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Observability of discrete and continuous bounded groups in Hilbert and Banach spaces

We will henceforth use the same symbol τ for the "observation time" in the discrete setting. It will be sous-entendu that τ is integer in the discrete setting.

We say that C is exactly observable

or, in the discrete setting,

respectively. Conceptually, exact observation means that the initial state can be recovered from observations, or, equivalently, that Ψ τ (defined above) has a left inverse. We talk of finite-time observability if on the right hand side in (ExObs c ) x , the unobserved norm at initial time, is

Introduction

We are interested in admissibility and observability of observations for continuous and discrete systems. In the continuous setting we consider a strongly continuous semigroup (T (t)) t≥0 on a Banach space X with generator -A and a closed operator C : X → Y that is bounded as operator C ∈ B(D(A); Y ). We are the interested in the observed evolution, i.e. y(t) = CT (t)x, t ≥ 0.

In the discrete setting, we consider bounded operators T ∈ B(X) and C ∈ B(X; Y ), and our interest is focussed on y n = CT n x In both settings, admissibility and observability of observations can be defined in a finite and infinite time horizon. By that we mean the following. C is called (L 2 -)admissible in time τ ∈ (0, ∞], if there exists a constant K Adm (τ ) > 0 such that, for all x ∈ D(A),

τ 0 CT (t)x 2 dt ≤ K Adm (τ ) x 2 .
(Adm c ) By density of D(A), this means that the map Ψ τ : x → CT (•)x admits an extension (denoted Ψ as well) to a bounded operator X → L 2 ([0, τ ]; Y ). Analogously, C is admssible for (T n ) τ n=1 , if

τ n=0 CT n x 2 ≤ K Adm (τ ) x 2 . (Adm d )
replaced by T (τ )x , the unobserved norm at final time. Similarly, in the discrete case, if on the right hand side of (ExObs d ), x is replaces by T τ x . Clearly, exact observability implies finite-time observability.

Let us point out some well-known standard comments in order. First, admissibility in finite time does not depend on the choice τ > 0, which can be seen by a simple scaling argument. Moreover, finite-time admissibility and uniform exponential stability imply infinite-time admissibility.

On the other hand, exact observation time usually does depend on τ > 0. There are easy wellknown examples (transport or wave equations with point observations for example) where exact observation is true for all τ ≥ τ 0 , but wrong for any τ < τ 0 . Exact observation in infinite-time and and uniform exponential stability imply exact observation in some, potentially large, finite-time. The next result seems to have been overlooked so far.

Lemma 1.1. Let T (•) be a bounded semigroup on X and assume that C is infinite-time admissible and finite-time observable in time τ > 0. Then T (•) is uniformly exponentially stable.

Proof. Recall that for any 0 < s < t, the semiroup property T (t)x = T (t -s)T (s) and the boundedness of the semigroup give T (s)x ≥ 1 M T (t)x . By the assumptions we have

K 2 x 2 ≥ ∞ 0 CT (t)x 2 dt ≥ n-1 k=1 τ 0 CT (t)T (kτ )x 2 dt ≥ K FiniteTimeObs (τ ) n-1 k=1 T (τ )T (kτ )x 2 ≥ K FiniteTimeObs (τ ) n M T (n • τ )x 2
This shows that T (n.τ ) n→∞ ---→ 0 in operator norm and the conclusion readliy follows.

For practical reasons, we will be interested in exact observation in finite time only: who would accept to wait forever prior to getting the initial data back? The lemma tells us, that in that setting we should not "mix concepts" and stay with finite-time admissibility as well, since we would add a "hidden assumption" otherwise. It is easy to give a discrete counterpart of the lemma, so we will not formulate it explicitly.

Our choice to consider only finite-time admissibility is in contrast with some results in the litterature, especially in the discrete setting like [START_REF] Le | α-admissibility for Ritt operators[END_REF][START_REF] Wynn | α-admissibility of observation operators in discrete and continuous time[END_REF] where only infinite-time admissibility is treated. This is certainy due to the fact that while finite-time admissibility may or may not be true in the continuous setting, due to the unbounded observation operator C, it is clearly always true in the discrete setting, and therefore not studied.

It turns out that the following scalar perturbation formulas are quite interesting, both in the setting of admissibility and observability. They allow "spectral criteria" for both notions. For λ ∈ C,

T (t)x = e -λt x + t 0 T (t-s)(λ -A)xe -λs ds from which we infer CT (t)x = e -λt Cx + t 0 CT (t-s)(λ -A)xe -λs ds (1.1)
as well as its discrete couterpart

λ n -T n = (λ -T ) n-1 j=0
T n-j-1 λ j from which we infer

CT n x = λ n Cx - n-1 j=0 CT n-j-1 λ j (λ -T )x (1.2)
While (1.1) is well studied in the litterature, this seems not the case for its discrete counterpart (1.2).

Exact observability of bounded groups in Hilbert spaces

Assume C is admissible and exactly observable. Let |λ| ≤ 1. Then take norms in (1.2) on both sides, use triangle inequality and (a + b) 2 ≤ 2(a 2 + b 2 ) on the right hand side, then sum over n.

Finally we apply Youngs' inequality for discrete convolutions to the last term. As a result,

τ n=1 CT n x 2 ≤ Cx 2 τ n=1 |λ| 2 + 2K 2 (λ -T )x 2 τ n=1 |λ| 2 (2.1)
Now we have two sub-cases. First, if |λ| < 1, we can let τ → ∞, and obtain that exact observation (in finite or infinite time) and the assumed admissibility imply ∀|λ| < 1 :

K ExObs (τ ) x 2 ≤ 2 1-|λ| 2 Cx 2 + 2K Adm (τ ) 2 (1-|λ|) 2 (λ -T )x 2 (2.2)
If C is exactly observable in finite time, the constants on the right can be chosen uniformly. Indeed, going back to (2.1) we trivially have for all |λ| ≤ 1

x 2 ≤ α 2 Cx 2 + β 2 (λ -T )x 2 (RW)
where 2 , which means that no explosion of constants happens near the unit circle in this case. This is the discrete version of the Russell-Weiss condition, see [START_REF] Russell | A general necessary condition for exact observability[END_REF]. Observe that (RW) is always true (whatever C is) if |λ| > r(T ), the spectral radius of T . We resume our finding: 

α 2 = 2τ /K ExObs (τ ) 2 and β 2 = 2τ 2 K Adm (τ ) 2 /K ExObs (τ )
Ψ : H → ℓ 2 (Y ) Ψ(x) = (CT n x) n
is always injective, i.e. C is approximately observable in infinite time.

Proof. For all x ∈ Z and for all |λ| > r(T ),

0 = ∞ n=0 CT n xλ -n-1 = C(λ -T ) -1 x, so that (RW) gives us (λ -T | Z ) -1 x ≤ α 2 0 + β 2 x 2 , i.e. uniform boundedness of the resolvent on B(0, r(T )) ∁ .
That is impossible since the circle with radius r(T ) must contain spectral points and hence the resolvent explode in their neighbourhood.

In special cases we can however say much more. Let us start studying groups (T n ) n∈Z . To set up ideas and for the sake of clarity, we restrict even furth in the next theorem.

Theorem 2.3. Let H, Y be Hilbert spaces, (T n ) n∈Z a bounded group and C : H → Y a bounded observation. Further assume (RW). Then C is finite-time observable in time τ if

1 2β 2 M 4 > 1 -cos( π τ ) ≈ π 2 2τ 2 (2.3)
where M = sup n≥0 T n .

Proof. Let (a n ) be a bounded sequence of real numbers (that we specify later), supported on

[1, τ -1]. We insert x = τ n=0
a n e -int T n z into (RW), chosing λ = e it . We integrate the obtained inequality over [0, 2π], and devide by 2π. As a result,

1 2π 2π 0 τ n=0 a n e -int T n z 2 dt ≤ α 2 2π 2π 0 τ n=0 a n e -int CT n z 2 dt+ β 2 2π 2π 0 τ n=0
a n e -int (e it -T )T n z 2 dt By Parseval's identity, this immediately simplifies to

τ n=0 a n T n z 2 ≤ α 2 τ n=0 a n CT n z 2 + β 2 2π 2π 0 τ n=0 a n (e -int T n z -e -i(n+1)t T n+1 z) dt ≤ α 2 (a n ) 2 ∞ τ n=0 CT n z 2 + β 2 2π 2π 0 τ n=0 a n (e -int T n z -e -i(n+1)t T n+1 z) dt
Using T n z ≥ 1 M z the right hand side simplifies further. On the other hand side, we can use summation by parts for the last expression bearing in mind that a 0 = a τ = 0, so that no "boundary terms" appear: we get

1 M 2 τ n=0 |a n | 2 z 2 ≤ α 2 (a n ) 2 ∞ τ n=0 CT n z 2 + β 2 M 2 τ n=1 (a n -a n-1 ) 2 z 2
Now we have to select τ as well as our sequence (a n ) such that

τ n=0 |a n | 2 > β 2 M 4 τ n=1 (a n -a n-1 ) 2
For the choice a n = sin( πn τ ), we have

τ n=0 |a n | 2 = τ 2 whereas τ n=1 (a n -a n-1 ) 2 = τ 1 -cos( π τ )
which shows that we have exact finite-time observation in time τ given by (2.3).

Variants to formulate: a) polynomial growth b) exponential growth Discrete vs. continuous Let U (t) t∈R be a strongly continuous unitary group on H and T = U (1). Observe that

τ 0 CU (t)x 2 dt = 1 0 τ n=1 CT n U (t)x 2 dt As a consequence, if C satisfies (RW) with T = U (1) then τ 0 CU (t)x 2 dt ≥ 1 0 τ n=1 U (t)x 2 dt = x 2
which shows that C is exactly observable for U (t) t∈R .

Converse ????

Exact observation of bounded groups in Banach spaces

Even passing from Hilbert to, say, L p spaces, implies an important change in the norms for the observed solution. The question is: which is the 'natural' space-time norm to measure observed solutions? At least 3 reasonable norms could be considered: for simplicity, we explain them in the continuous setting. a) Time-space norms: By using L 2 (0, τ ; X) as observation space we keep the norm concept that is well adjusted to Hilbert spaces. b) Fubini-norms: Since Y = L p (Ω), the choice L p (0, τ ; L p (Ω)) can be considered as natural observation space. It by no means less natural than the first idea. c) Space-time norms: finally, from a mathematical point of view, L p (Ω, L 2 (0, τ )) is a nice choice as observation space that proves useful since the early days of Littlewood-Paley theory. According to p ≥ 2 or p ≤ 2 we have inequalities between these three concepts that come from Minkowski's inequality, which reads as follows: for 1 ≤ t ≤ s < ∞, and suitable functions f ,

A B |f (x, y)| s dy t /s dx 1 /t ≥ B A |f (x, y)| t dx s /t dx 1 /s (3.1)
As it turns out, the last choice for space-time norms seems the best to us. If we think of Ω obs as a subspace of Ω state , then using space-time norms, exact observation in the continuous setting means

τ 0 |CT (t)f | 2 dy 1 /2 L p (Ω obs ) ≥ K ExObs (τ ) f L p (Ωstate)
In the discrete case we obtain similar expressions with a finite square-sum at the place of the integral on [0, τ ]. But considering only this setting of subspace-observation limits the scope of the theory too much. Instead, we use a more flexible formulation, at least for the general definitions and theorems: by Hinčine's and Kahane's inequalities, there is a norm equivalence for all 1 ≤ p < ∞, namely

τ 0 |f (t, •)| 2 dy 1 /2 L p (Ω) ≃ E n≥0 γ n τ 0 f (t, •)e n (t) dt L p (Ω)
where (γ n ) is a sequence of independent Gaussian variables and (e n ) is some orthonormal basis of L 2 ([0, τ ]). The point is that in such a formulation, the space L p appears only indirectly n the norm -and so randomised sums in other Banach spaces are of equal interest. We will henceforth use these randomised norms for which the following standard abbreviation is common. We identify an X-valued function f with an operator T f : L 2 (0, τ ) → X that acts by integrating a scalar valued L 2 -function against f . We the write

f γ(0,τ ;X) = T f γ(L 2 ([0,τ ]);X) = E n≥0 γ n T f (e n ) X .
As we saw, f γ(I;L p (Ω)) = f L 2 (I) L p (Ω) and if p = 2 the Fubini's theorem allows to switch back to common time-space norms. We introduce the following vocabulary (see also [START_REF] Haak | Admissibility of unbounded operators and wellposedness of linear systems in Banach spaces[END_REF]).

Definition 3.1 (Continuous setting). Let X, Y be Banach spaces, and -A generate a strogly continuous semigroup T (t) t≥0 on X. Then we say that an observation C :

D(A) → Y is γ-admissible in time [0, τ ] if CT (•)x γ(0,τ ;Y ) ≤ K Adm (τ ) x X (3.2) Similarly, we call C exactly γ-observable in time [0, τ ] if CT (•)x γ(0,τ ;Y ) ≥ K ExObs (τ ) x X (3.3)
For the discrete setting, the underlying Hilbert space is no longer H = L 2 (0, τ ) but ℓ τ 2 . The γ-norm of a sequence is the simply

(x n ) γ(ℓ τ 2 ;X) = E τ n=1 γ n x n X .
This leads to the following definition in the discrete case.

Definition 3.2 (Discrete setting). Let X, Y be Banach spaces, and T a bounded operator on X.

Then we say that an observation C :

X → Y is exactly γ-observable in time [0, τ ] if K ExObs (τ ) x X ≤ E τ n=1 γ n CT n x Y (3.4)
The construction is made such, that definitions (3.2)-(3.4) coincide with the usual definitions of the previous section, if X, Y are Hilbert spaces.

Discrete setting

Now let us illustrate why we believe that these are the right norms. We first state a corollary of the two following theorems in the discrete case. There is a continuous counterpart that we state later.

Corollary 3.3. Let 1 < p < ∞ and Ω obs ⊂ Ω state two σ-finite measure spaces. Let X = L p (Ω state ) and Y = L p (Ω obs ). Then K ExObs (τ ) f L p (Ωstate) ≤ τ n=1 |CT n f | 2 ) 1 /2 L p (Ω obs )
for sufficiently large τ if, and only if, there exist α, β > 0 such that for all K and all functions

f 1 , . . . f K ∈ L p (Ω state ) K k=1 |f k | 2 1 /2 L p (Ωstate) ≤ α K k=1 |Cf n | 2 1 /2 L p (Ω obs ) + β K k=1 |(λ k -T )f k | 2 1 /2 L p (Ωstate)
This shows that the Russell-Weiss condition has a nice and natural extension to L p -spaces. Observe that in the case p = 2, a Fubini argument allows to infer the case K > 1 from K = 1. This explains the seemingly simpler condition (RW). If p = 2 however, we need to ask the inequality for all K ≥ 1 explicitly. Notice that (3.1) allows for the cases 1 ≤ p ≤ 2 or for the case p ≥ 2 to obtain necessary or sufficient conditions for the time-space observation norms, that we discussed in the beginning of the section, but this remains an exclusive-or unless p = 2. This dichotomy gives another strong indication that the space-time norms we suggest are actually the 'natural' ones. Now we turn to the proof in the case of general Banach spaces. We will need two geometric conditions. The first one is type and cotype. We say that X has type p ∈ [START_REF] Diestel | Absolutely summing operators[END_REF][START_REF] Haak | Admissibility of unbounded operators and wellposedness of linear systems in Banach spaces[END_REF] if for come constant c p and all K and all x 1 , . . . , x K ∈ X

E K k=1 r k x k X ≤ c p K k=1 x k p 1 /p whereas X has cotype q ∈ [2, ∞] if K k=1 x k q 1 /q ≤ c q E K k=1 r k x k X
We will have to work in spaces of finite cotype. For common function spaces this intuitively that outlaws supremum norms. A precise account of type and cotype is given in [START_REF] Diestel | Absolutely summing operators[END_REF]Chapter 11] and [START_REF] Hytönen | Analysis in Banach spaces[END_REF]Chapter 7.1].

The second property we need is called Pisier's property (α). One way to formulate it, is to have an equivalence of

E E n,k r n r k x n,k E n,k r n,k x n,k ,
i.e. the possibility to pass form two independently randomised sums (on the left) to a common indexed family r n,k (on the right). As an example, L p -spaces for 1 ≤ p < ∞ enjoy this property, as do Sobolev or Besov spaces if their parameters are finite. Actually, propery (α) implies finite cotype, but the converse is not true. We refer to [START_REF] Pisier | Some results on Banach spaces without local unconditional structure[END_REF] and [START_REF] Hytönen | Analysis in Banach spaces[END_REF]Chapter 7.5] for more details and historic references.

Theorem 3.4 (Necessity of the γ-Russell-Weiss condition). Let X, Y be Banach spaces, and assume that Y has property (α). Let (T n ) n∈Z a bounded group on X and C : X → Y exactly observable for (T n ) 1≤n≤τ . Then there exist α, β > 0 such that for any K and any choice x 1 , . . . x K ∈ X, and λ 1 , . . . , λ K in the complex unit sphere

E τ n=1 r n x n X ≤ α E τ n=1 r n Cx n Y + β E τ n=1 r n (λ n -T )x n X (γ-RW )
Proof. We start with the perturbative formula (1.2), that we apply for each couple of x k and λ k at some fixed index n

K k=1 r k CT n x k = K k=1 r k λ n k Cx k - K k=1 r k n-1 j=0 CT n-j-1 λ j k (λ k -T )x k
Both sides define finite sequences when n = 1 . . . τ of which we take γ-norms, and use the hypothesis of exact γ-observability:

K ExObs (τ ) E K k=1 r k x k X ≤ E K k=1 r k λ n k Cx k γ(ℓ τ 2 ;Y ) + E K k=1 r k n-1 j=0 CT n-j-1 λ j k (λ k -T )x k γ(ℓ τ 2 ;Y )
We treat both terms separately. First,

E K k=1 r k λ n k Cx k γ(ℓ τ 2 ;Y ) = E E τ n=1 K k=1 γ n r k λ n k Cx k Y ≤ C α E E τ n=1 K k=1 γ n r k Cx k Y = C α E K k=1 r k Cx k γ(ℓ τ 2 ;Y )
by the very definition of property (α). The second part needs a useful theorem (see [2, Theorem 3.18] and [3, Theorem 9.6.10]) stating that bounded subsets of B(H) have R-bounded extensions to γ(H; Y ) whenever Y has property (α). We apply the theorem to the discrete convolution operators

K λ : ℓ τ 2 → ℓ τ 2 (α n ) → n j=1
α j λ n-j-1 where |λ| = 1. Youngs inequality gives K λ ≤ (λ j ) ℓ τ 1 ≤ τ . This uniformly bounded set extends to the corresponding γ-spaces, and allows the first estimate

E K k=1 r k n-1 j=0 λ n-j-1 k CT j (λ k -T )x k γ(ℓ τ 2 ;Y ) ≤ C ′ α E CT j K k=1 r k (λ k -T )x k j γ(ℓ τ 2 ;Y ) ≤ C ′ α K Adm (τ ) E K k=1 r k (λ k -T )x k X .
whereas the second estimate comes from γ-admissibility in time τ .

Theorem 3.5 (Sufficiency of the γ-Russel-Weiss condition). Let X, Y be Banach spaces of finite cotype, (T n ) n∈Z a bounded group on X and C : X → Y a bounded observation. Further assume (γ-RW ). Then C is exactly γ-observable in suffciently large time τ .

Proof. Letting x n = a n T n x in (γ-RW ), where a 0 = a τ = 0 (all other values will be decided upon later). Further, we let λ n = rn rn+1 . As as consequence, we get

E τ n=1 r n a n T n x X E τ n=1 r n a n CT n x Y + E τ n=1 a n (r n T n x -r n+1 T n+1 x) X
Observe that property α of Y implies finite cotype, and by [START_REF] Diestel | Absolutely summing operators[END_REF]Theorem 12.27] we can replace Rademacher sums in the middle term by i.i.d. Gaussians. Using summation by parts on the last expression, as in the proof of Theorem 2.3, we have

E τ n=1 r n a n T n x X E τ n=1 γ n a n CT n x Y + E τ n=1 r n (a n -a n-1 )T n x X .
Now, since X has type p ∈ [1, 2] and cotype q ∈ [2, ∞), we obtain

1 cq τ n=1 |a n | q T n x 1 /q ≤ αE τ n=1 γ n a n CT n x Y + c p β τ n=1 |a n -a n-1 | p T n x p 1 /p
Here we exploit the bounded group property on first and last term, and contraction principle on the middle one to get

1 Mcq τ n=1 |a n | q 1 /q x ≤ α (a n ) ∞ E τ n=1 γ n CT n x Y + c p M β τ n=1 |a n -a n-1 | p 1 /p
x This inequality is homogenous under scalings of the sequence (a n ) whence we may suppose (a n ) ∞ = 1. If we can achieve

τ n=1 |a n | q 1 /q > βM 2 c p c q τ n=1 |a n -a n-1 | p 1 /p (3.5)
for some τ ∈ N and some (a n ), we infer immediately exact γ-observability of C for (T n ) τ n=1 . Assume τ = 2k and select the "triangle hat" sequence

a n =    n/k for 0 ≤ n ≤ k (τ -n)/k for k < n ≤ τ 0 otherwise
By comparing sums with integrals we know that asymptotically

τ n=0 |a n | q ) 1 /q ∼ τ 1 /q whereas τ n=1 (a n -a n-1 ) p 1 /p ∼ τ -1+ 1 /p
which means that (3.5) is satisfied for τ large enough. An explicit calculation of the best τ is possible numerically, but we do not see how to give a handy explicit formula.

Continous setting

Let U (t) = e -itA a bounded group on X, M = sup t>0 U (t) and assume

E τ n=1 r n x n X ≤ α E τ n=1 r n Cx n Y + β E τ n=1 r n (iξ n + A)x n X (γ-RW ) Proof. Let x ∈ D(A 3 )
. By experience, we let right away ϕ(t) := sin(2πt/τ ) and h(t) := U (t)x•ϕ(t). This is the same trick as in Miller's proof. The key point is that h ′ (t) + Ah(t) = U (t)x • ϕ ′ (t). Moreover, h is of class C 3 , and τ -periodic. We can devellop h is a Fourier series

h(t) = n∈Z h n e 2πntτ i
where h n = 1 2πτ τ 0 h(t)e -2πntτ i dt. The regularity of h yields not only uniform convergence of the Fourier series, but allows as well to differentiate it term-by-term (observe that ( n • h n ) n is summable) as well as to verify that

Ah(t) = n∈Z (Ah n )e 2πntτ i .
We assume (γ-RW ) and let ξ n = 2πn/τ and x n = h n . Then

E n∈Z γ n h n X ≤ α E n∈Z γ n Ch n Y + β E n∈Z γ n (iξ n + A)h n X
In order to pass from finite sums to their limit, the above series, observe the key property, a sort of γ-Parseval identity: on the left hand side As a result, we collect the inequality U (t)x • ϕ(t) γ(0,τ ;X) ≤ α CU (t)x • ϕ(t) γ(0,τ ;X) + β U (t)x • ϕ ′ (t) γ(0,τ ;X)

Now type and cotype come into play, as in the discrete setting: by [4, Theorem 3.2], a Banach space has type p and cotype q if, and only if B

Lemma 2 . 1 (

 21 Russell-Weiss condition). If C is an admissible and exactly observable observation for (T n ) τ n=1 then (RW) holds on D. If r(T ) ≤ 1 then (RW) holds on C. First we start with a small observation, whose continuous counterpart is well known [8, Prop. 6.5.6]. Lemma 2.2. If (RW) holds then

  ) e -2πint/τ dt X -→ U (t)x • ϕ(t) γ(0,τ ;X)when N → +∞, since (e -2πint/τ ) is an orthonormal basis on L 2 (0, τ ). Similarly, we have on the right hand side separately (t)x • ϕ(t) γ(0,τ ;X)and, using an integration by parts and the above mentioned key featureE |n|≤N γ n (iξ n + A)h n Y (t) + Ah(t)) e -2πint/τ dt X -→ U (t)x • ϕ ′ (t) γ(0,τ ;X)

/p-1 /2 p,p

(0, τ ; X) ֒→ γ(0, τ ; X) ֒→ B 1 /2-1 /q q,q (0, τ ; X)

where the embedding constants are at most 2T γ p (X) 2 and 2C γ q (X) 2 (see the proof of [4, Theorem 1.1] for the constants). This means that we get by these embeddings and the contraction principle

The definition of the vector-valued Besov space norm allows to ensure

as well as

Uff! Wird schon gut gehen :)
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