundations of VPPε methods A splitting penalty method for saddle-point

The nice and surprising result for saddle-point

Non-invertible case with A := B T B (B := -div h ) : sketch of proof for a splitted saddle-point system with an adapted r.h.s.

PhA., Caltagirone and Fabrie, Appl. Math. Lett. 1 (2012)

(ε I + B T B) v ε = -B T B v
A ε := ε I + B T B system matrix A key formula : Woodbury's formula (1949), a generalization of Sherman-Morrison's formula :

I + 1 ε B T B -1 = I -B T ε I + BB T -1 B, ε > 0 Theorem : for any m × n matrix B with rank(B T ) = rank(B) = m ⇒ ker(B T ) = {0}
⇒ the Schur complement S := BB T (Lagrange multiplier operator) is non singular and if ε < 1/ S -1 , we can do the asymptotic expansion with Neumann geometric serie and after either SVD or QR factorization, we get : 

v ε = -I 0 v + O(ε), I 0 = diagonal matrix

Conclusion and perspectives

The family of VPPε methods

First-order vector penalty-projection method (1)

         v n+1 -v n δt + (v n • ∇) v n+1 - 1 Re ∆ v n+1 + ∇p n = f n+1 in Ω v n+1 = v n+1 D on ΓD σ( v n+1 , p n )• n := -p n n + 2µ d( v n+1 )• n = g n+1 on ΓN (2)                ε v n+1 -v n δt -∇ div v n+1 = ∇ div v n+1 in Ω v n+1 • n = 0 or enforce v n+1 = 0 on ΓD v n+1 • n = 0 on ΓN or div v n+1 = -div v n+1 i.e. "do nothing" : (div v n+1 ) |Γ N = 0 on ΓN            v n+1 = v n+1 + v n+1 and p n+1 = p n - 1 ε div v n+1 in Ω
Pressure gradient correction to avoid round-off errors for very small ε

∇p n+1 = ∇p n - v n+1 -v n δt in Ω
The family of VPPε methods Approximate divergence-free splitting methods

The fast vector penalty-projection method

The artificial compressibility method revisited within two steps

                           v n+1 -v n δt + (v n • ∇) v n+1 - 1 Re ∆ v n+1 + ∇p n = f n+1 v n+1 -v n δt - 1 ε ∇ div v n+1 = 1 ε ∇ div v n+1 v n+1 = v n+1 + v n+1 ∇(p n+1 -p n ) = - v n+1 -v n δt = - 1 ε ∇ div v n+1 VPP ε ⇔ a new two-step artificial compressibility method          v n+1 -v n δt + (v n • ∇) v n+1 - 1 Re ∆ v n+1 + ∇p n+1 = f n+1 (ε δt) p n+1 -p n δt + div v n+1 = 0
⇒ Better convergence than the one-step artificial compressibility method of Chorin-Temam, see [PhA. and Fabrie, Disc. Cont. Dyn. Syst. ( 2012)]

The family of VPPε methods The artificial compressibility method revisited

Unconditional stability of the VPP ε method

PhA., Caltagirone and Fabrie, Hal manuscript ( 2015)

Theorem (Global solvability and stability of the VPPε method.)

For any f ∈ L 2 (0, T ; H -1 (Ω) d ), v 0 ∈ L 2 (Ω) d and p 0 ∈ L 2 0 (Ω)
given, the VPPε method is well-posed for all 0 < δt ≤ T and ε > 0, i.e. for all n ∈ N such that (n + 1) δt ≤ T , there exists a unique solution

( v n+1 , v n+1 , p n+1 ) ∈ H 1 0 (Ω) d × H 1 n (Ω) d × L 2 0 (Ω) to the VPPε scheme such that : v n+1 -v n δt + (v n • ∇) v n+1 - 1 Re ∆ v n+1 + ∇p n+1 = f n+1 in Ω (ε δt) p n+1 -p n δt + div v n+1 = 0 in Ω
which is the discrete problem effectively solved by the splitting scheme. Moreover, we have unconditional stability of the VPPε method for both velocity and pressure in the natural norms l ∞ (0, T ; With suitable sufficient regularity of the continuous solution (v, p) and well-prepared initial conditions, we have for all 0 < δt ≤ max(1, T ) and penalty parameter ε

L 2 (Ω) d ) ∩ l 2 (0, T ; H 1 (Ω) d
0 ≤ ε ≤ O(δt) : for all n ∈ N such that (n + 1)δt ≤ T , (i) e n+1 2 0 + εδt π n+1 2 0 + n k=0 δt Re ∇e k+1 2 0 ≤ C δt 4 + ε δt (ii) n k=0 δt π k+1 - 1 |Ω| Ω π k+1 dx 2 0 ≤ C δt 4 + ε δt (iii) n k=0 δt div v k+1 2 0 = n k=0 δt div e k+1 2 0 ≤ C δt 3 + ε ε δt 2 . ⇒ Better splitting errors for Dirichlet B.C. in O(ε δt 3 + ε 2 δt 3/2 ) instead of O(ε δt),
Divergence -L 2 -norm δt =10 -1 δt =10 -2 δt =10 -3
Divergence at Re = 100, t = 10h = 1/512, |res|2 < 10 -10

⇒ ||div v n || L 2 = O(ε δt) = O(χ T ) ; velocity & pressure errors as O(δt 2 )
The A model for incompressible multiphase Navier-Stokes problems with capillary effects 

         ρ(ϕ) (∂ t v + (v• ∇)v) -2 div (µ d(v)) + ∇p = f in Ω × (0, T ) div v = 0 in Ω × (0, T ) ∂ t ϕ + v• ∇ϕ = 0 in Ω × (0, T ) or ∂ t ρ + v• ∇ρ = 0 in Ω × (0,
ρ n v n+1 -v n δt + (v n • ∇) v n+1 -2 div µ n d( v n+1 ) + ∇p n = f n ε δt ρ n v n+1 -∇ div v n+1 = ∇ div v n+1 v n+1 = v n+1 + v n+1 φ n+1 := p n+1 -p n from ∇φ n+1 := ∇(p n+1 -p n ) = - ρ n δt v n+1
VOF-PLIC interface capturing :

ϕ n+1 -ϕ n δt + v n+1 • ∇ϕ n = 0
or by Lagrangian front tracking :

ρ n+1 -ρ n δt + v n+1 • ∇ρ n = 0
Reconstruction of potential φ such that : v := ∇φ which gives the value φ b when φ a is already known and so on...

Primary mesh topology and interface Σ represented by a chain of connected Lagrangian markers

From one side using the generalized average formula, there exists ρ constant along the segment [a, b] such that : Accurate calculation of the local curvature κ(x)

Local curvature κ(x) calculated at each marker point x by using the osculator circle defined by x and its two neighbours in 2-D

Exact when the interface Σ is a circle of radius R or a sphere in 3-D : κ = 1/R (circle) or κ = 2/R (sphere) ⇒ Numerically verified up to machine precision For an ellipse of radius a and b in the polar coordinates :

κ(θ) = a b (a 2 sin 2 θ + b 2 cos 2 θ) 3/2 , with θ ∈ [0, 2π].
⇒ Second-order accuracy in the L 2 -norm w.r.t. the mean distance between two connected interface-markers

Sharp test case for fluid-structure interaction ACF11-ball : free fall of an heavy rigid ball in air at time t = 0.15 and Re = 7358 VPP ε method with ε = 10 -6 , mesh size=256 × 512, δt = 0.0002

Cylinder diameter d = 0.05, ρs = 10 6 , ρ f = 1, µs = 10 12 , µ f = 10 -5 , domain 0.1 × 0.2, cylinder initially with no motion at height y = 0.15. Left : isobars and isoline ϕ = 0.5 of the phase function at interface. Right : vertical velocity field and horizontal velocity isolines.

Multiphase flows : two-phase bubble dynamics 

with

  Dirichlet or open (Neumann) B.C. and ρ := ρ(x, t) given Ω ⊂ R d (d ≤ 3), bounded and connected Lipschitz domain with the Lipschitz continuous boundary Γ = ∂Ω = Γ D ∪ Γ N and

  on Γ D × (0, T )-p n + µ ∇v• n = g on Γ N × (0, T ) v(t = 0) = v 0 in Ω Neumann B.C., i.e.pseudo-stress or full stress vector given :σ(v, p)• n := -p n + 2µ d(v)• n = g on Γ N × (0, T ) where d(v) := 1 2 ∇v + (∇v) T symmetricpart of velocity gradientVelocity-pressure coupling with div v = 0 Scalar incremental projection (SIP) methods

  N.B. Here -∆ with Dirichlet B.C. is an invertible operator ⇒ Hence we can take ε = 0 and the solution is then trivial u 0 = u ! Theoretical foundations of VPPε methods A splitting penalty method for saddle-point P.D.E. with adapted r.h.s. : a simple example The simplified invertible case (discrete setting) : ⇒ asymptotic expansion of the solution u ε Let A := -∆ h be the n × n symmetric positive definite matrix of the discrete Laplacian operator with homogeneous Dirichlet B.C.

Fast

  and fully vector-consistent VPP ε splitting method : PhA., C. and F., FVCA6 (2011) -Appl. Math. Lett. 2 (2012) PhA. & C., CiCP (2019) : 2nd-order with BDF2 for open B.C.

  ) and l 2 (0, T ; L 2 (Ω)), respectively. ⇒ with compactness arguments (Aubin-Lions-Simon), we have : Convergence to N.S. weak solutions in 3-D when ε = δt tends to 0 Optimal error estimates of the VPP ε method Second-order time accuracy with BDF2 scheme and open B.C. : See [PhA. and Cheaytou, SINUM 2019 (submitted)] Theorem (Error estimates of VPPε for Stokes with open B.C.)

  see [PhA. and Cheaytou, Math. Comp. (2018)] ⇒ Error bounds confirmed by numerical resultsGreen-Taylor vortices : Navier-Stokes with Dirichlet B.C. Divergence (discrete l ∞ (0, T ; L 2 (Ω)) norm) versus penalty ε

  family of VPPε methods Convergence analysis of VPPε for Navier-Stokes Numerical results with MAC Cartesian mesh Stokes flow with homogeneous Neumann stress B.C. with OBC2 : time convergence rates at T=2, mesh size h = 1/128, ε = 10 -10 and r = 0 Left : velocity error L 2 -norm Right : pressure gradient error L 2 -norm ⇒ Optimal second-order accuracy : both velocity & pressure gradient errors as O(δt 2 )

f

  includes gravity force : ρ g and surface tension on Σ : σ κ n Σ δ Σ ⇔ stress jump embedded conditions :[[σ(v, p)• n]] Σ = σ κ n Σ phase fraction (color) function : ϕ ∈ [0, 1] -at interface Σ : ϕ = 0.5 with VOF-PLIC method or use a level-set function ϕ = 0 possibly coupled with the advection-diffusion equation for temperature T or salinity S given laws : ρ = ρ(T , S) and µ = µ(T , S) for each phaseThe family of VPPε methods Fast VPPε for multiphase N.S. flowsA model for incompressible multiphase Navier-Stokes problems with capillary effectsThe fast VPP ε method, first-order linearly implicit scheme :PhA., Caltagirone and Fabrie, 6th F.V.C.A. Conf. (2011) -Appl. Math.Lett. 2 (2012) 

  Scalar potential φ reconstructed by integrating its known gradient v along all the edges in the primal mesh Starting from one point where φ := 0 arbitrarily, we have along any edge[a, b] : dx = φ b -φ a ,on any edge[a, b] 

  dx = ρ (φ b -φ a ) = b a ∇(ρ φ)• t dx ⇒ ρ satisfies the compatibility condition : ∇(ρ φ) = ρ v = ρ ∇φ along the edge [a, b] Calculation of density ρ such that : ∇(ρ φ) = ρ v From another side, with c := Σ ∩ [a, b] and the distance d(a, b) := |b -a| : t dx = (ρa |c -a| + ρb |b -c|) v• t = (ρa |c -a| + ρb |b -c|) ρa + (1 -α) ρb) (φb -φa), with α := |c -a| |b -a| . Comparing the two expressions, we get ρ associated to the edge [a, b] as a weighted average : ρ [a,b] = α ρa + (1 -α) ρb, on any intersected edge [a, b], 0 ≤ α ≤ 1.

  2-D gas bubble rising in a liquid : dimensionless numbers Hysing et al.,IJNMF (2009) : two benchmark problems with different density/viscosity ratios and surface tension σ Air bubble initial diameter d in a vertical cavity L × H, g = 9.81 m/s 2 ρ l /ρg = 10 to 10 3 , µ l /µg = 10 to 100, surface tension coefficient σ gas/liquid = 0.07197 N/m (at 25 • C) to 2.50 N/m (large surface tension) Characteristic gravitational velocity Ug := √ g d, Reynolds number Re := ρ l Ug d/µ l , Eötvös number Eo := ρ l U 2 g d/σ Sharp benchmark of two-phase bubble dynamics II Air bubble rising in a liquid melted steel with VPP ε or K-VPP ε PhA., Caltagirone and Fabrie, 4th T.I. Conf. (Hal, 2015) Air bubble initial diameter d = 1 cm, L = 4 cm, H = 10 cm, g = 9.81 m/s 2 ρ l /ρg ≈ 8500 or 10 4 , µ l /µg 54, σ air/steel = 1.50 N/m (large surface tension) Ug := √ g d = 0.313 m/s, Re = 26 632, Eo := ρ 1 U 2 g d/σ = 5.55 Isothermal computations at T = 800 -900 • C (melted steel)ε = 10 -8 Symmetric/Non-symmetric flows with large shape deformations Conclusion See my Google Scholar profile for the preprints Second-order accuracy in time with BDF2 or Crank-Nicolson schemes : Ok Open (Neumann stress) boundary conditions : Ok Optimal error estimates for Navier-Stokes problems with Dirichlet or Neumann B.C. : Ok VPP ε /K-VPP ε methods for low Mach number flows now the parameter ε must be chosen such that :ε δt = χ T = γ χ S = γ M 2 ρ V 2 or γ M 2 = ρ V 2 (ε δt)1where χT , χS : isothermal or isentropic compressibility coefficients of the fluid γ := cp/cv ≥ 1, i.e. ratio of heat capacities of the fluid Mach number : M := V /c V : given reference velocity c : speed of acoustic waves in the fluid

  

  PhA. and Cheaytou, Commun. in Comput. Phys. (2019) 
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Convergence history of normalized residual of ILU(0)-BiCGstab2 solver for (RPP) or (VPP) problems with ε = 10 -14 for different MAC mesh sizes 32 × 32 (red), 128 × 128 (green), 512 × 512 (blue) and 2048 × 2048 (black) Left : Rotational Penalty-Projection (RPP) Right : Vector Penalty-Projection (VPP) ⇒ Asymptotic optimal solver convergence within 2 or 3 iterations whatever h with ε as small as desired up to machine precision ! Solution cost of (VPP) step by PCG solvers Convergence history of the normalized residual (by initial residual) of PCG solver for (VPP) problem at T = 2δt with δt = 1 and ε = 10 -10 for different mesh sizes Left : Standard Conjugate Gradient (no preconditioner) Right : Incomplete Choleski Preconditioned CG : IC(0)-PCG ⇒ Asymptotic optimal solver convergence within 4 iterations of IC(0)-PCG when ε is small enough whatever the mesh size h A splitting method for saddle-point problems Recall : convergence rate of conjugate gradient method Solve with I = Id matrix of order n, B = -Div h : m × n matrix with rank
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Kinematic version K-VPP ε for edge-based MAC PhA., Caltagirone and Fabrie, C.R. Math. Acad. Sci. ( 2016)

= 0 on Γ (b) Divergence-free velocity penalty-projection (VPP) : purely kinematic step

= 0 on Γ (c) Velocity correction :

with φ n+1 reconstructed from its gradient v n+1 := ∇φ n+1 (e) Explicit locally consistent pressure gradient correction : dynamic step

Advection by Lagrangian front-tracking of density : ⇒ Important properties exactly satisfied in the discrete way : rot h (∇ h φ h ) = 0 and div h (rot h ψ h ) = 0, ∀h > 0 for any scalar φ or vector potential ψ (up to machine precision) ⇒ Discrete compatibility condition satisfied ∇ h (ρ φ) = ρ v with :

An accurate front-tracking Lagrangian advection a) Calculate the barycentric velocity vb(x) of each marker point x from the velocity components v n+1 • t on the edges bordering the primal cell where the marker lies b) Move the markers such that x (t) = vb(t, x) by calculating the new position with the Heun Runge-Kutta explicit scheme (RK2 or RK4 with the K-VPP method of second-order in time) :

c) Detect the cells in the primal mesh which are crossed by the updated marker chain with a ray-tracing technique issued from computer graphics procedures and according to that, update the phase function ξ at the vertices d) Calculate the intersection points xΣ ∈ [a, b] between the marker chain segments and the edges [a, b] of the crossed cells in the primal mesh e) From xΣ, calculate the dividing function α on each edge [a, b] oriented by t and cutted across by Σ f ) Update the density ρ(ξ), the viscosity µ(ξ) and the mass density ρ