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Abstract

A signed graph (G, σ) is a graph G together with an assignment σ : E(G) →
{+,−}. A homomorphism of a signed graph (G, σ) to a signed graph (H,π) is a
mapping of vertices and edges of G to those of H such that signs of closed walks
(products of signs of edges) are preserved. Given a class C of signed graphs, a
connected signed graph (B, π) with no positive odd closed walk is said to be C-
complete if every connected signed graph in C with no positive odd walk whose
negative girth is at least the negative girth of (B, π) admits a homomorphism to
(B, π).

As a potential extension of the 4-Color Theorem we conjecture that: If a con-
nected signed graph (B, π) has no positive odd walk and is planar-complete, then so
is its extended double cover, that is a signed graph on 2|V (B)| vertices built from
(B, π). Then, in support of this conjecture, we show that it holds on the smaller
class of signed K4-minor-free graphs. Finally, for each negative girth k, we build a
signed graph (B, π) of order nearly k2

2 which has no positive odd walk, its negative
girth is k and it is complete for the class of signed K4-minor-free graphs. This is
nearly the optimal order for such graphs.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

Some of the most prominent theories and conjectures in graph theory are about proving
that certain graphs have rich enough structures. For example, the 4-Color Theorem
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(4CT) is to say that K4 is rich enough to admit a homomorphism from any simple planar
graph. Attempts to build other graphs of similarly rich enough structures has led to the
introduction of the notion of homomorphisms of signed graphs (see [11]). The main aim
of this work is to propose and study two different ways of building such highly structured
graphs.

Graphs in this work are simple and connected, unless stated otherwise. For graph
terminology, we follow [13]. We work on the larger realm of signed graphs; we mention
the key terminologies and refer to [11] for further details.

A signed graph (G, σ) is a graph G together with an assignment σ : E(G)→ {+,−}.
If E− is the set of negative edges of (G, σ), then we may, equivalently, use the notation
(G,E−) to denote (G, σ). The graph G is referred to as the underlying graph of (G, σ) and
σ is called its signature. A switching at a vertex v of a signed graph (G, σ) is to multiply
the signs of all edges in the cut (v, V (G) \ v) by −. To switch at a set X of vertices is to
switch at all the vertices of X in any sequence; this is equivalent to multiplying the signs
of all edges in the cut (X, V (G) \ X) by −. Two signatures σ1 and σ2 on G are said to
be switching equivalent, or equivalent for short, if one can be obtained from the other one
by a switching.

Given a closed walk W of (G, σ), the sign of W is the product of the signs of all the
edges of W , considering multiplicity. It is clearly invariant under the switching operation.
The smallest length of a negative cycle in (G, σ) is referred to the negative girth of (G, σ)
and is denoted by g−(G, σ). As observed in [11], if (G, σ) is connected and has no closed
walk which is positive and of odd length, then all its negative cycles are of the same parity.

One of the first theorems on the theory of signed graphs is the following.

Theorem 1 ([14]). A signed graph (G, σ′) is obtained from a switching at a subset X of
vertices of (G, σ) if and only if for any cycle C we have σ(C) = σ′(C).

A homomorphism of a signed graph (G, σ) to a signed graph (H, π) is a mapping f
which maps the vertices and edges of G to the vertices and edges of H, respectively, with
the property that incidences, adjacencies and signs of closed walks are preserved.

For i, j ∈ Z2
2 let gij(G, σ) be the length of a shortest closed walk in (G, σ) whose parity

of length is j and whose parity of the number of negative edges is i, setting this length to
be ∞ when there is no such closed walk.

Lemma 2 (No-homomorphism lemma). Given signed graphs (G, σ) and (H, π), if (G, σ)
admits a homomorphism to (H, π), then for each ij ∈ Z2

2, we have gij(G, σ) > gij(H, π).

As a particular case of this lemma, we have that: If (H, π) is connected and has no
positive odd walk, then (G, σ) (which maps to (H, π)), cannot have a positive closed walk
either, and all its negative cycles are of the same parity as g−(H, π) and at least of this
size.

When there are no parallel edges, the vertex-mapping and the condition of preserving
adjacencies uniquely determine the edge-mapping, and thus we may define a homomor-
phism solely by a vertex-mapping, as was originally done in [10].

In this work we are interested in graphs that admit a homomorphism from any member
of a given class of graphs.
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Definition 3. Given a class C of signed graphs and a signed graph (B, π), we say that
(B, π) is C-complete if every member (G, σ) of C satisfying gij(G, σ) > gij(B, π) for every
ij ∈ Z2

2, admits a homomorphism to (B, π).

The family P of signed planar graphs is among the most motivating families for this
study. For example, the 4CT is to say that (K4,−) is P-complete. In this work we propose
that the following construction can be used to build more P-complete signed graphs.

Definition 4 ([11]). Given a signed graph (G, σ), the Extended Double Cover of (G, σ),
denoted EDC(G, σ), is defined to be the signed graph on vertex set V + ∪ V −, where
V + := {v+ : v ∈ V (G)} and V − := {v− : v ∈ V (G)}. For each vertex x, the two vertices
x+ and x− are connected by a negative edge; all other edges, to be described next, are
positive. If vertices u and v are adjacent in (G, σ) by a positive edge, then v+u+ and
v−u− are two positive edges of EDC(G, σ). If vertices u and v are adjacent in (G, σ) by
a negative edge, then v+u− and v−u+ are two positive edges of EDC(G, σ).

u

v

w

x

(a) (C−4)

u+

v+

w+

x+

u−

v−

w−

x−

(b) EDC(C−4)

Figure 1: Signed graphs C−4 and EDC(C−4). Dashed (red) edges are negative.

Conjecture 5. Given a planar-complete signed graph (B, π) with no positive odd walk,
EDC(B, π) is also planar-complete.

Observe that the signed graph on two vertices, connected with one positive and one
negative edge, known as digon, admits a homomorphism from any signed bipartite graph
and thus, in particular, is planar-complete. The extended double cover of the digon is
switching equivalent to (K4,−), that is, a K4 with all edges negative. Thus the 4CT is
a special case of this general conjecture. The sequence of graphs built from the digon
by repeatedly applying the extended double cover operation are known as the projective
cubes. The restriction of the conjecture on this specific family already is quite difficult and
is related to some of the most challenging questions in graph theory and combinatorics.
We refer to [5] for some more details.
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In this work, in support of this conjecture, we prove the following. Let SP denote the
class of K4-minor-free graphs, also known as Series-Parallel graphs.

Theorem 6. If a connected signed graph (B, π) with no positive odd walk is SP-complete,
then EDC(B, π) is also SP-complete.

To prove this, we extend the notions and terminologies of signed graphs to weighted
signed graphs in the next section. In Section 3 we present a proof of this theorem.
Then, in Section 4, towards an optimization, we present another method of building C-
complete graphs. More precisely, for each given k we build an SP-complete graph graph
(B, π) having no closed odd walk whose shortest negative cycles is of length k. Our
constructions are of order bk2

2
c, this is nearly optimal. These constructions can be viewed

as a 2-dimensional analogue of the projective cubes in that they are built from grids with
all positive edges by adding a negative edge between each pair of vertices at maximum
distance.

2 Weighted signed graphs

A weighted signed graph (G,ω) is a graph G together with an assignment ω of weights in
{±1,±2, . . . ,±k} (for some integer k) to the edges of G. To emphasize on the maximum
absolute value, we may refer to a weighted signed graph as a k-weighted signed graph.
Observe that 1-weighted signed graphs are simply signed graphs.

The length of a walk, cycle or path in a weighted signed graph is the sum of absolute
values of the weights of its edges. The sign of such a structure is the product of all
the signs of the edges of said structure (considering multiplicity). Switching at a cut
(X, V \X) is to change the sign of the weight of each edge in this cut while the absolute
value remains the same. The walk-girth of type ij (for ij ∈ Z2

2) of a weighted signed
graph (G,ω), denoted gij(G,ω), is defined similarly as before and again remains invariant
under switching. As before, if G is connected and there is no positive odd walk in (G,ω),
then all the negative walks are of the same parity.

A homomorphism of a weighted signed graph (G,ω) to a weighted signed graph (H, θ)
is defined analogously: that is, a mapping of the vertices and edges of (G,ω) to, re-
spectively, the edges and vertices of (H, θ) which preserves the following fundamental
properties, (i). adjacencies, (ii). incidences, (iii). absolute values of weights and (iv).
signs of closed walks. It can be proved similarly that this is the same as a switching
(G,ω′) of (G,ω) after which one must preserve the sign of each edge rather than signs of
closed walks. The basic no-homomorphism lemma works here as well.

Lemma 7. Given weighted signed graphs (G,ω) and (H, θ), if (G,ω)→ (H, θ), then for
each ij ∈ Z2

2, we have gij(G,ω) > gij(H, θ).

A key parameter in connected signed weighted graphs with no positive odd walk is
the smallest weight of a negative closed walk.

Definition 8. For a positive integer g, a weighted signed graph (G,ω) is said to be g-wide
if for each choice of ij ∈ Z2

2, we have gij(G,ω) > gij(C−g).
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A special family of weighted signed graphs are the ones where the weight of each edge
represents the distance in a signed graph on the same set of vertices (normally the signed
graph induced by edges of weight 1 and −1). To make this definition formal enough, we
use an extended notion of distance as defined in [2], where in a signed graph, we allow
two vertices to have a negative distance.

Definition 9. For a signed graph (G, σ), the algebraic distance between two vertices u
and v is defined as follows:

ad(G,σ)(u, v) =

{
dG(u, v), if there is a positive (u, v)-path of length dG(u, v),
−dG(u, v), otherwise.

Observe that the algebraic distance of x and y will change sign if a switching is done
at one of x or y, but not both. All other switchings preserve the algebraic distance.

Definition 10. Given a signed graph (G, σ) and a weighted signed graph (G′, ω), where
V (G′) = V (G), we say that (G′, ω) is a partial (G, σ)-distance graph if for every edge uv
of G′, ω(uv) = ad(G,σ)(u, v). If for every edge xy of G′, |ω(x, y)| 6 k we say that (G′, ω)
is a k-partial (G, σ)-distance graph.

Given a signed graph (G, σ), the partial (G, σ)-distance graph and the Extended Dou-
ble Cover of such graph, which will be introduced in Section 2.1, play important roles in
this paper.

2.1 Extended Double Cover of (weighted) signed graphs

We extend the notion of Extended Double Covers of signed graphs to Extended Double
Covers of weighted signed graphs as follows:

Definition 11. Given a weighted signed graph (G,ω), the Extended Double Cover of
(G,ω), denoted EDC(G,ω), is defined to be the weighted signed graph on vertex set
V + ∪ V −, where V + := {v+ : v ∈ V (G)} and V − := {v− : v ∈ V (G)}. Vertices x+ and
x− are adjacent by an edge of weight −1; for each pair xy of adjacent vertices of G, there
will be four more edges in EDC(G,ω), namely x+y+, x+y−, x−y+, x−y− whose weights are
determined as follows. If xy is an edge of weight p > 0, then x+y+ and x−y− are both of
weight p and x+y−, x−y+ are both of weight −(p+ 1). If xy is an edge of weight −p < 0,
then x+y− and x−y+ are both of weight p and x+y+, x−y− are both of weight −(p+ 1).

As in the case of Extended Double Covers of signed graphs, the Extended Double
Cover of a signed weighted graph adds a geometric view to the notion of switching: to
switch at a vertex v of (G,ω) is equivalent to switch the role of v+ and v− in EDC(G,ω).

The following is a key property of this extended notion of Extended Double Cover.

Lemma 12. Given a weighted signed graph (G,ω) we have:

• g01(EDC(G,ω)) = g01(G,ω).

• g10(EDC(G,ω)) = g11(G,ω) + 1.
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• g11(EDC(G,ω)) = g10(G,ω) + 1.

Proof. All three claims are consequences of the following observation. Given a signed
closed walk W of (G,ω) there is a natural association with two closed walks, denoted
EDC+(W ) and EDC−(W ) in EDC(G,ω). If the starting vertex of W is x, then the
starting point of EDC+(W ) is x+ and that of EDC−(W ) is x−. The descriptions of
EDC+(W ), and that of EDC−(W ) except for the starting point, are the same. If the ith

vertex of W is v, then the ith vertex of EDC+(W ) is one of v+ or v−, the choice of which
is implied from the following procedure.

Assume that at step i of W we are at vertex v and that v′ ∈ {v+, v−} is determined
as the ith vertex of EDC+(W ). Let u be the next vertex on W . Then choose the vertex
u′ ∈ {u+, u−} as follows: if the edge vu in W is positive, then u′ has the same sign as
v′, otherwise it has the opposite sign. If W is a positive closed walk, this process ends
with x+ and we have EDC+(W ). But if W is a negative closed walk, this process ends
with x− in which case we must add the negative edge x+x− in order to have a closed walk
EDC−(W ). In this case, EDC−(W ) is a negative closed walk of length 1 more than that
of W , thus of different parity.

It is easily observed that each closed walk of EDC(G,ω) that uses at most one negative
edge is either of the form EDC+(W ) or of the form EDC−(W ) for a closed walk W of
(G,ω). Furthermore, if two edges of the form v+v− are used, then we can create a closed
walk of shorter length which is of the same sign and the same parity. Thus the minimum
length closed walks of a given type can use at most one edge of type v+v−. The three
claims then follow.

Following the proof of Lemma 12, we have the following lemma (note that each vertex
can be viewed as the starting vertex).

Lemma 13. Let (G, σ) be a signed graph with x, y two vertices of (G, σ) in a cycle C of
length g in (G, σ). If C is positive, then each of the pairs (x+, y+) and (x−, y−) is also in
a positive cycle of length g in EDC(G, σ). If C is negative, then each of the pairs (x+, y+),
(x−, y−), (x+, y−) and (x−, y+) is in a negative cycle of length g + 1 in EDC(G, σ).

Focusing on the Extended Double Covers of signed graphs we have the followings.

Observation 14. Let (G, σ) be a signed graph with x, y two vertices of (G, σ) and an
(x, y)-walk W of length p in (G, σ). If W is positive, then, in EDC(G, σ), there exist an
(x+, y+)-walk and an (x−, y−)-walk, both of which are positive and of length p, and an
(x+, y−)-walk and an (x−, y+)-walk, both of which are negative and of length p+ 1. If W
is negative, then, in EDC(G, σ), there exist an (x+, y−)-walk and an (x−, y+)-walk, both
of which are positive and of length p, and an (x+, y+)-walk and an (x−, y−)-walk, both of
which are negative and of length p+ 1.

Proposition 15. Let (G, σ) be a g-wide signed graph with x, y two of its vertices that
are in a common negative cycle of length g, and ad(G,σ)(x, y) = p. Then, the following
statements hold.
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• If p > 0, then adEDC(G,σ)(x
+, y+) = adEDC(G,σ)(x

−, y−) = p. Moreover:

– if dG(x, y) = bg
2
c, then adEDC(G,σ)(x

+, y−) = adEDC(G,σ)(x
−, y+) = g − p = dg

2
e;

– otherwise, adEDC(G,σ)(x
+, y−) = adEDC(G,σ)(x

−, y+) = −p− 1.

• If p < 0, then adEDC(G,σ)(x
+, y−) = adEDC(G,σ)(x

−, y+) = −p. Moreover:

– if dG(x, y) = bg
2
c, then adEDC(G,σ)(x

+, y+) = adEDC(G,σ)(x
−, y−) = g + p = dg

2
e;

– otherwise, adEDC(G,σ)(x
+, y+) = adEDC(G,σ)(x

−, y−) = p− 1.

Proof. Without loss of generality, by the symmetries of EDC(G, σ), we only focus on the
pairs (x+, y+) and (x+, y−). As ad(G,σ)(x, y) = p, and x, y are in a negative cycle of length
g, by the definition of algebraic distance, we know that |p| 6 bg

2
c. Since (G, σ) is g-wide,

by Lemma 12, EDC(G, σ) is (g + 1)-wide.
First assume that p > 0. Then, there exist a positive (x, y)-path of length dG(x, y) = p

and a negative (x, y)-path of length g − p in (G, σ). By Observation 14, in EDC(G, σ),
there exist a positive (x+, y+)-path Q1 of length p, a negative (x+, y−)-path Q2 of length
p+1 and a positive (x+, y−)-path Q3 of length g−p. So the distances between x+ and y+,
x+ and y− in the underlying graph of EDC(G, σ) are p and min{p+1, g−p}, respectively.
By Definition 9, adEDC(G,σ)(x

+, y+) = p. If p = bg
2
c, then p+ 1 = bg

2
c+ 1 > dg

2
e = g − p,

hence min{p+1, g−p} = g−p and adEDC(G,σ)(x
+, y−) = g−p = dg

2
e. Otherwise, we know

that p 6 bg
2
c − 1, which implies that the distance between x+ and y− in the underlying

graph of EDC(G, σ) is min{p+ 1, g− p} = p+ 1. Note that there is no positive (x+, y−)-
path of length p + 1, since otherwise such path, together with Q2, consists of a cycle of
length 2(p + 1) = 2bg

2
c 6 g, a contradiction to the fact that EDC(G, σ) is (g + 1)-wide.

Thus, by Definition 9, adEDC(G,σ)(x
+, y−) = −(p+ 1).

Now assume that p < 0. By similar arguments as above, there exist a negative (x, y)-
path of length dG(x, y) = −p and a positive (x, y)-path of length g + p in (G, σ). By
Observation 14, there exist a positive (x+, y−)-path Q4 of length −p, a negative (x+, y+)-
path Q5 of length −p + 1 and a positive (x+, y+)-path Q6 of length g + p. Recall that
EDC(G, σ) is (g + 1)-wide and p > −bg

2
c, so the distances between x+ and y+, x+ and

y− in the underlying graph of EDC(G, σ) are min{−p + 1, g + p} and −p, respectively.
Thus, adEDC(G,σ)(x

+, y−) = −p. If p = −dG(x, y) = −bg
2
c, then −p + 1 = bg

2
c + 1 >

dg
2
e = g + p, so adEDC(G,σ)(x

+, y+) = g + p = dg
2
e. Otherwise, p > −bg

2
c + 1, hence

min{−p + 1, g + p} = −p + 1. Also observe that there is no positive (x+, y+)-path of
length −p + 1, since otherwise such path together with Q5 consist of a negative cycle of
length 2(−p+ 1) 6 2bg

2
c 6 g, a contradiction to the fact that EDC(G, σ) is (g + 1)-wide.

Thus adEDC(G,σ)(x
+, y+) = −(−p+ 1) = p− 1.

3 K4-minor-free graphs

A 2-tree is a graph that can be built from the complete graph K2 in a sequence G0 =
K2, G1, . . . , Gt where Gi is obtained from Gi−1 by adding a new vertex joined to two
adjacent vertices of Gi−1, thus forming a new triangle. A partial 2-tree is a subgraph
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of a 2-tree. It is well-known that a graph is K4-minor-free if and only if it is a partial
2-tree (see for example [6]). The class of K4-minor-free graphs is also known as the class
of series-parallel graphs, see for example [3]. Thus we will use the abbreviation SP to
denote this class of graphs.

As observed from the definition of 2-trees, the triangle is the building block of edge-
maximal K4-minor-free graphs. When a girth condition is imposed on a signed K4-minor-
free graph (G, σ), then G will no longer be edge-maximal, but rather a partial 2-tree. To
take advantage of the structure of such signed graphs then, in [1] and [2], weighted 2-trees
are employed. Next we present these techniques in a uniform language of signed graphs
(with no positive walk of odd length). We rather use the terminology developed in [4]
while extending it to signed graphs.

3.1 Weighted triangles and g-wideness

Given a positive integer g with g > 3, and three integers p, q and r satisfying 1 6
|p|, |q|, |r| 6 g − 1, the signed graph Tg(p, q, r) is built as follows. Let Cg,p be a negative
cycle of length g with a selected pair x1 and y1 of vertices such that one of the two (x1, y1)-
paths in Cg,p is of length |p| and has the same sign as p, and the other, which is of length
g − |p|, has the opposite sign as p. Define Cg,q similarly where selected vertices y2 and z1
are connected by a |q|-path and Cg,r with selected vertices z2 and x2 which are connected
by an |r|-path. We define the signed graph Tg(p, q, r) to be the signed graph obtained
from Cg,p, Cg,q and Cg,r by identifying x1 and x2 (to form the new vertex x), y1 and y2
(to form the new vertex y), z1 and z2 (to form the new vertex z). See the left picture in
Figure 2 for an example.

z

x

y

−3−2

−4

56

4

z

x

y

Figure 2: Tg(p, q, r) with g = 8, p = 6, q = −4, and r = −3. Dashed (red) edges are
negative.

We have a few immediate observations: (i). If p′ is the integer satisfying |p′| = g− |p|
and pp′ < 0, then Cg,p and Cg,p′ are identical and thus Tg(p

′, q, r) is isomorphic to
Tg(p, q, r). (ii). A switching at an internal vertex of an (x, y)-path would result in a differ-
ent presentation of Tg(p, q, r), but up to a switching they are isomorphic. (iii). A switching
at x, y or z results, respectively, in Tg(−p, q,−r), Tg(−p,−q, r) and Tg(p,−q,−r) which
are isomorphic to Tg(p, q, r) up to a switching.

Note that Tg(p, q, r) could be simply presented as a weighted triangle (multiple edges
are allowed here), see the right picture in Figure 2. But considering (i), between p and
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p′, we would normally choose the one whose value is positive. Therefore, we let 4(p, q, r)
denote a weighted triangle whose edges are of weight p, q and r, and extend the definition
of g-wideness as follows.

Definition 16. Given a positive integer g, g > 3, and three integers p, q and r satisfying
1 6 |p|, |q|, |r| 6 g − 1, we say a weighted triangle 4(p, q, r), or the triple (p, q, r), is
g-wide if Tg(p, q, r) is g-wide.

In other words, 4(p, q, r) is g-wide if Tg(p, q, r) satisfies the following two conditions:

• There are no positive odd cycles in Tg(p, q, r).

• Each of the negative cycles of Tg(p, q, r) is of the same parity as g and is, furthermore,
of length at least g.

In our work we will need to consider properties of triangles and edges. For a uniform
writing, in the definition of a g-wide triple (p, q, r) we may allow p, q or r to be 0 as well.
If p = 0, then in the construction of Tg(p, q, r) the vertices x and y are identified and a
negative cycle of length g is added on the identified vertex which we may ignore. Then
for 4(0, q, r) to be g-wide the positive paths corresponding to q and r must be of the
same length. Thus we may assume q = r. Therefore, in the rest of this work the triple
(0, r, r), r 6 g − 1, is g-wide. Triples of the form (0, r, r) will, in essence of it, represent
the essential edges of the weighted graphs we will work with where r would be the weight
of the corresponding edge.

That 4(p, q, r) is g-wide depends only on the values of p, q, r and g. We have already
seen that when p = 0, triples of the form (0, r, r) are the only g-wide triples. For a triple
satisfying 1 6 |p|, |q|, |r| 6 g − 1 there are a number of ways to check if it is g-wide. In
this work we will use the test provided in the next proposition.

Proposition 17. Given integers g, p, q and r satisfying 1 6 |p|, |q|, |r| 6 g − 1, the
following statements hold.

(1) If pqr > 0, then the weighted triangle 4(p, q, r) is g-wide if and only if |p|+|q|+|r| ≡
0 (mod 2) and max{2|p|, 2|q|, 2|r|} 6 |p|+ |q|+ |r| 6 2g.

(2) If pqr < 0, then the weighted triangle 4(p, q, r) is g-wide if and only if |p|+|q|+|r| ≡
g (mod 2) and g 6 |p|+ |q|+ |r| 6 g + min{2|p|, 2|q|, 2|r|}.

Proof.
(1) pqr > 0. There are exactly four positive cycles in Tg(p, q, r), and their lengths,
which are of the same parity, are: |p|+ |q|+ |r|, g−|p|+ g−|q|+ |r|, g−|p|+ |q|+ g−|r|,
and |p|+ g − |q|+ g − |r|.

Suppose first that 4(p, q, r) is g-wide. By the definition, we have gij(Tg(p, q, r)) >
gij(C−g) and since g01(C−g) = ∞, there is no positive odd cycle, in other words |p| +
|q| + |r| is even. Except the four cycles we mentioned above, all the other cycles in
Tg(p, q, r) are negative. Moreover, the three cycles containing exactly two of {x, y, z} are
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all of length g. The four negative cycles containing all three vertices x, y, z are of length
g − |p|+ g − |q|+ g − |r|, g − |p|+ |q|+ |r|, |p|+ g − |q|+ r, |p|+ |q|+ g − |r|. Since the
negative girth of Tg(p, q, r) is g, we have: g − |p| + g − |q| + g − |r| > g which is to say
|p|+ |q|+ |r| 6 2g. Assuming, without loss of generality, that max{|p|, |q|, |r|} = |p|, the
condition g − |p|+ |q|+ |r| > g implies that max{2|p|, 2|q|, 2|r|} = 2|p| 6 |p|+ |q|+ |r|.

Conversely, assume that |p|+ |q|+ |r| is even and max{2|p|, 2|q|, 2|r|} 6 |p|+ |q|+ |r| 6
2g. We shall show that gij(Tg(p, q, r)) > gij(C−g), for any ij ∈ {01, 10, 11}. The case
ij = 01 follows from the fact that |p| + |q| + |r| is even and the argument discussed in
the first paragraph. The three cycles containing exactly two of x, y, z are of length g,
and all of them are negative. The four negative cycles containing x, y, z are of length
g − |p|+ g − |q|+ g − |r|, g − |p|+ |q|+ |r|, g − |q|+ |p|+ |r|, g − |r|+ |p|+ |q|. By the
assumptions, all of these four values are of the same parity as g, and also are at least g,
which implies that g1j(Tg(p, q, r)) > g1j(C−g), for each j ∈ {0, 1}.

(2) pqr < 0. Let p′ = − p
|p|(g − |p|), q

′ = − q
|q|(g − |q|), r

′ = − r
|r|(g − |r|), so pqr < 0

if and only if p′q′r′ > 0. Since Tg(p, q, r) is isomorphic to Tg(p
′, q′, r′), 4(p, q, r) is g-

wide if and only if T (p′, q′, r′) is g-wide. Therefore, by (1), 4(p, q, r) is g-wide if and
only if |p′| + |q′| + |r′| = 0 (mod 2) and max{2|p′|, 2|q′|, 2|r′|} 6 |p′| + |q′| + |r′| 6 2g.
Equivalently, g−|p|+g−|q|+g−|r| = 0 (mod 2) and max{2g−2|p|, 2g−2|q|, 2g−2|r|} 6
g − |p| + g − |q| + g − |r| 6 2g, after simplification, we have |p| + |q| + |r| = g (mod 2)
and g 6 |p|+ |q|+ |r| 6 g + min{2|p|, 2|q|, 2|r|}.

3.2 A test for SP-completeness

We denote by Lg the set of ordered triples (p, q, r), satisfying |p|, |q|, |r| 6 g− 1 and such
that 4(p, q, r) is g-wide. Observe that because of the condition |p|, |q|, |r| 6 g−1 we have
less than 8g3 non-isomorphic weighted triangles (or edges) 4(p, q, r), thus [Lg| 6 8g3.

Recall that for each p with 1 6 |p| 6 g − 1, if p′ is the integer satisfying |p′| = g − |p|
and pp′ < 0, then Tg(p

′, q, r) is the same as Tg(p, q, r). Thus a triple (p, q, r) can be
represented in Lg in 8 possible ways among which there is a unique presentation where
p, q, r > 1.

Similarly, recall that in the definition of (G, σ)-distance graph, for each weighted edge,
the weight represents the algebraic distance between the two endpoints in (G, σ), which
could be either positive or negative. Another special weighted signed graph (G,ω) is
obtained from (G, σ) by using only positive weights: here if u and v are on a shortest
negative cycle C of (G, σ), then they are connected in (G,ω) where ω(uv) is the length
of the positive path in C connecting u to v.

Definition 18. Given a g-wide signed graph (G, σ) and a weighted signed graph (G′, ω),
where V (G′) = V (G) and G′ is such that for each edge xy of G′, the pair x, y is in a
negative cycle of length g in (G, σ), we say that (G′, ω) is a girth-transformed (G, σ)-
distance graph if for every edge uv of G′, ω(uv) = fg(ad(G,σ)(u, v)), where fg is defined on
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−
⌈
g
2

⌉
+ 1 6 x 6

⌊
g
2

⌋
, x 6= 0, as following:

fg(x) =

{
x, if x > 0,

g + x, otherwise.

If for every edge xy of G′, ω(uv) 6 k, we say that (G′, ω) is a k-partial girth-transformed
(G, σ)-distance graph.

Now, with this transformation, we can address weighted signed graphs with only
positive weights. Also, some known theorems can be also restated in this language. The
following definition is a restatement of the “all g-good property” in [1] and [2].

Definition 19. Given a g-wide weighted signed graph (G,ω) satisfying 1 6 ω(e) 6 g− 1
for every edge e, a set T of triangles of G is said to be g-closed if the following condition
is satisfied:

Denoting by E the set of weighted edges of the triangles in T , for each edge xy ∈ E
(assuming ω(xy) = p) and for each triple (p, q, r) ∈ Lg, there is a triangle xyz ∈ T such
that ω(zx) = q and ω(zy) = r, or ω(zx) = g − q and ω(zy) = g − r.

Remark 20. The only difference between all g-good property and g-closed is that in the
former one, (i). 1 6 |w(e)| 6 bg

2
c; (ii). the last condition is w(zx) = q, w(zy) = r or

w(zx) = −q, w(zy) = −r.
Note that in the condition above, if q 6= r, then the order of p, q, r matters. To be

precise, in such a case, say for (p, r, q), while the definition implying existence of a vertex
z satisfying ω(zx) = q and ω(zy) = r, or ω(zx) = g − q and ω(zy) = g − r by consider
the triple (p, r, q) instead of (p, q, r) there must also be a vertex z′ satisfying ω(xz′) = r
and ω(yz′) = q, or ω(xz′) = g − r and ω(yz′) = g − q.

The following then is a uniform restatement of results of [1] and [2]. (see also [4])

Theorem 21. A g-wide signed graph (B, π) is SP-complete if and only if there exists a⌊
g
2

⌋
-partial (B, π)-distance graph with a nonempty set T having all g-good property.

Then we have the following observation.

Observation 22. Let (B, π) be a g-wide signed graph, (B′, ω) be a
⌊
g
2

⌋
-partial (B, π)-

distance graph with a nonempty set T having all g-good property. Then for every edge xy
in T ∈ T , x and y are in a negative cycle of length g in (B, π).

Proof. Let ω(x, y) = p with |p| 6 bg
2
c. By Proposition 17(2), if p > 0, then

(p,−bg−p
2
c, dg−p

2
e) ∈ Lg, and if p < 0, then (p, bg+p

2
c, dg+p

2
e) ∈ Lg. Thus in each case,

there exists a vertex z in B such that

|ω(xy)|+ |ω(zx)|+ |ω(zy)| = |p|+
⌊
g − |p|

2

⌋
+

⌈
g − |p|

2

⌉
= g,

and ω(xy) · ω(zx) · ω(zy) < 0, which implies that there is a negative cycle of length g in
(B, π) containing both x and y.
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Then Theorem 21 and Observation 22 can be restated with only positive weights as
follows, respectively.

Theorem 23. A g-wide signed graph (B, π) is SP-complete if and only if there exists
a (g − 1)-partial girth-transformed (B, π)-distance graph (B′, ω) which has a nonempty
g-closed set T of triangles.

Observation 24. Let (B, π) be a g-wide signed graph, (B′, ω) be a (g − 1)-partial girth-
transformed (B, π)-distance graph which has a nonempty g-closed set T of triangles. Then
for every edge xy in T , x and y are in a negative cycle of length g in (B, π).

Now, we are ready to state and prove our main theorem.

Theorem 25. For any positive integer g, if a g-wide signed graph (B, π) is SP-complete,
then so is EDC(B, π).

Proof. Let (B, π) be a g-wide signed graph which is SP-complete. By Theorem 23, there
exists a g-partial (B, π)-distance graph (B′, ω) which has a nonempty and g-closed set
T of triangles whose vertex set is V and (weighted) edges form the set E . We first

define the weighted signed graph (B̂, ω̂) on vertex set V + ∪ V −, where V + := {v+ :
v ∈ V } and V − := {v− : v ∈ V } as follows: for each v ∈ V , vertices v+ and v− are
joined by an edge with ω̂(v+v−) = g. If uv ∈ E with weight ω(uv), then we add four
edges {u+v+, u+v−, u−v−, u−v+} with ω̂(u+v+) = ω̂(u−v−) = ω(uv), and ω̂(u+v−) =
ω̂(u−v+) = g − ω(uv).

Claim 26. (B̂, ŵ) is a g-partial girth-transformed EDC(B, π)-distance graph.

Proof. Let x, y be two vertices of B′ forming an edge in E , by Observation 24, x, y are
contained in a negative cycle of length g in (B, π). By Lemma 13, xα and yβ are in a
negative cycle of length g + 1 in EDC(B, π) for any α, β ∈ {+,−}. Thus, it suffices to
show that ω̂(xαyβ) = fg+1(adEDC(B,π)(x

α, yβ)).
For each vertex x in B, adEDC(B,π)(x

+, x−) = −1 < 0, so fg+1(adEDC(B,π)(x
+, x−)) =

g + 1− 1 = g = ω̂(x+x−).
Assume x and y are two vertices in B with ad(B,π)(x, y) = p > 0. Thus ω(xy) =

p. By Proposition 15, adEDC(B,π)(x
+, y+) = adEDC(B,π)(x

−, y−) = p. Then we have
fg+1(adEDC(B,π)(x

+, y+)) = fg+1(adEDC(B,π)(x
−, y−)) = p = ω(xy) = ω̂(x+y+) = ω̂(x−y−).

If dB(x, y) = bg
2
c, then ω(xy) = p = bg

2
c. By Proposition 15, adEDC(B,π)(x

+, y−) =
adEDC(B,π)(x

−, y+) = dg
2
e, so we have

fg+1(adEDC(B,π)(x
+, y−)) = fg+1(adEDC(B,π)(x

−, y+)) = dg
2
e

= g − ω(xy) = ω̂(x+y−) = ω̂(x−y+).

Otherwise, by Proposition 15, adEDC(B,π)(x
+, y−) = adEDC(B,π)(x

−, y+) = −p − 1 < 0, so
we have

fg+1(adEDC(B,π)(x
+, y−)) = fg+1(adEDC(B,π)(x

−, y+))
= g + 1 + (−p− 1) = g − p
= g − ω(xy) = ω̂(x+y−) = ω̂(x−y+).

the electronic journal of combinatorics 30(3) (2023), #P3.31 12



The case ad(B,π)(x, y) = p > 0 could be verified similarly, we do not repeat again.

Let T ′ be the family of all the triangles in B̂ and E ′ consisting of the edges of the
triangles in T ′, we shall show that T ′ is (g + 1)-closed and nonempty.

Let p, q, r be positive integers such that (p, q, r) ∈ Lg+1 and e = xαyβ ∈ E ′ with
ω̂(e) = p, where x, y ∈ V (B), α, β ∈ {+,−} (it is possible that x = y, in which case,
α 6= β). Following Theorem 23 and Definition 19, we shall prove that there is a triangle
in T ′ on e. That is equivalent to finding a vertex zγ, where z ∈ V (B), γ ∈ {+,−}, such
that either

ω̂(zγxα) = q, ω̂(zγyβ) = r, (C1-1)

or
ω̂(zγxα) = g + 1− q, ω̂(zγyβ) = g + 1− r. (C1-2)

Note that the statement clearly holds for the case g = 1, indeed, in this case, (B, π)
is a negative loop. Then EDC(B, π) is a digon, which is obviously SP-complete. For the
case that g = 2, (B, π) is a digon. In the complete EDC(B, π)-distance graph (containing
weighted edge uv for any u, v ∈ V (B)), there are four triangles, each of which is a weighted
triangle isomorphic to 4(1, 1, 2), and it is trivial to check that T ′ consisting of these four
triangles is g-closed.

Now, consider that g > 3 and let e be an edge with ω̂(e) = p. We first assume that
e = x+x−: it follows that p = g = max{|p|, |q|, |r|}. By Proposition 17(1), 2g 6 g+q+r 6
2g + 2 and g + q + r is even, we have q + r ∈ {g, g + 2}.

If q + r = g + 2, then we have min{q, r} > 2, so g + 1 − q, g + 1 − r 6 g − 1.
Moreover, p + g + 1 − q + g + 1 − r = p + g = 2g is even, thus by Proposition 17(1),
(p, g + 1 − q, g + 1 − r) ∈ Lg. By Theorem 23, there is a triangle xyz ∈ T such that
either ω(zx) = q− 1 or ω(zx) = g− (q− 1) = g+ 1− q. Therefore, if ω(zx) = q− 1, then
ω̂(z−x+) = g + 1− q, and ω̂(z−x−) = q − 1 = g + 1− r, so (C1-2) holds with zγ = z−. If
ω(zx) = g+ 1− q, then ω̂(z+x+) = g+ 1− q, and ω̂(z+x−) = q− 1 = g+ 1− r, so (C1-2)
holds with zγ = z+.

If q + r = g, then (p, q, r) = (g, q, g − q) ∈ Lg (as g + q + g − q = 2g and by
Proposition 17(1)). So there is a triangle xyz ∈ T such that either ω(zx) = q or ω(zx) =
g− q. If ω(zx) = q, then ω̂(z+x+) = q, and ω̂(z+x−) = g− q = r, thus (C1-1) holds with
zγ = z+. If ω(zx) = g − q, then ω̂(z−x+) = q, and ω̂(z−x−) = g − q = r, thus (C1-1)
holds with zγ = z−.

Now, without loss of generality, we assume that e = x+yβ and x 6= y. It follows that
ω(xy) = p < g if β = + and ω(xy) = g− p if β = −. We consider the following two cases.

Case 1. max{q, r} = g. In this case, without loss of generality, assume that q = g. As by
Proposition 17(1) 2g 6 p+g+ r 6 2g+ 2 and p+g+ r is even, we have p+ r ∈ {g, g+ 2}.

If p+ r = g, then (p, q, r) = (p, g, g − p). Note that ω̂(x−x+) = q = g, and ω̂(x−yβ) =
g − p = r, by setting zγ = x−, (C1-1) holds.

Next, assume that p + r = g + 2, i.e., r = g + 2 − p. Then, min{p, r} > 2, and by
Proposition 17(1) we have that (p, 1, p− 1), (g − p, g − 1, p− 1) ∈ Lg.
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• If β = +, then ω(xy) = p. As (p, 1, p−1) ∈ Lg, there is a triangle xyz ∈ T such that
either ω(zx) = 1 and ω(zy) = p−1, or ω(zx) = g−1 and ω(zy) = g−p+1. For the
former case, ω̂(z+x+) = 1, and ω̂(z+y+) = p − 1; for the latter case, ω̂(z−x+) = 1,
ω̂(z−y+) = p− 1.

• If β = −, then ω(xy) = g − p. As (g − p, g − 1, p− 1) ∈ Lg, there exists a triangle
xyz ∈ T such that either ω(zx) = g − 1 and ω(zy) = p − 1, or ω(zx) = 1 and
ω(zy) = g + 1 − p. For the former case, ω̂(z−x+) = 1, and ω̂(z−y−) = p − 1. For
the latter case, ω̂(z+x+) = 1, ω̂(z+y−) = p− 1.

For each case above, since g + 1− q = 1 and g + 1− r = p− 1, (C1-2) holds.

Case 2. max{q, r} < g. First, assume that q+ r 6 g+ 1. Recall that p < g (because the

only edges of weight g in (B̂∗, ω̂) are those of the form x+x−), so we have p+ q + r 6 2g.
Thus we have (p, q, r), (−p,−q, r) ∈ Lg. As Tg(p, q, r) is equivalent to Tg(−p,−q, r),
Tg(−p,−q, r) is equivalent to Tg(g − p, g − q, r), so (g − p, g − q, r) ∈ Lg.

• If β = +, then ω(xy) = p. As (p, q, r) ∈ Lg, there exists a triangle xyz ∈ T such
that either ω(zx) = q and ω(zy) = r, or ω(zx) = g − q and ω(zy) = g − r. For
the former case, ω̂(z+x+) = q, ω̂(z+y+) = r; for the latter case, ω̂(z−x+) = q,
ω̂(z−y+) = r.

• If β = −, then ω(xy) = g−p. As (g−p, g−q, r) ∈ Lg, there exists a triangle xyz ∈ T
such that either ω(zx) = g− q and ω(zy) = r, or ω(zx) = q and ω(zy) = g− r. For
the former case, we have that ω̂(z−x+) = q, ω̂(z−y−) = r. For the latter case, we
have that ω̂(z+x+) = q, ω̂(z+y−) = r.

For each case above, (C1-2) holds.
Now, assume that q+r > g+2, and let q′ = g+1−q and r′ = g+1−r. Thus, we have

that q′ + r′ 6 g < g + 1 and max{q′, r′} < g. Then, by the previous part, that is, when
q + r 6 g + 1, we know that there exists a vertex such that (C1-2) holds. More precisely,
there exists a vertex zγ such that ω̂(zγxα) = g+ 1− q′ = q, and ω̂(zγyβ) = g+ 1− r′ = r,
that is, (C1-1) holds.

This completes the proof.

4 A class of smaller g-wide SP-complete signed graphs

In this section, we describe a new family of SP-complete signed graphs from G10 ∪ G11.
For each g > 2, we will construct a g-wide SP-complete signed graph of order bg2/2c.
These graphs are smaller than the previously known examples: for odd values of g, bounds
of order (g − 1)2 were constructed [1]; for even values of g, the only previously known
examples were the signed projective cubes, of order 2g−1 [2].

For any pair of integers (a, b), let C(2a, b) denote the Cartesian product C2a�Pb,
viewed as a cylinder. The graph C(2a, b) is of diameter a + b − 1, and for any vertex
v with degree 3 in C(2a, b), there is a unique vertex at distance a + b − 1 of v which is
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therefore called antipodal of v. For any pair of integers (a, b), the Augmented Cylindrical
grid of dimensions 2a and b, denoted by AC(2a, b), is obtained from C(2a, b) by adding
an edge between each pairs of antipodal vertices, we denote by J the set of edges between
antipodal pairs (see Figure 3 for an example). More specifically, let AC(2a, b) be the graph
defined on vertex set {0, 1, . . . , 2a−1}×{0, 1, . . . , b−1} such that a pair {(i1, j1), (i2, j2)}
is an edge if

• i1 = i2 and |j1 − j2| = 1 (vertical edges), or

• j1 = j2 and |i1 − i2| ∈ {1, 2a− 1} (horizontal edges), or

• |i2 − i1|+ |j2 − j1| = a+ b− 1. (J)

Figure 3: The augmented Cylindrical grid AC(8, 4). Sloped (red) edges are the edges in
J .

We note that the signed graph (AC(2a, b), J) could be SPg-complete for various choices
of a and b (for example, P5�P6 is SP8-complete). Here, we will prove this for a = bg

2
c,

b = dg
2
e, which results in a family of very symmetric signed graphs.

For convenience and readability, we let T(g) = C(2bg
2
c, dg

2
e). Also we let TT(g) =

AC(2bg
2
c, dg

2
e), in short of twisted tube of dimension g, in the sense that AC(2bg

2
c, dg

2
e)

looks like a twisted toroidal grid. Indeed, AC(2bg
2
c, dg

2
e) can be obtained from

C(2bg
2
c, dg

2
e + 1) by identifying each pair of vertices (i, 0) and (i + bg

2
c, dg

2
e + 1), where

0 6 i 6 bg
2
c, in the fashion of a Dehn twist studied in algebraic topology.

4.1 Properties of the signed graph (TT(g), J)

Lemma 27. For any integer g > 2, the following statements are true.

(i) (TT(g), J) is a subgraph of SPC(g − 1).

(ii) (TT(g), J) is vertex-transitive.

(iii) Any two vertices in (TT(g), J) belong to a common negative cycle of length g.

(iv) (TT(g), J) is g-wide.

Proof. (i) We first label the edges of (TT(g), J) with canonical vectors {e1, e2, . . . , eg−1}
of {0, 1}g−1 and eJ (all coordinates are 1) as follows (indices are now to be understood
modulo 2bg

2
c):

• {(i− 1, j), (i, j)} with label ei if i 6 bg
2
c and with ei−b g

2
c otherwise.
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• {(0, j), (2bg
2
c − 1, j)} with label eb g

2
c.

• {(i, j − 1), (i, j)} with label eb g
2
c+j.

• {(i, j), (i+ bg
2
c, j + bg

2
c)} with label eJ .

Note that the binary sum of the labels of the edges along any cycle of TT(g) is the all-zero
vector. Conversely, if the sum of the labels along a walk is the all-zero vector, then this
walk is closed. Then for any path from vertex (0, 0) to some vertex v of TT(g), the binary
sum of the labels is the same. Thus we may define the mapping φ from the vertices of
(TT(g), J) to the vertices of SPC(g − 1) such that for any vertex v of (TT(g), J), φ(v) is
the binary sum of the labels along any path from (0, 0) to v. Observe that the number of
different coordinates between φ(u) and φ(v) is exactly the same as the number of different
coordinates between u and v. On the other hand, if uv is a positive edge in (TT(G), J),
then uv /∈ J , and u and v differ in exactly one coordinate; if uv is a negative edge, then
uv ∈ J , and u and v differ in all coordinates. Based on a definition of the signed projective
cubes as Cayley signed graphs, see [5, 9], it is not difficult to show that the mapping φ is
an injective homomorphism from (TT(g), J) to SPC(g−1), which implies that (TT(g), J)
is a subgraph of SPC(g − 1).

(ii). Let v1 = (i1, j1) and v2 = (i2, j2) be two vertices of TT(g). Let φ be the mapping

φ(i, j) =

{
(i+ i2 − i1, j + j2 − j1), if 0 6 j 6

⌈
g
2

⌉
− 1− (j2 − j1),

(i+
⌊
g
2

⌋
+ i2 − i1, j + j2 − j1), if j >

⌈
g
2

⌉
− (j2 − j1).

where the additions and subtractions in the first coordinate are done mod2
⌊
g
2

⌋
and in

the second coordinate mod
⌈
g
2

⌉
.

First observe that φ is an automorphism of TT(g) mapping v1 to v2, as φ−1 exists, one
can check it, we omit the details. On the other hand, in the signed graph φ(TT(g), J),
the negative edges are {{(i, j2 − j1), (i, j2 − j1 − 1)}|0 6 i 6 2

⌊
g
2

⌋
− 1}. So switching at

V = {(i, j)|j > j2 − j1} in φ(TT (g), J) gives us (TT(g), J).

(iii). Since TT(g) is vertex-transitive, we may assume that one of these two vertices is
the origin (0, 0). Let i be an integer between 0 and 2

⌊
g
2

⌋
− 1 and j be an integer between

0 and
⌈
g
2

⌉
− 1, where i + j 6= 0. We need to prove that (0, 0) and (i, j) are in a common

negative cycle of length g. By the symmetries of TT(g), we may assume that i 6
⌊
g
2

⌋
. If

we forget about the antipodal edges, there is a shortest path from (0, 0) to (
⌊
g
2

⌋
,
⌈
g
2

⌉
− 1)

going through (i, j). Together with the antipodal edge {(0, 0), (
⌊
g
2

⌋
,
⌈
g
2

⌉
− 1)}, we get a

negative cycle of length g in (TT(g), J).

(iv). By inductive definition of signed projective cubes SPC(k) = EDC(SPC(k − 1)
(see [5]). Thus by Lemma 12, SPC(g − 1) is g-wide. By (i) and the fact that taking
subgraphs will not decrease the girths gij, the statement follows.

In the sequel, for any two vertices u1 = (i1, j1) and u2 = (i2, j2) in T(g), we define
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d+T(g)(u1, u2) = |i1 − i2|+ |j1 − j2|, d−T(g)(u1, u2) = 2
⌊g

2

⌋
− |i1 − i2|+ |j1 − j2|.

Intuitively speaking, d+T(g)(u1, u2) is the shortest length of a (u1, u2)-path that does not

use any edges of type {(0, j), (2
⌊
g
2

⌋
− 1, j)}, while d−T(g)(u1, u2) does. As

d+T(g)(u1, u2) + d−T(g)(u1, u2) = 2
⌊g

2

⌋
+ 2|j1 − j2| 6 2

⌊g
2

⌋
+ 2(

⌈g
2

⌉
− 1) = 2g − 2,

we have the following observation.

Observation 28. For any two vertices u = (i1, j1) and v = (i2, j2) in T(g),

dT(g)(u, v) = min{d+T(g)(u, v), d−T(g)(u, v)} 6 g − 1.

Consequently, if |i1 − i2| 6
⌊
g
2

⌋
, then d+T(g)(u, v) 6 d−T(g)(u, v), so dT(g)(u, v) = d+T(g)(u, v).

Otherwise, d+T(g)(u, v) > d−T(g)(u, v), so dT(g)(u, v) = d−T(g)(u, v).

The following observation is easy but useful, and also mentioned in [1, 2].

Observation 29. Let (G, σ) be a g-wide signed graph and let C be a negative cycle of
length g in (G, σ). Then, for any pair (u, v) of vertices of C, the distance in G between u
and v is determined by their distance in C.

By Observation 28, the following special case holds.

Observation 30. Suppose u = (i, j) is a vertex in T(g) with 0 6 i < 2
⌊
g
2

⌋
and 0 6 j <⌈

g
2

⌉
, and t is an integer satisfying 1 6 t 6 g− 1. Then, dT(g)((0, 0), (i, j)) = t if and only

if either

• i 6
⌊
g
2

⌋
and i+ j = t, or

• i >
⌊
g
2

⌋
and i− j = 2

⌊
g
2

⌋
− t.

Lemma 31. For any two vertices u and v in (TT(g), J), fg(ad(TT(g),J)(u, v)) = dT(g)(u, v).

Proof. By Lemma 27(iv), TT(g) is g-wide, and by Lemma 27(iii), for any two vertices
u, v in TT(g), there is a negative cycle of length g in (TT(g), J) containing u, v.

If dT(g)(u, v) 6
⌊
g
2

⌋
, then by Observation 29, dTT(g)(u, v) = dT(g)(u, v) 6

⌊
g
2

⌋
, which

means that there exists a positive (u, v)-path of length dT(g)(u, v) in (TT(g), J). Thus, by
Definition 9, ad(TT(g),J)(u, v) = dT(g)(u, v) > 0, hence fg(ad(TT(g),J)(u, v)) = dT(g)(u, v);

If dT(g)(u, v) >
⌊
g
2

⌋
, then by Observation 29, dTT(g)(u, v) = g−dT(g)(u, v) < dT(g)(u, v),

which implies that there does not exist a positive (u, v)-path of length dTT(g)(u, v) in
(TT(g), J). Thus, by Definition 9, ad(TT(g),J)(u, v) = dT(g)(u, v)−g < 0, hence we conclude
that fg(ad(TT(g),J)(u, v)) = g + ad(TT(g),J)(u, v) = dT(g)(u, v).
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4.2 (TT(g), J) is SP-complete.

In this section, we provide a new family of smaller bounds that are SP-complete.

Theorem 32. For every integer g > 2, the signed graph (TT(g), J), of order bg2/2c, is
SP-complete.

Proof. Let (B,ω) be a weighted signed graph where B is a complete graph on vertex set
V (TT(g)), and for each edge uv, ω(uv) = fg(ad(TT(g),J)(u, v)). By Lemma 27 (iii) and
Definition 18, (B,ω) is a (g − 1)-partial girth-transformed (TT (g), J)-distance graph. It
is clear that the edge set of (B,ω) is non-empty. Let T be the collection of all triangles
in (B,ω), we shall show that T is g-closed.

Let p, q, r be three integers satisfying 1 6 p, q, r 6 g − 1, such that (p, q, r) is g-wide,
E be the set of edges appeared in T . Assume e = xy ∈ E with ω(e) = p. We shall
find a triangle xyz ∈ T such that either ω(zx) = q and ω(zy) = r, or ω(zx) = g − q
and ω(zy) = g − r. By Lemma 27(ii), TT(g) is vertex-transitive, so we may assume
that x = (0, 0). By the horizontal symmetries of TT(g) (recall that there is an edge
{(2
⌊
g
2

⌋
− 1, j), (0, j)} for each j), we may assume that y = (a, b), where 0 6 a 6

⌊
g
2

⌋
, so

by Observation 30, b = p−a. Therefore, by Lemma 31, it suffices to show that there exists
a vertex z = (c, d) in TT(g) where c and d are two integers satisfying 0 6 c 6 2

⌊
g
2

⌋
− 1

and 0 6 d 6
⌈
g
2

⌉
− 1, such that either

dT(g)(z, x) = q, dT(g)(z, y) = r, (C2-1)

or
dT(g)(z, x) = g − q, dT(g)(z, y) = g − r. (C2-2)

We may also assume that q 6
⌊
g
2

⌋
, for otherwise, we can replace q with g− q and replace

r with g − r such that (C2-1) or (C2-2) holds.
By Proposition 17(1), p, q, r satisfy the triangle-inequality. So |a + b− q| = |p− q| 6

r 6 min{p+ q, 2g − p− q} = min{a+ b+ q, 2g − a− b− q}, also r and p+ q = a+ b+ q
have the same parity. We also observe that all of a+ b+ q, a+ |b− q|, 2

⌊
g
2

⌋
+ b− a− q

and 2g − a − b − q have the same parity, so depending on the value of r, we determine
z = (c, d) as follows.

(i) |a+ b− q| 6 r 6 a+ |b− q|.

• If b > q, then r = a+ b− q, and we let c = 0 and d = q.

• If b < q, then |a+ b− q| 6 r 6 a+ q − b, let c = a−b+q−r
2

and d = q+r−a+b
2

.

(ii) If a + |b − q| + 2 6 r 6 min{2
⌊
g
2

⌋
+ b − a − q, a + b + q, 2g − a − b − q}, then let

c = 2
⌊
g
2

⌋
+ a+b−q−r

2
and d = a+b+q−r

2
.

(iii) If 2
⌊
g
2

⌋
+ b− a− q + 2 6 r 6 min{a + b + q, 2g − a− b− q}, then let c = a−b−q+r

2

and d = g − a−b+q+r
2

.
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As (p, q, r) is g-wide, p+ q+ r = a+ b+ q+ r is even, and consequently, a+ b− q− r,
a + b + q − r, a − b − q + r and a − b + q + r are all even, so in each case, c and d are
integers. We now proceed to prove the validity of our choices.

It is trivial to verify that (C2-1) holds for Case (i) with b > q.

For Case (i) with b < q, note that c = a− a+b−q+r
2

, as |a+ b− q| 6 r 6 a+ q − b, we
have

0 =
a− b+ q − (a+ q − b)

2
6 c 6 a− a+ b− q + |a+ b− q|

2
6 a 6

⌊g
2

⌋
. (4.1)

Similarly, recall that d = b+ r−(a+b−q)
2

, so we have

b 6 b+
|a+ b− q| − (a+ b− q)

2
6 d 6

(a+ q − b) + (q + b− a)

2
= q 6

⌊g
2

⌋
. (4.2)

Observe that c+ d = q, so by Observation 30, we have

dT(g)(z, x) = q. (4.3)

By Inequality (4.1), we have |a − c| 6
⌊
g
2

⌋
. Thus by Observation 28, Inequalities (4.1),

(4.2),
dT(g)(z, y) = d+T(g)(z, y) = (a− c) + (d− b) = r. (4.4)

Therefore, by Inequalities (4.3), (4.4), (C2-1) holds and the case is done.

For Case (ii), note that c = a+
⌊
g
2

⌋
+

2b g2c+b−a−q−r
2

and r 6 2
⌊
g
2

⌋
+ b− a− q, we have

c > a+
⌊g

2

⌋
+

2
⌊
g
2

⌋
+ b− a− q − (2

⌊
g
2

⌋
+ b− a− q)

2
= a+

⌊g
2

⌋
>
⌊g

2

⌋
.

On the other hand, as c = 2
⌊
g
2

⌋
+ a+b−q−r

2
and r > a+ |b− q|+ 2, we have

c 6 2
⌊g

2

⌋
+
a+ b− q − (a+ |b− q|+ 2)

2
= 2

⌊g
2

⌋
− 1 +

b− q − |b− q|
2

6 2
⌊g

2

⌋
− 1.

Thus we have ⌊g
2

⌋
6
⌊g

2

⌋
+ a 6 c 6 2

⌊g
2

⌋
− 1, (4.5)

Similarly, note that d = q + a+b−q−r
2

and r > a+ |b− q|+ 2, we have

d 6 q +
a+ b− q − (a+ |b− q|+ 2)

2
= q − 1 +

b− q − |b− q|
2

6 q − 1.

On the other hand, as r 6 a+ b+ q, d > a+b+q−(a+b+q)
2

= 0. Therefore,

0 6 d 6 q − 1 +
b− q − |b− q|

2
6 q − 1. (4.6)
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Note that c− d = 2
⌊
g
2

⌋
− q, by Inequality (4.5) and Observation 30, we have

dT(g)(z, x) = q. (4.7)

By Inequality (4.6), if b > q, then d 6 q − 1 < b, otherwise d 6 q − 1 + (b − q) = b − 1.
So it always holds that d < b. Recall that Inequality (4.5) ensures that c − a >

⌊
g
2

⌋
, so

by Observation 28,

dT(g)(z, y) = d−T(g)(z, y) = 2
⌊g

2

⌋
− (c− a) + (b− d) = r. (4.8)

Thus, by Inequality (4.7) and Inequality (4.8), Inequality (C2-1) holds, and this case is
done.

For Case (iii), recall that c = a−b−q+r
2

and 2
⌊
g
2

⌋
+ b − a − q + 2 6 r 6 a + b + q, it

follows that

0 <
⌊g

2

⌋
− q + 1 =

a− b− q + (2
⌊
g
2

⌋
+ b− a− q + 2)

2
6 c 6

a− b− q + (a+ b+ q)

2
= a 6

⌊g
2

⌋
. (4.9)

Similarly, recall that d = g− a−b+q+r
2

= b+ g− a+b+q+r
2

, and r 6 2g− a− b− q, we have

d > b+ g − a+ b+ q + (2g − a− b− q)
2

= b > 0.

On the other hand, as r > 2
⌊
g
2

⌋
+ b− a− q + 2, we have

d 6 g −
a− b+ q + (2

⌊
g
2

⌋
+ b− a− q + 2)

2
=
⌈g

2

⌉
− 1.

Therefore, we have

0 6 b 6 d 6
⌈g

2

⌉
− 1. (4.10)

Note that c+ d = g − q, so by Observation 30, we have

dT(g)(z, x) = g − q. (4.11)

By Inequality (4.9), 0 6 a − c 6
⌊
g
2

⌋
. Thus, by Observation 28, Inequality (4.9) and

Inequality (4.10),

dT(g)(z, y) = d+T(g)(z, y) = (a− c) + (d− b) = g − r. (4.12)

Thus, by Inequality (4.11) and Inequality (4.12), we know that (C2-2) holds, and this
case is done.

This completes the proof of this theorem.
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5 Concluding remarks

In this work, observing a strong connection between the notion of Extended Double Cover
and some conjectures in extension of the 4CT, we proposed Conjecture 5.

This conjecture captures the following conjecture which, if verified, would be a direct
strengthening of the 4CT and is in connection to some other conjectures. We refer to [9]
and [5] for more details.

Conjecture 33. The signed projective cube of dimension k, denoted SPC(k) is P-
complete for each value of k.

One way of defining signed projective cubes is as follows: SPC(1) is the signed multi-
graph on two vertices which are connected by one positive and one negative edge. For
k > 2, SPC(k) is the extended double cover of SPC(k − 1).

In support of Conjecture 5, we showed that the claim holds if we work with the subclass
of signed K4-minor-free graphs.

Let SPk be the class of signed K4-minor-free graphs (G, σ) satisfying gij(G, σ) >
gij(C−k). For even values of k, this is the class of signed bipartite K4-minor-free graphs
of negative girth at least k, and for odd values of k, the class of signed antibalanced
K4-minor-free graphs of odd-girth k.

For each given integer k, we have build a graph (B, π) of order 2bk
2
cdk

2
e for SPk

satisfying gij(B, π) > gij(C−k) with the property that any K4-minor-free signed graph
(G, σ) satisfying gij(G, σ) > gij(C−k) admits a homomorphism to (B, π).

For k = 2, 3, 4, 5, 6, 7 the best possible such bounds are of order 2, 3, 6, 8, 12, 15
respectively [1, 2]. This suggest the following formula for the best order of such a bound:
bk
2
c(dk

2
e + 1). A quadratic lower bound for the general value k is given by W. He, R.

Naserasr, and Q. Sun.
We note that when k is an odd number, the study of the homomorphism properties of

SPk is the same as the study of homomorphism properties of the class of series-parallel
graphs of odd girth at least k. Precise bounds on the circular chromatic number in this
class are given in [12], and on the fractional chromatic number, in [1, 7, 8]. The optimal
bounds of order 3, 8, 15 for the cases k = 3, 5, 7 from [1] each have both circular and
fractional chromatic numbers that are the same as the best bound for that of series-
parallel graphs of odd girth at least k for k = 3, 5, 7, hence strengthening results on both
the circular chromatic number and the fractional chromatic number. We expect that this
will be the case for general odd values of k. This is an alternative motivation for finding
the optimal choice for (B, π).
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