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ABSTRACT

Many objective quality metrics have been proposed over the
years to automate the task of subjective quality assessment.
However, few of them are designed for 3D graphical contents
with appearance attributes; existing ones are based on geom-
etry and color measures, yet they ignore the visual saliency
of the objects. In this paper, we combined an optimal sub-
set of geometry-based and color-based features, provided by
a state-of-the-art quality metric for 3D colored meshes, with
a visual attention complexity feature adapted to 3D graphics.
The performance of our proposed new metric is evaluated on
a dataset of 80 meshes with diffuse colors, generated from
5 source models corrupted by commonly used geometry and
color distortions. With our proposed metric, we showed that
the use of the attentional complexity feature brings a signifi-
cant gain in performance and better stability.

Index Terms— Perceptual quality metric, 3D graphics,
saliency, visual attention complexity, diffuse color.

1. INTRODUCTION

Nowadays, 3D Graphical Contents (3DGCs) are widely de-
ployed in several domains such as digital entertainment,
architecture, medicine, etc. These data undergo diverse pro-
cessing operations, which introduce distortions that may
impact the visual quality of the final rendering and thus the
user’s Quality of Experience (QoE). In this sense, it is funda-
mental to evaluate the visual quality of 3DGCs as perceived
by human observers. While subjective quality assessment
tests can be very time-consuming and tedious, many objec-
tive quality metrics have been proposed over the years that
automate the task. Most of these metrics were designed for
3D contents without appearance attributes; they rely on its
geometry characteristics [1]. With respect to 3D content with
color or material information, very few works have been
published: metrics proposed for meshes with diffuse texture
[2, 3] are usually based on a combination of mesh quality
and texture quality. Very recently, the Color Mesh Distortion
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Measure (CMDM) [4] was proposed for 3D meshes with dif-
fuse colors. It is the first metric that operates entirely on the
mesh domain. This metric incorporates perceptually relevant
curvature-based and color-based features.
As can be seen, the mentioned model-based metrics (i.e., they
operate on the 3D model itself and its attributes) are based on
geometry and color/texture attributes. They ignore the visual
saliency of the objects. In fact, visual saliency is an important
feature of the human visual system. It describes the human
attention distribution or the eye movements for a given scene
[5]. We can use the visual saliency to determine perceptually
salient regions. Finding these perceptually important regions
has become a useful tool for many applications such as view-
point selection [6], mesh simplification [7], segmentation [8],
etc. In a recent work [9], authors suggested a view-based ap-
proach to perceptually characterize 3DGCs based on saliency
dispersion. They extended the concept of Visual Attention
Complexity (VAC) indicator, already introduced in 2D imag-
ing context [10], by adapting it to 3DGCs. Such approach
offers the possibility to associate a VAC score to each view of
a 3D object.
Considering the above-presented works, we believe that vi-
sual saliency has a crucial influence on the perceived quality
and that combining this information appropriately with geo-
metric and appearance attributes can improve the perceptual
quality prediction. Therefore, we propose an objective quality
metric for colored 3D meshes, which is built as an extension
of CMDM; state-of-the-art metric for such data. It combines
the geometry and color features of CMDM, with a new per-
ceptual feature motivated by visual saliency. The proposed
metric is detailed in section 2, while its results are presented
in section 3. This work attempts to make a first step towards
integrating a visual saliency measure in a perceptual quality
metric for 3D contents.

2. INTEGRATING VISUAL SALIENCY INTO AN
OBJECTIVE QUALITY METRIC FOR COLORED

MESHES

The metric we propose is an extension of the Color Mesh Dis-
tortion Measure (CMDM)[4], which is a full-reference metric
that operates entirely on the mesh domain and incorporates



accurate geometry and color features. The novelty of our
metric is the integration of the Visual Attention Complexity
(VAC) indicator [9] to these latter features. We refer to our
metric as CMDM-VAC. An overview of the proposed metric
is shown in Figure 1.

Fig. 1. Overview of the proposed metric.

2.1. CMDM concept

CMDM is based on the following steps [4]: First, a corre-
spondence is computed between the distorted Mdist and the
reference Mref models. Then, a set of geometric and color
features is computed locally, i.e., over the points belonging
to a spherical neighborhood around each vertex v of Mdist

and their corresponding points v̂ on Mref . The neighborhood
radius is set as in [4].

• Geometry-based features: These features are based on the
curvature information [11].

Curvature comparison f1(v) =
|Cv − Cv̂|

max(Cv, Cv̂) + k
(1)

Curvature contrast f2(v) =
|σCv − σCv̂

|
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Curvature structure f3(v) =
|σCv

σCv̂
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where k is a constant set to 1 to avoid instability. (Cv , Cv̂),
(σCv

, σCv̂
) and σCvCv̂

are respectively Gaussian-weighted
averages, standard deviations and covariance of curvature
over the points belonging to the neighborhood of v and over
their projection on Mref .

• Color-based features: As explained in [12], these fea-
tures are computed in the perceptually uniform color space
LAB2000HL [13], in which each vertex v has of a lightness
and two chromatic values (Lv , av , bv). The chroma of v is
defined as: Chv =

√
a2v + b2v .

Lightness comparison f4(v) =
1
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(4)

Lightness contrast f5(v) =
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Lightness structure f6(v) =
σLvLv̂

+ c3
σLv
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(6)

Chroma comparison f7(v) =
1

c4(Chv − Chv̂)2 + 1
(7)

Hue comparison f8(v) =
1

c5∆Hvv̂
2

+ 1
(8)

with ∆Hvv̂ =
√

(av − av̂)2 + (bv − bv̂)2 − (Chv − Chv̂)2.
∆Hvv̂ refers to the Gaussian-weighted average hue difference
between the neighborhood of v and its projection. The con-
stants values ci were set as in [12]. Note that, the color-based
features are inverted (fj(v) = 1− fj(v)) so that a value of 0
indicates that there is no local geometric and color distortion
around v. All features ∈ [0, 1].
The geometric and color features are computed for each ver-
tex of the Mdist. In order to obtain global features fj , local
values of each feature are averaged over all the vertices. The
global distortion (GD) score is thus defined as a linear com-
bination of fj , optimized through logistic regression.

GDMdist→Mref
=

∑
j∈S

wjfj (9)

S is the set of feature indexes of the linear model. wj weights
the contribution of each feature to the overall distortion score.
In order to strengthen the robustness of the metric and to ob-
tain a symmetric measure, GDMref→Mdist

is computed, and
the average is retained as the final distortion measure. As
in [14], the optimal subset of features and their corresponding
weightswj are determined through an optimization computed
through cross-validation.

2.2. Integration of the VAC measure

We highlight that the saliency information has been ex-
ploited on conventional media (e.g., images and videos)
using saliency maps directly without any further processing
to improve the performance of quality metrics [10]. In this
work, we consider colored 3D graphical contents. Moreover,
we do not use saliency maps directly but instead compute
the Visual Attention Complexity (VAC) indicator adapted to
3D objects [9]. This indicator is incorporated as a perceptual
feature in CMDM in order to improve its performance. The
VAC indicator consists in evaluating the complexity of the
visual saliency as shown in Figure 2. We distinguish views
with low VAC scores indicating focused 3D contents and
those with high VAC scores indicating exploratory 3D con-
tents, as detailed later in this section. The VAC is computed
as follows: Once the views of the 3D object are generated,
a computational saliency model is used to compute saliency
maps. We use the Salicon [15] computational model as rec-
ommended in [9]. We apply a mask on the visible surface of
the 3D object with a border enlargement (using a morpho-
logical operation with a disk diameter equal to 1° of visual
angle). This enlargement takes into consideration the gazing



uncertainty. Since the saliency map represents the probability
of gazing at a given pixel, a normalization is applied to the
masked saliency data so that the pixel values ∈ [0,1]. Finally,
we compute a conditional entropy on the normalized saliency
information, i.e., zero probability pixels are not included.
Thus, the VAC score of a rendered 3D object view is defined
as follows:

V AC score = −
n∑

i=1

pi log2 pi (10)

with pi = hi/K, where hi is the histogram for the intensity
value i in the masked saliency map S (i.e., the visible surface
of the 3D object), and K is the total number of pixels in S.
We obtain a score associated with each view of the 3D object.
Low VAC score values indicate that there are strongly salient
regions on the visible surface of the rendered 3D object. This
is referred to as focused views (see Figure 2.a). On the con-
trary, when the VAC scores are high, the saliency is diffused
(i.e., overall gazing behavior). We then refer to exploratory
views (see Figure 2.b).

(a) VAC score: 5.81 (b) VAC score: 7.51

Fig. 2. Saliency data and corresponding VAC scores. In (a) and (b),
the rendered view of a 3D object is on the right, and its correspond-
ing masked saliency information is on the left.

To ensure consistency with geometry-based and color-
based features, we normalized the VAC feature as follows:

V AC comparison f9 =
|V ACdist − V ACref |

V ACref
(11)

All features are then within the range [0, 1]. The VAC feature
was included in the global distortion score as the 9th feature,
noted as f9 in the linear combination detailed in Eq. 9.

3. RESULTS AND EVALUATION

3.1. Database
We trained and tested our metric on a very recent database
produced from a subjective study, based on the Double Stim-
ulus Impairment Scale (DSIS) method and conducted in a
virtual reality environment [4]. This database is composed
of 480 dynamic meshes with vertex colors. It is the first
public1 dataset for such data. The stimuli were generated
from 5 source models (“Aix”, “Ari”, “Chameleon”, “Fish”,
“Samurai”) subjected to 4 types of distortion, each applied
with 4 strengths. The selected distortions are uniform quan-
tizations applied on either (1) geometry (QGeo) or (2) color
(QCol), simplification algorithms that take into account either

1https://yananehme.github.io/datasets/

(3) the geometry only (SGeo) or (4) both geometry and color
(SCol). Each stimulus was displayed in 3 viewpoints/views
and animated with two short movements. In this work, we
do not consider the influence of either viewpoints or anima-
tions. Thus, for a given stimulus, we averaged its mean opin-
ion scores (MOSs) over the different viewpoints and anima-
tions. The database used is therefore composed of 80 stimuli.
We note that the VAC feature used in the following analyses
is the average of VAC scores computed for each viewpoint.

3.2. Toward an optimal combination of features

Since the number of features we implemented is high, we de-
signed two Leave-One Out Cross-Validation tests (LOOCV)
in order to select the optimal subset of features, as in [4]. In
fact, training the metric using all the features increases the
risk of over-fitting. Moreover, features may have redundancy
between each other. LOOCV tests consist of splitting the
dataset into 2 parts: a training set used to optimize feature
weights by logistic regression and a test set used to evaluate
the obtained metric. For the first LOOCV test, the splitting
is made according to the source models. This amounts to se-
lecting 4 source models among 5 for training and using the
remaining model and its distortions for testing. After 5 folds,
each source model has been used as a test set. In the second
LOOCV test, we divided the database according to distortion
types. We trained the metric on 3 distortion types out of 4. We
repeated this operation 4 times so that each distortion type is
used once for testing.

Since we have 9 different features, there are 512 possible
combinations of features. Hence, we exhaustively searched
through all possible combinations and selected the one that
generates the best average performance of our metric over
all the test sets in terms of the mean of Pearson (PLCC) and
Spearman (SROCC) correlations. In the end, we found that
the best model of CMDM-VAC is composed of only 5 fea-
tures: Curvature contrast (f2), Lightness contrast (f5) and
structure (f6), hue comparison (f8) and VAC comparison
(f9). Interestingly, the visual attention complexity feature
was selected among the optimal subset of features indicat-
ing the importance of the visual saliency on the perceived
quality of artifacts. This is consistent with the single feature
performance analysis: the (PLCC, SROCC) of f9 with the
MOSs are (0.61, 0.7). The results of the other features are
reported in [4]. Note that, the selected features for CMDM
are f2, f5, f6 and f7 [4].

3.3. Performance of our metric and comparisons
In figure 3, we report the average performance of our met-
ric CMDM-VAC over the cross-validation test sets. For com-
parison purposes, we included the results of CMDM and 3
state-of-the-art Image Quality Metrics (IQMs): SSIM [16],
HDR-VDP2 [17], iCID [18], reported in [4].

In both LOOCV tests, CMDM-VAC performs better than
CMDM. Considering the LOOCV test among the distortions,
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Fig. 3. Pearson (PLCC) and Spearman (SROCC) correlations of
several metrics with MOSs of the used database [4]. Mean perfor-
mance evaluation measures are reported. Error bars indicate the stan-
dard deviation over the test sets.

CMDM-VAC and CMDM outperform IQMs showing that the
latter have difficulties in ranking distortions applied on differ-
ent sources [1].

The most noticeable improvements of CMDM-VAC were
observed for the 2 test sets presented in Table 1. As reported
in [4], CMDM exhibits a poor performance when assessing
the quality of stimuli geometrically quantized (QGeo) due to
the fact that this distortion superimposes the vertices of the
stimulus, which leads to not knowing the exact vertex color
taken into account in the rendering pipeline. Table 1 shows
that integrating the VAC considerably improves the results.
Indeed, this measure is computed on a snapshot of the stimu-
lus that naturally incorporates the entire rendering conditions.

Table 1. Performance comparison of several metrics on some test
sets of the 2 LOOCV tests. For metrics marked with a *, the values
are reprinted from [4].

QGeo Chameleon
PLCC SROCC PLCC SROCC

CMDM-VAC 0.926 0.864 0.89 0.89
CMDM* 0.882 0.825 0.83 0.83
SSIM* 0.875 0.794 0.823 0.868
HDR-VDP2* 0.946 0.938 0.849 0.818
iCID* 0.88 0.838 0.924 0.921

Regarding the second test set, it denoted in [4] that of all
the source models, the metrics perform less well on the model
having the most content information/details: the Chameleon.
Table 1 shows that saliency is potentially an important cue
for a more effective quality assessment of complex and rich
models.

3.4. Recommended weights

To provide the final model of CMDM-VAC, we averaged the
weights obtained for each of the 9 training sets from the 2
LOOCV tests. The recommended weights, as well as the im-
portance of each feature, are reported in Table 2.

The (PLCC, SROCC) computed over the whole dataset
(80 stimuli) for CMDM-VAC and CMDM are (0.936, 0.922)

Table 2. Weights and importance of the selected features. The
importance values are defined as the weights scaled with the standard
deviation of the features.

Features f2 f5 f6 f8 f9

Recommended weights 0.092 0.202 0.028 0.182 0.496
Importance 0.293 0.359 0.051 0.165 0.131

and (0.913, 0.9), respectively. The improvement in our metric
results, after integrating the VAC, is statistically significant
(with a p-value=0.0094, obtained by a statistical test on the
logistic regression residual of the 2 metrics).

3.5. Performance evaluation per quality range
To assess whether our metric is vulnerable to the quality range
of stimuli, we divided the database into 2 groups: (1) low-
quality stimuli having MOSs ∈ [1,3[ and (2) good quality
stimuli having MOSs ∈ [3,5]. Results are shown in Figure
4.

PLCC SROCC

[1, 3[ [3, 5] [1, 3[ [3, 5]
0.5

0.6

0.7

0.8

Quality Ranges (MOSs)

CMDM−VAC CMDM SSIM HDR−VDP2 iCID

Fig. 4. Performance evaluation of several metrics according to the
quality range of stimuli.

Among the IQMs, HDR-VDP2 seems the best choice for
estimating the perceived quality, especially for near-threshold
distortions (MOSs > 3). Unlike IQMs, CMDM-VAC per-
forms slightly better on low-quality stimuli than on higher
quality ones. Moreover, the overall performance of our met-
ric seems to be more stable over quality ranges than that of
IQMs.

4. CONCLUSION

In this work, we extended the perceptual quality metric
CMDM, designed for 3D meshes with diffuse colors: we
combined its geometry and color features with a perceptual
feature motivated by visual saliency.
Including the visual attention complexity (VAC) feature
seems promising to improve the visual quality prediction.
In fact, integrating this feature in CMDM showed an overall
improvement of its performance, especially when assessing
the quality of stimuli geometrically quantized. As future
work, it would be interesting to explore how the VAC can
improve other quality metrics.
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