
HAL Id: hal-03356620
https://hal.science/hal-03356620

Submitted on 28 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of the belief function theory to validate
multi-agent based simulations

Alexandre Veremme, Eric Lefevre, Gildas Morvan, Daniel Jolly

To cite this version:
Alexandre Veremme, Eric Lefevre, Gildas Morvan, Daniel Jolly. Application of the belief function
theory to validate multi-agent based simulations. First int. workshop on the theory of belief functions,
Apr 2010, Brest, France. �hal-03356620�

https://hal.science/hal-03356620
https://hal.archives-ouvertes.fr


Application of the belief function theory to validate
multi-agent based simulations
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Abstract—In this article, an architecture to validate agent
based simulations is presented. The proposed pyramidal architec-
ture is based on the belief function theory to represent and handle
imperfect information at three different levels. We are then able
to provide, at many steps during the simulation, the validity state
compared to the real system. First results of this architecture
are presented within the framework of an application in forensic
entomology.
Keywords: belief functions, multi-agent based simulation,
validation.

I. INTRODUCTION

Modeling biological systems, often considered as complex
systems, with a large number of heterogeneous individuals
interacting, is not an obvious exercise. Various paradigms can
be used, but intuitively, the multi-agent based paradigm [1]
seems to be an ideal alternative, particularly to enable property
emergence and self-organization from individual interactions.
While the computational cost of running a multi-agent based
simulation can be exorbitant, it increases significantly when a
reasoning or treatment is desired from these simulations [2].
Indeed, it is often necessary to validate the simulation through
observations ; these observations are usually made from local
agent properties, the global simulation properties are not
accessible or available.

Simulation validation consists in determining if the simu-
lation is ”reasonably” similar to a given reality [3]. The idea
is then to compare the data obtained from the simulation to
their counterparts in reality. The problem is that these data are,
by definition in complex systems, numerous, and their units
and types (e.g. qualitative, quantitative) are different. In this
context, the proximity determination of a simulation from a
certain reality can be difficult, particularly because the quality
of their information may be very imperfect (i.e. uncertain,
imprecise). It seems interesting to use and develop a specific
formalism to represent and manage such information. Among
the existing theories, the theory of belief functions [4], [5] can
be well adapted to this kind of problem.

In the framework of developing a decision support system
dedicated to forensic medicine, we face the problem of the
validation of multi-agent based simulations. In the aim of
comparing the proximity of a simulation to a reality provided

by experts (i.e. a set of biological data measured at a crime
scene), we develop a pyramidal observation system of multi-
agent simulations based on the belief function theory.

In the first part of this document (cf. sub-section II-A),
the belief function theory is presented. In the next sub-
section II-B, foundations of multi-agent systems are briefly
presented. The sequel of the article is dedicated to the valida-
tion of agent based simulations (cf. sub-section II-C) and to the
proposed pyramidal architecture (section III). First results are
then presented in the forensic application (section IV) before
developing discussions and conclusions (section V).

II. BACKGROUND

The belief function theory, also called evidence theory, was
introduced by Dempster [6] during his work on the lower and
upper bounds of a distribution probability family. The initial
theory was modified and ameliorated on several occasions, for
instance through the work of Shafer [4] then later thanks to
the work of Philippe Smets on the transferable belief model
(the TBM), a non-probabilistic interpretation of the evidence
theory. We present in this part, the main concepts of the belief
function theory. For more details, the interested reader may
refer to [5].

A. Belief function theory

1) Basic concepts: Let Ω be the exclusive set of N hy-
potheses, solution of a given problem. Ω is called the frame
of discernment and is defined as follows:

Ω = {ω1, ω2, . . . , ωN} (1)

From this frame of discernment Ω, the power set 2Ω can be
built, including the 2N proposals A of Ω:

2Ω = {A|A ⊆ Ω} (2)

A mass function (or allocation1), noted m, is defined by 2Ω

in [0, 1], and verifies: ∑
A⊆Ω

m(A) = 1 (3)

1The term BBA for basic belief assignment is also found in literature.



Each subset A ⊆ Ω such that m(A) 6= 0 is called a focal
element of m. Thus, mass m(A) represents the degree of belief
allocated to the proposal A and that cannot, in the present state
of knowledge, be attributed to a more specific subset than A.
A BBA m is said to be dogmatic if Ω is not a focal set and
normal if m(∅) = 0. As an example, in the transferable belief
model of Philippe Smets, the condition

∑
∅6=A⊆Ωm(A) = 1

is not imposed and m(∅) 6= 0 can exist. This can introduce the
notion of open world while assuming that the belief cannot be
attributed to a subset of Ω. In this case, ∅ can be interpreted
as a proposal which is not in the frame of discernment Ω and
that it is likely to be the solution to the problem as opposed to
the closed world where the set Ω is assumed to be exhaustive.

From the mass function, other belief functions such as
plausibility (noted pl), credibility (bel), implicability (b) and
communality (q) functions can be defined. These functions are
dual measures and represent the same information expressed
in different ways. Moreover, they can be translated from one
to the other thanks to the Möbius transform [7], as follows
between the mass function and the communality function:

q(B) =
∑
A⊇B

m(A) ∀B ⊆ Ω (4)

Based on Shafer’s work [4] on simple basic belief as-
signments (SBBA), Smets proposed the notion of generalized
simple bba (GSBBA) [8]. A GSBBA can be noted Aρ(A) and
Smets showed that these weights ρ(A) for all A ∈ 2Ω \ {Ω}
can be obtained by the following formula:

ρ(A) =
∏
B⊇A

q(B)(−1)|B|−|A|+1
(5)

2) Combination rules: When many sources share beliefs
in relation to the validity of a hypothesis of Ω, the different
points of view can be fused using combination rules. His-
torically, within the framework of the belief function theory,
the Dempster’s conjonctive combination rule and the TBM
conjunctive combination rule (also called the unnormalized
conjunctive combination rule) have played an important part,
especially thanks to their axiomatic justifications [9]. The
merge of two distinct sources mi and mj can be made
using the TBM conjunctive rule of combination, denoted by
mi ∩©mj = mi ∩©j . This rule is commutative and associative
and is defined by:

mi ∩©j(C) =
∑

A∩B=C

mi(A).mj(B),∀C ⊆ Ω (6)

Due to undesirable behaviors (e.g. too important conflict
m(∅)) after the combination or need of source independance),
and based on the works on SBBA and GSBBA, Thierry
Denoeux proposed in [10] a new rule of combination, the
cautious rule. So, the combination of m1 and m2, two non
dogmatic BBAs, using the cautious rule depends on the weight
function:

ω1 ∧©2(A) = ρ1(A) ∧ ρ2(A),∀A ∈ 2Ω \ Ω, (7)

and the final combination mi ∧©mj = mi ∧©j is obtained by:

m1 ∧©2(A) = ∩©A(Ω A ρ1(A) ∧ ρ2(A). (8)

Like the above rules, the cautious rule is commutative and
associative. But the interested property is the idempotent
property (m ∧©m = m) which allows to combine two non
distinct mass functions given by two non independant sources.
Other combination rules have been proposed, e.g. Yager’s
combination or Dubois and Prade’s rules (cf. [9] for a good
preview of these rules).

3) Discounting: When the resulting information in the
belief function is not totally reliable, it may be necessary to
discount this belief. In order to do that, a coefficient α can be
used, which represents the knowledge of the source reliability
and allows to redistribute the beliefs to the set Ω proportionally
to the source reliability. The discounted belief function mα can
be deduced from m and α (i.e. mα = Disc(m,α)) and can
be obtained by the following expression:{

mα(A) = αm(A)
mα(Ω) = 1− α+ αm(Ω). (9)

In literature several methods have been developed to compute
the discounting factor, e.g., [11].

4) Decision making: Many solutions have been proposed to
make decisions in the evidential framework (e.g. maximize the
credibility or minimize the plausibility degrees), we present
in this paper the retained solution for our application, the
pignistic probability of Philippe Smets, defended within the
transferable belief model [5], which is defined by the following
equation:

∀ ωn ∈ Ω BetP (ωn) =
1

1−m(∅)
∑
A3ωn

m(A)
|A|

(10)

where |A| represents the cardinality of A ⊆ Ω. Once the
pignistic probability obtained, it is possible to use classic tools
of statistical decision theory. Readers could find justifications
and details of this transformation in [12].

B. Multi-agent systems

The ever more increasing needs to understand real and
complex systems have encouraged modelers to implement
modeling paradigms from distributed artificial intelligence
(DAI). Especially, the multi-agent paradigm has growed in
the modeling of living systems. As in the previous section,
essential concepts of multi-agent systems are presented and
the interested reader may refer to [1], [13] for more details.

The term ”agent” is a generic term for which no definition
really comes to a consensus. A general definition2 comes
from [1]. Ferber defines the agent as an autonomous virtual
(or physical) entity that:
• can act in an environment,
• can perceive its environment,
• can communicate directly (e.g., by sending messages)or

indirectly (e.g., via the environment) with other agents,

2A simplified version of Ferber’s definition is presented on purpose.



• is governed by a set of trends (e.g. objective optimiza-
tion) and is limited by a set of constraints (e.g. limited
resources),

• has competences and offers services.
From this definition, a definition of multi-agent sytems (MAS)
can be given. It is a system composed of:
• an environment En with a certain metric,
• a set of object Ob situated in En,
• a set of agents Ag that can perceive and manipulate the

objects,
• a relation set ROb between the objects,
• a relation set RAg between the agent (e.g. communicate,

share resources etc.),
• a relation set R between the agents and the objects (e.g.

carry, move etc.),
Historically, two types of agents can be distinguished in

MAS: reactive or cognitive agents. First ones has no explicit
environment representation and they react reflexively to stimuli
(e.g. an agent modelizing an insect). Cognitive agents have
a more developed environment representation, explicit goals,
memory abilities or capabilities of individual reasoning. There
may also be hybrid agents and multi-agent systems composed
of reactive and cognitive agents, as in our application presented
thereafter.

C. Validation of multi-agent simulations and associated prob-
lems

Validation of any model is an important task [3]. This
problem matters of course within the framework of multi-agent
simulations, especially with their expanding importance and
their implementations in various fields [14]. Validate a MAS
usually requires expert interventions, expert typically com-
pares the real system outputs to their modeled equivalents3.
Comparing the model to reality is done using various tests,
that can be objective, quantitative, subjective or qualitative.
Because the information conveyed in such systems are gen-
erally numerous, very heterogeneous and largely inside the
agents themselves, the validation of multi-agent simulations is
directly done through observation of agents (and/or their com-
munications [15]). Observation of emergent properties is more
difficult, particularly because of the difficult characterization
of such properties.

Automation of observation process has already been ad-
dressed and architectures (e.g., [16]) have been presented to
validate agent based simulations. In a recent publication [2],
we have also shown that a statistical approach of observation
could be interesting. The sample survey theory [17] seems to
provide a non-negligible interest if the number of agents is too
high (several thousands).

But the real system complexity inevitably leads to a difficult
access to parameter values, e.g., it seems rather difficult to
observe and know status of each ant in a colony at a given

3When the validation is a part of an iterative process to successively
retroactive on simulation inputs, in order to obtain a model enough closed
to the reality, this iterative process is called calibration [3].

time. These difficulties are all the more important as the system
dynamics lead to rapid, regular, agent-specific changes of these
parameters. Real parameters can only be observed occasionally
and usually at so called ”simple” or ”obvious” moments: at
the initialization step, during downturns (e.g. when ants enter
in diapause stage) or at the end of the experiment. Within the
framework of the agent-based simulation validation, the lack
of knowledge of these values has a direct impact on possible
times of validation: it seems intuitively difficult to validate a
model at a time tv when the known values of the real system
have been observed at a time tw 6= tv .

However, when the observation data are only available at
tw, and just because the simulation costs are important, it
may be interesting to estimate the model state and predict the
validation results. If the parameter dynamics can be known
or estimated and that the imperfections can be managed, even
if the system is complex, it seems that predictions may be
possible. The usual definition of validation (i.e., ”compare the
results of the model – in our case, outputs of the simulation –
to those of the real system”) can be extended into ”check
if the model is still in agreement with the real system”.
Thus, it seems interesting to develop a validation system
based on recent work, the previous remarks, and based on
the belief function theory to manage imperfect information.
We present afterwards, the simulation validation process and
the appropriate agent based architecture.

III. VALIDATION OF MULTI-AGENT SIMULATIONS BASED
ON THE BELIEF FUNCTION THEORY

In this section, the proposed validation architecture is de-
tailed: the sub-section III-A presents the general multi-agent
organisation of validation system and the next one presents
the interest of belief functions within such a framework.

A. Pyramidal architecture

We consider a real system and its multi-agent model, both
evolving in time t ∈ [t0; tfinal]. An expert can give us the set
of validity domains Dom = {dom1, . . . , domx, . . . , domX}
of the parameters P = {p1, . . . , px, . . . , pX} observed at the
time tobs ∈ [t0; tfinal]. These parameters concern properties
of agents and groups of agents.

The adopted validation strategy is to ”agentify4” each
parameter of P . So, we consider the time tv ∈ [t−val; t

+
val]

with [t−val; t
+
val] ⊆ [t0; tobs]. At tv , each px is a source that

can answer the next question:

Q: ”At tv , am I still in agreement with facts found by the expert
at tobs?”.

Each parameter can answer the question Q whenever wanted
between the minimum time constraint t−val and the maximum
time constraint t+val. To answer the question Q, px is able to
probe the set of appropriate agents Ag′ ⊆ Ag by transferring
them the related question Q. The answer of the question Q
belongs to the set Ω = {yes, no}.

4”Agentify” is an expression used to turn system actors or non-actors (e.g.,
the parameters) into an agent in the simulated model.
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Figure 2. General behaviour of a specific Parameter-agent px

As in most multi-agent simulation platforms, simulation
could be controlled (i.e., launching, agent creation...) by an
agent named Launcher-Agent5. In these platforms, this agent
usually initializes the simulation and launches the simulation
agents. In the proposed architecture, the Launcher-Agent also
launches the Validation-Agent needed to validate simulations
and responsible for the set of Parameter-Agents P (cf.
figure 1). So, a validation system on two intermediate levels,
between the Launcher-Agent and simulation agents Ag,
has been developed. This architecture is called pyramidal
because of the increasing number of involved agents from the
Validation-Agent level to the last level.

1) General behaviour of validation agents: Whatever the
validation level (Validation-Agent or Parameter-Agents), an
agent has always the same general behaviour: it receives a
question, it transfers this question to appropriate ”subordinate”
agents and waits for responses before informing its superior
agent (cf. figure 2).

5Name used for example in the MadKit platform [18].

The first validation level, the Validation-Agent manages the
validation process (e.g., start, stop, time management...) after
being created by the Launcher-Agent. Once launched, this
agent launches Parameter-Agents (their number varies with
expert observations). At a minimum time constraint t−val, it
informs each Parameter-Agent of:
1 - information of all the potential simulation agents Ag

capable of answering the question Q,
2 - the validity domain domx of the parameter px at tobs,
3 - the next time limit t+val before which the Parameter-Agents

should have answered.
As shown on figure 2, once launched, a Parameter-Agent

px:
1 - selects an agent group Ag′ ⊆ Ag to probe,
2 - informs the Ag′-agents of the question Q and the validity

domain domx of the parameter px at tobs,
3 - communicates the time limit t+val given by the Validation-

Agent.

2) Behaviour of the probed simulation agents: At each
simulation step, before running its regular life cycle, a sim-
ulation agent agi verifies if it receives a message Q from a
Parameter-Agent px. When it is contacted at t−val, it checks
if it is concerned by this request. If so, it saves the question
Q, the time constraint t+val and the parameter validity domain
domx. Depending on its activity, it can answer the question
between the time steps t−val and t+val. At tv ∈ [t−val; t

+
val], to

answer the question, agi takes into account the validity domain
domx and compares it to the courant value of px and send its
response to its px.

B. Interest of belief functions to validate multi-agent simula-
tions

To handle imperfect information exchanged by agents,
responses are expressed as belief functions. We present in
this section the way of contruction and management of basic
belief assignments in the validation system. An illustrative
example is presented in figure 4.

1) Evidential response of the simulation agents Ag: At tv ∈
[t−val; t

+
val], to answer the question, agi ∈ Ag′ (with Ag′ ⊆ Ag)

takes into account the validity domain domx and compares it
to the courant value of px. It sends an evidential response
to its px. Various methods can be implemented to create the
mass function mtv

x,agi
: 2Ω 7→ [0, 1], where Ω = {yes, no}.

For example, in the case of a quantitative parameter within
the framework of our application (see section IV), we have
defined the mass assignment method presented on figure 3.

2) Management of basic belief assignments by the
Parameter-Agents: Between its own time limits [t−val; t

+
val], a

Parameter-Agent px can receive multiple responses at different
times tv from subordinate Ag′-agents. To get a bba related to
the parameter validity, px has to combine the mass functions
mtv
x,agi

but this can only be done at the time t+val (i.e. when
all the Simulation-Agents should have answered the question).
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mass
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Figure 3. Method of mass assignment for a simulation agents agi and for
a quantitative parameter px. The value ptv

x,agi
corresponds to the value of

the px-parameter of the agent agi at the time tv and domx is the limit
value observed at tobs. The expression |ptv

x,agi
−domx| is an absolute value

and the values λ1, λ2, λ3 and λ4 correspond to thresholds currently defined
empirically. So, for example, when the result of the expression |ptv

x,agi
−

domx| is inferior to λ1, the value ptv
x,agi

seems enough similar to the limit
domx to be considered as a correct value and to assign all the belief to the
singleton yes.

So, before combining the bbas, px discounts them by
respecting the principe of memory decay presented by Philippe
Smets in [9]. This principe states that every bba is discounted
with time: the longer the time since the bba has been collected,
the stronger the discounting. The bba is discounted by the
reliability factor α(tv) that is a decreasing function of time
with α(t−val) = 0 and limtv→t+val

α(tv) → 1. At t+val, for all

agi ∈ Ag′, px gets the masses m
t+val
x,agi by discounting the

mtv
x,agi

with time (cf. sub-section II-A3):

m
t+val
x,agi = Disc(mtv

x,agi
, α(tv)), ∀ agi ∈ Ag′ (11)

Finally, to get the bba m
t+val
x related to the validity of the

parameter px at t+val, the Parameter-Agent px combines all

the mt+val
x,agi with the cautious rule of Thierry Denoeux (cf. sub-

section II-A2):

m
t+val
x = ∧©agi∈Ag′ m

t+val
x,agi (12)

In this context, the cautious rule of combination is preferred for
its idempotence property since the surveyed agents of Ag′ may
not be completely independent (e.g. they can interact together,
evolve with the same behaviour models...).

3) Evidential validation at the Validation-Agent level:
The last validation level is to combine the bbas mt+val

x given
by the Parameter-Agents of P at t+val. Currently, because
the Parameter-Agents probe different Simulation-Agents and
attempt to estimate the validity of different parameters, they
can be considered totally independent. The conjunctive rule of
combination seems to be well adapted. So, the final basic belief
assignment mt+val can be obtained with the next equation:

mt+val = ∩©px∈P m
t+val
x (13)

Once this last bba mt+val obtained, it only remains to forward
the information (processed or not, using for example the
pignistic transformation) to its Launcher-Agent that can be
able to take retrospective actions on the simulation (e.g. stop,
reset...).
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x2,ag3
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mt4
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x1,ag1

mt4
x1,ag2

mt4
x2,ag3

mt4
x2,ag4

mt4
x2,ag5

mt4
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mt4
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∩©
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BetP

Figure 4. Example of a general architecture of belief functions with five
Simulation-Agents, two parameters and between the time limits t0 and t4.

IV. FIRST RESULTS WITHIN THE FRAMEWORK OF THE
FORENSIC ENTOMOLOGY PROJECT

During a criminal investigation, it is essential to obtain a
maximum of information on the conditions of a manslaughter.
Many methods to exploit the indications on the murder scene
are known but, for large post-mortem intervals (PMI), only one
of these techniques is useful in practice: forensic entomology.
It consists in studying the insects found on a cadaver to
estimate the time of its death. Modern PMI entomology esti-
mation methods are based on insect development models but
because of the important system complexity, results given by
the experts are imperfect. To improve the decision-making and
assist the forensic scientists, a decision support system (DSS)
has been developed to take all the ecosystemic parameters and
a significant quantity of biological models (e.g., usually an
expert can only use one or two single model). This project is
based on a predictive multiagent model of insect development
and cadaver decomposition in a complex ecosystem. It is used
to determine if a hypothesis - a possible time of death - is
coherent with the observations available on the ecosystem of
the crime scene and the entomofauna found on the victim.
The proposed pyramidal architecture has been implemented to
compare the simulations to the reality given by experts at the
cadaver discovery (e.g., which species, numbers of insects by
species, reached development rates etc.). The validation system
has been integrated into a recursive process of calibration to
calibrate the system and detect the most probable time of
death. More information about this model, the real system and
the DSS can be found in [19].

Figure 5 shows the final results of a real case in which the
person had disappeared around June 17th and the cadaver was
found on June 29th6. Experts have identified three species
for which many development rates have been calculated or
estimated (i.e., it can have different laying moments for the
same species and so at the cadaver’s discovery, insects of
same species can have different development rates). In this
example, the development rate parameters are agentified and

6For confidentiality reasons, some information, e.g., the year and other
details about crime circumstances, are omitted.
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have to answer question Q:

Q: ”At tv , am I still in agreement with the development rate
given by the expert at tobs (the date of cadaver discovery)?”.

This example is only based on five estimated development
rates and the Parameter-Agents interview the Simulation-
Agents of the concerned species to answer the question. These
first results are really interesting because experts had estimated
the time of death around June 25th. The global system has still
to be validated, but already, experts agree that the use of all
ecosystemic information appears to be useful to estimate the
time of death and make a more reliable and prudent decision.

V. DISCUSSIONS AND CONCLUSIONS

The proposed validation architecture of agent based simu-
lation allows to take into account imperfect data while being
faster and more efficient than other validation methods usually
used in multi-agent simulation platforms. With slight changes
in these platforms, this pyramidal architecture can be easily
integrated.

At the moment, only the validation of agent and group
properties are developed and implemented but possible exten-
sions on validations of the states of environment, objects and
their different relations (cf. section II-B) could be proposed.
Moreover, even if the quality of the results can be dependent
on several characteristics, such as the assignment method of
beliefs of Simulation-Agents, various methods of assignment
have been proposed in literature. Only the reasoning from
quantitative parameters has been implemented but later work
will concern qualitative ones (e.g., reasoning on qualitative
parameters could be very useful in our forensic application).
For this, it is planned to switch to different works such as [20].
To go more thoroughly into the study of impacts on the final
validation decision, different combination rules and forms of
the discounting decreasing function will be analyzed.

Finally, and this is where this validation method seems very
interesting, important work on learning the evolution of bbas at
different levels will be developed. Indeed, to reduce the com-
putation time related to the validation and to ”cleverly” limit
moments of validation, the issue of validation time choices and
agents probed (i.e. type, number) remains important. At the

Validation-Agent level, interest in the reliability of Parameter-
Agents may also be important: the analysis of the possible
discounting or reinforcement of some of them could appear
significant.

As a conclusion, this validation system is being integrated
into a higher level system of evidential calibration dedicated
agent based simulations. This work is ongoing but already
promising.
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