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2Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, F-45067 Orléans Cedex 2, France.
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Abstract

A signed graph (G, σ) is a graph G together with an assignment σ : E(G)→ {+,−}. The
notion of homomorphisms of signed graphs is a relatively new development which allows to
strengthen the connection between the theories of minors and colorings of graphs. Following
this thread of thoughts, we investigate this connection through the notion of Extended Double
Covers of signed graphs, which was recently introduced by Naserasr, Sopena and Zaslavsky.
More precisely, we say that a signed graph (B, π) is planar-complete if any signed planar graph
(G, σ) which verifies the conditions of a basic no-homomorphism lemma with respect to (B, π)
admits a homomorphism to (B, π). Our conjecture then is that: if (B, π) is a connected signed
graph with no positive odd closed walk which is planar-complete, then its Extended Double
Cover EDC(B, π) is also planar-complete. We observe that this conjecture largely extends the
Four-Color Theorem and is strongly connected to a number of conjectures in extension of this
famous theorem.

A given (signed) graph (B, π) bounds a class of (signed) graphs if every (signed) graph in
the class admits a homomorphism to (B, π). In this work, and in support of our conjecture,
we prove it for the subclass of signed K4-minor free graphs. Inspired by this development, we
then investigate the problem of finding optimal homomorphism bounds for subclasses of signed
K4-minor-free graphs with restrictions on their girth and we present nearly optimal solutions.
Our work furthermore leads to the development of weighted signed graphs.

1 Introduction

Graphs in this work are simple and connected, unless stated otherwise (when it is not the case we
refer to them as multigraphs). For graph terminology, we follow [17]. We work on the larger realm
of signed graphs, for which we introduce the extended terminology next.

∗This research was financed by the ANR project HOSIGRA (ANR-17-CE40-0022) and the IFCAM project “Ap-
plications of graph homomorphisms” (MA/IFCAM/18/39). The research of the first author was partially financed
by the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25). The third author was supported by
the project with grant number: NSFC 11871439, and was also supported by Fujian Provincial Department of Science
and Technology(2020J01268).
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1.1 Signed graphs

A signed graph (G, σ) is a graph G together with an assignment σ : E(G)→ {+,−}. The graph G
may be referred to as the underlying graph of (G, σ) and σ is called its signature.

Given a closed walk W of (G, σ), whose edges are e1, e2, . . . , el, in the order in which they are tra-
versed (allowing repetition), the sign of W is defined to be the product σ(W ) := σ(e1)σ(e2) · · ·σ(el).
The walk W is said to be positive or negative depending on the value of σ(W ). Since a cycle of a
graph is also a closed walk, we naturally have the definition of positive cycles and negative cycles.
Observe that if a closed walk W which starts at a vertex v consists of a closed walk W1 at v fol-
lowed by a closed walk W2 at v, then σ(W ) = σ(W1)σ(W2). Thus, the sign of a closed walk can be
determined by the sign of cycles it is composed of.

A key notion in the study of signed graphs is switching : to switch at a vertex v of a signed
graph (G, σ) is to multiply the signs of all edges in the cut (v, V (G) \ v) by −. To switch at a set
X of vertices is to switch at all the vertices of X in any sequence; this is equivalent to multiplying
the signs of all edges in the cut (X, V (G) \ X) by −. Two signatures σ1 and σ2 on G are said
to be switching equivalent, or equivalent for short, if one can be obtained from the other one by a
switching. The relation “switching equivalent” is an equivalence relation on the set of all possible
signatures of a given graph.

One of the first theorems in the theory of signed graphs is that the set of negative cycles
(equivalently the set of positive cycles) uniquely determines the equivalence class of signatures [18].
More precisely:

Theorem 1. [18] Two signatures σ1 and σ2 on a graph G are equivalent if and only if they induce
the same set of negative cycles.

1.2 Walk girths and special subclasses

Considering sign and parity of the length of a closed walk, we have essentially four different types
of closed walks. Following [15], we use the elements of Z2

2 to denote these types in such a way that
if two closed walks W1 and W2 of type ij and i′j′ have a common starting point, then the walk
W1W2 is of type ij + i′j′ where + is the additive operation of Z2

2. Thus, a positive even walk is of
type 00, a negative even walk is of type 10, a positive odd walk is of type 01 and a negative odd
walk is of type 11. The ij-walk girth of (G, σ), denoted gij(G, σ), is the length of a shortest closed
walk of type ij (setting it to be ∞ when there exists no walk of type ij). It is easy to observe
(see [15]) that if gij(G, σ) = ∞ for one choice of ij, then gkl(G, σ) = ∞ for some other kl ∈ Z2

2,
distinct from ij. Furthermore, observing that g00(G, σ) = 2 unless G has no edge, we have three
special subclasses: Gij, for ij ∈ Z2

2 and ij 6= 00, is the class of all signed graphs in which every cycle
is either of type 00 or of type ij. Of these three classes, G10 and G11 are of special importance to us.
They are refered to as consistent signed graphs in [13] and together, these two classes contain all
signed graphs with no positive odd closed walk. Conversely, assuming G is connected, if (G, σ) has
no positive odd closed walk, then it must be a signed graph in one of these two classes. As graphs
in this work are always connected, this property will be our reference point for the union of these
two families of signed graphs. Observe that G10 is the class of all signed bipartite graphs and G11
is the class of all signed graphs (G, σ) which can be switched to (G,−) (it is known as the class of
antibalanced signed graphs, see [15]).

1.3 Homomorphisms of signed graphs

We mentioned that the signs of closed walks of (G, σ) determine the switching equivalent class of
signed graphs on G to which (G, σ) belongs to. Thus, for signed graphs equipped with the switching
operation, the signs of closed walks uniquely determine the signed graph. Since homomorphisms
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preserve the fundamental structure of the considered objects, a natural definition of a homomor-
phism of signed graph (G, σ) to signed graph (H, π) is given below. We note that this definition
works the same for signed graphs with loops and multiedges, and that parallel edges of a same sign
do not influence the existence of homomorphisms.

Definition 2. [15] A homomorphism of a signed graph (G, σ) to a signed graph (H, π) is a mapping
f which maps the vertices and edges of G to the vertices and edges of H, respectively, with the
property that incidences, adjacencies and signs of closed walks are preserved. The mapping f is
furthermore a sign-preserving homomorphism of (G, σ) to (H, π) if it preserves the signs of edges.
The existence of a homomorphsm is denoted by (G, σ)→ (H, π).

This definition immediately gives us a key ingredient of our work, which is our first “no-
homomorphism lemma” in the context of signed graphs (this term refers to a necessary condition
for a specific homomorphism to exist, see [10] for this concept on usual graphs). Observe that the
image of a closed walk is a closed walk of same length. As we ask the sign of closed walks to be
preserved, when there exists a homomorphism from (G, σ) to (H, π), then for each ij ∈ Z2

2, the
length of a shortest walk of type ij in (G, σ) is at least as that of (H, π). This simple fact, which
is a key component of our work, is stated as the following no-homomorphism lemma:

Lemma 3. [The no-homomorphism lemma] Given signed graphs (G, σ) and (H, π), if (G, σ) →
(H, π), then for each ij ∈ Z2

2, we have gij(G, σ) ≥ gij(H, π).

Observe that when there are no parallel edges, the vertex-mapping and the condition of preserv-
ing adjacencies uniquely determine the edge-mapping, and thus we may define a homomorphism
solely by a vertex-mapping, as was originally done in [14].

The notion of homomorphisms is closely related to the notion of sign-preserving homomorphisms.
We mention some connection next, but for a proof and further connections we refer to [15].

Theorem 4. [15] Given signed graphs (G, σ) and (H, π), there exists a homomorphism of (G, σ)
to (H, π) if and only if there exists a signature σ′, switching equivalent to σ, and a sign-preserving
homomorphism of (G, σ′) to (H, π).

The claim of this theorem is the original definition of homomorphism in [14], and in many cases
it is rather easier to work with this equivalent definition. Thus, a homomorphism f of (G, σ) to
(H, π) is built of three components: f1, which decides at each vertex whether a switching is done;
f2, which is the vertex-mapping; f3, which is the edge-mapping. Since in the case of simple graphs
f3 is uniquely determined by f2, the mapping f could be given simply as f = (f1, f2).

1.4 The Extended Double Cover contruction and signed projective
cubes

The notion of homomorphisms of signed graphs was first defined by B. Guenin [9] to present a
bipartite analogue of a conjecture of the second author on an extension of the Four-Color Theorem.
The conjecture is about mapping planar graphs to a class of graphs known as projective cubes, or
folded cubes, which are closely related to hypercubes. After defining them as signed graphs, an
inductive definition of projective cubes was presentend in [12]. This has lead to the introduction of
the notion of the Extended Double Cover of a signed graph in [15], defined as follows.

Definition 5. [15] Given a signed graph (G, σ), the Extended Double Cover of (G, σ), denoted
EDC(G, σ), is defined to be the signed graph on vertex set V + ∪ V −, where V + := {v+ : v ∈ V (G)}
and V − := {v− : v ∈ V (G)}. For each vertex x, the two vertices x+ and x− are connected by a
negative edge; all other edges, to be described next, are positive. If vertices u and v are adjacent

3



in (G, σ) by a positive edge, then v+u+ and v−u− are two positive edges of EDC(G, σ). If vertices
u and v are adjacent in (G, σ) by a negative edge, then v+u− and v−u+ are two positive edges of
EDC(G, σ).

u

v

w

x

(a) (C−4)

u+

v+

w+

x+

u−

v−

w−

x−

(b) EDC(C−4)

Figure 1: Signed graphs C−4 and EDC(C−4). Dashed (red) edges are negative.

A key point of this construction is that it gives a geometric shape to signs and the switching
operation. Viewing vertices of V + on one side and vertices of V − on the other side, a negative edge
of (G, σ) corresponds to a twist in EDC(G, σ), whereas a positive edge is represented by a parallel
pair of edges. For example, EDC(C−k), where (C−k) is the signed graph on the cycle graph Ck
with an odd number of negative edges, is a Möbius ladder, see Figure 1. Switching at a vertex x of
(G, σ) then corresponds to exchanging the sides of x+ and x−.

Using the Extended Double Cover construction, the well-studied class of signed projective cubes
can be defined.

Definition 6. [15] The signed projective cube of dimension k, denoted SPC(k), is defined induc-
tively as follows:

• SPC(1) is the digon, that is, the signed multigraph on two vertices connected by two parallel
edges: one of positive sign, the other of negative sign;

• for k ≥ 2, SPC(k) = EDC(SPC(k − 1)).

We leave it to the reader to verify that SPC(k) can be directly defined as follows:

Proposition 7. [15] The signed graph SPC(k) is a signed graph built on vertex set Zk2, where two
vertices are adjacent with a positive edge if they differ in exactly one coordinate, and are adjacent
with a negative edge if they differ in all coordinates.

1.5 No-homomorphism lemma and homomorphism bounds for signed
graph classes

A given (signed) graph (B, π) bounds a class of (signed) graphs if every graph in the class admits
a homomorphism to (B, π), and (B, π) is said to be a bound for this class. We now introduce the
following concept, that will be useful to express the existence of homomorphism bounds for signed
graph classes.
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Definition 8. Given a class C of signed graphs and a signed graph (B, π), we say that (B, π) is
C-complete if every member (G, σ) of C satisfying gij(G, σ) ≥ gij(B, π) for every ij ∈ Z2

2, admits a
homomorphism to (B, π).

Having developed our terminology, a conjecture of the second author [11] and B. Guenin [9], in
extension of the Four-Color Theorem, can be restated as follows.

Conjecture 9. Let P be the class of signed planar graphs and let k ≥ 1 be an integer. Then SPC(k)
is P-complete.

In other words, the conjecture claims that when mapping signed graphs to SPC(k), the geometric
condition of planarity and the necessary conditions of the no-homomorphism lemma (Lemma 3)
are, together, sufficient. Observe that, without the condition of planarity, the necessary conditions
of Lemma 3 are far from being sufficient and in fact the SPC(k)-homomorphism problem over the
class of all signed graphs is an NP-hard problem, see [4]. However, it is believed that the condition
of planarity can be relaxed, e.g., a stronger conjecture is considered for signed graphs (G, σ) where
G is a K5-minor-free graph. An even stronger conjecture claims that the statement holds for every
signed graph (G, σ) as long as it has no (K5,−)-signed minor [9].

1.6 Our results

The study of the relation between homomorphisms of (signed) planar graphs and the operation of
Extended Double Cover is a recent development that captures some of the most prominent questions
and conjectures in this area. We refer to [15] for details on this relation.

In this work, in Section 3, we study this relation when restricted to the class of K4-minor-
free graphs. This supports some of the above-mentioned conjectures and extends some previous
works [1, 2]. We reformulate the existing results in the unified language of signed graphs.

We then prove that if a connected signed graph with no positive odd walk is SP-complete (where
SP denotes the class of K4-minor-free graphs), then so is its Extended Double Cover.

Then, in Section 4, towards an optimization, we find a class of nearly optimal bounds for the
signed K4-minor-free graphs with given girth condition. The orders of the bounds are quadratic in
terms of the girth condition, which is optimal up to a constant factor and improves upon the known
bounds from [1,2].

To better present our work, we first need to extend the terminology of signed graphs to weighted
signed graphs: this will be done in Section 2.

2 Weighted signed graphs

In this section we introduce the notion of weighted signed graph, with emphasis on a special case
where the weights refer to the distances and signs in a signed graph on the same set of vertices.

A weighted signed graph (G,ω) is a graph G together with an assignment w of weights in
{±1,±2, . . . ,±k} (for some integer k) to the edges of G. To emphasize on the maximum abso-
lute value, we may refer to a weighted signed graph as a k-weighted signed graph. Observing
that 1-weighted signed graphs are simply signed graphs, we have the following extensions of this
terminology.

The length of a walk, cycle or path in a weighted signed graph is the sum of absolute values
of the weights of its edges. The sign of such structures is the product of all the signs of weights
associated to the edges of said structure (considering multiplicity). Switching at a cut (X, V \X)
is to change the sign of the weight of each edge in this cut, while the absolute value remains the
same. The walk-girth of type ij (for ij ∈ Z2

2) of a signed graph (G, σ), denoted gij(G, σ), is defined
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similarly as before and again remains invariant under switching. Thus, this definition similarly
leads to three special classes of weighted signed graphs, that we denote by Cij, ij ∈ {01, 10, 11}.
It will be clear from the context whether signed graphs or weighted signed graphs are considered.
Thus, when speaking of weighted signed graphs, the class Cij, ij ∈ {01, 10, 11}, consists of those
weighted signed graphs in which every closed walk is of type either 00 or ij. As before, each member
of C01 has a switching equivalent weighted signed graph where all weights are positive. Similarly,
each member of C11 has a switching equivalent weighted signed graph where all edges are negative.
Finally, each member of C10 admits a natural bipartition: having picked an arbitrary vertex x, all
vertices connected to x by a path of odd length form one part, and all vertices connected to x by a
path of even length (including x itself) form the other part.

A homomorphism of a weighted signed graph (G,ω) to a weighted signed graph (H, θ) is defined
analogously: that is, a mapping of the vertices and edges of (G,ω) to, respectively, the edges
and vertices of (H, θ) which preserves the following fundamental properties, (i). adjacencies, (ii).
incidences, (iii). absolute values of weights and (iv). signs of closed walks. It can be proved
similarly that this is the same as a switching (G,ω′) of (G,ω) after which one must preserve the
sign of each edge rather than signs of closed walks. The basic no-homomorphism lemma works here
as well.

Lemma 10. Given weighted signed graphs (G,ω) and (H, θ), if (G,ω) → (H, θ), then for each
ij ∈ Z2

2, we have gij(G,ω) ≥ gij(H, θ).

The focus of this work is on weighted signed graphs (G,ω) which have no positive closed walk of
odd weight. If we assume, furthermore, that G is connected, then we easily observe that all negative
closed walks in (G,ω) are of the same parity. In other words either (G,ω) ∈ C10 or (G,ω) ∈ C11.
The smallest weight of a negative closed walk in such a weighted signed graph is of importance:

Definition 11. For a positive integer g, a weighted signed graph (G,w) is said to be g-wide if for
each choice of ij ∈ Z2

2, we have gij(G,w) ≥ gij(C−g).

A special family of weighted signed graphs are the ones where the weight of each edge represents
the distance in a signed graph on the same set of vertices (normally the signed graph induced by
edges of weight 1 and −1). To make this definition formal enough we use an extended notion of
distance as defined in [2], where in a signed graph, we allow two vertices to have a negative distance.

Definition 12. For a signed graph (G, σ), the algebraic distance between two vertices u and v is
defined as follows:

ad(G,σ)(u, v) =

{
dG(u, v), if there is a positive (u− v) path of length dG(u, v),
−dG(u, v), otherwise.

Observe that the algebraic distance of x and y will change sign if a switching is done at one of
x or y, but not both. All other switchings preserve the algebraic distance.

Definition 13. Given a signed graph (G, σ) and a weighted signed graph (G′, ω), where V (G′) =
V (G), we say that (G′, ω) is a partial (G, σ)-distance graph if for every edge uv of G′, ω(uv) =
ad(G,σ)(u, v). If for every edge xy of G′, |ω(x, y)| ≤ k we say that (G′, ω) is a k-partial (G, σ)-
distance graph.

Given a signed graph (G, σ), the partial (G, σ)-distance graph and the Extended Double Cover
of such graph, which will be introduced in Section 2.1, play important roles in this paper.
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2.1 Extended Double Cover of weighted signed graphs

We extend the notion of Extended Double Covers of signed graphs to Extended Double Covers of
weighted signed graphs as follows:

Definition 14. Given a weighted signed graph (G,ω), the Extended Double Cover of (G,ω), denoted
EDC(G,ω), is defined to be the weighted signed graph on vertex set V + ∪ V −, where V + := {v+ :
v ∈ V (G)} and V − := {v− : v ∈ V (G)}. Vertices x+ and x− are adjacent by an edge of weight
−1; for each pair xy of adjacent vertices of G, there will be four more edges in EDC(G,ω), namely
x+y+, x+y−, x−y+, x−y− whose weights are determined as follows. If xy is an edge of weight p > 0,
then x+y+ and x−y− are both of weight p and x+y−, x−y+ are both of weight −(p + 1). If xy is
an edge of weight −p < 0, then x+y− and x−y+ are both of weight p and x+y+, x−y− are both of
weight −(p+ 1).

As in the case of Extended Double Covers of signed graphs, the Extended Double Cover of a
signed weighted graph adds a geometric view to the notion of switching: to switch at a vertex v of
(G,ω) is equivalent to switch the role of v+ and v− in EDC(G,ω).

The following is a key property of this extended notion of Extended Double Cover.

Lemma 15. Given a weighted signed graph (G,ω) we have:

• g01(EDC(G,ω)) = g01(G,ω).

• g10(EDC(G,ω)) = g11(G,ω) + 1.

• g11(EDC(G,ω)) = g10(G,ω) + 1.

Proof. All three claims are consequences of the following observation. Given a signed closed walk
W of (G,ω) there is a natural association with two closed walks, denoted EDC+(W ) and EDC−(W )
in EDC(G,w). If the starting vertex of W is x, then the starting point of EDC+(W ) is x+ and that
of EDC−(W ) is x−. The descriptions of EDC+(W ), and that of EDC−(W ) except for the starting
point, are the same. If the ith vertex of W is v, then the ith vertex of EDC+(W ) is one of v+ or v−,
the choice of which is implied from the following procedure.

Assume that at step i of W we are at vertex v and that v′ ∈ {v+, v−} is determined as the ith

vertex of EDC+(W ). Let u be the next vertex on W . Then choose the vertex u′ ∈ {u+, u−} as
follows: if the edge vu in W is positive, then u′ has the same sign as v′, otherwise it has the opposite
sign. If W is a positive closed walk, this process ends with x+ and we have EDC+(W ). But if W
is a negative closed walk, this process ends with x− in which case we must add the negative edge
x+x− in order to have a closed walk EDC−(W ). In this case, EDC−(W ) is a negative closed walk
of length 1 more than that of W , thus of different parity.

It is easily observed that each closed walk of EDC(G,ω) that uses at most one negative edge is
either of the form EDC+(W ) or of the form EDC−(W ) for a closed walk W of (G,ω). Furthermore,
if two edges of the form v+v− are used, then we can create a closed walk of shorter length which is
of the same sign and the same parity. Thus the minimum length closed walks of a given type can
use at most one edge of type v+v−. The three claims then follow.

Following the proof of Lemma 15, we have the following lemma (note that each vertex can be
viewed as the starting vertex).

Lemma 16. Let (G, σ) be a signed graph with x, y two vertices of (G, σ) in a cycle C of length g
in (G, σ). If C is positive, then each of the pairs (x+, y+) and (x−, y−) is also in a positive cycle
of length g in EDC(G, σ). If C is negative, then each of the pairs (x+, y+), (x−, y−), (x+, y−) and
(x−, y+) is in a negative cycle of length g + 1 in EDC(G, σ).
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2.2 Extended Double Cover of signed graphs

In this section, we focus on the Extended Double Covers of signed graphs and we prove some useful
properties. From Definition 5, we have the following observation.

Observation 17. Let (G, σ) be a signed graph with x, y two vertices of (G, σ) and an (x− y)-walk
W of length p in (G, σ). If W is positive, then, in EDC(G, σ), there exisst an (x+ − y+)-walk
and an (x− − y−)-walk, both of which are positive and of length p, and an (x+ − y−)-walk and an
(x−−y+)-walk, both of which are negative and of length p+1. If W is negative, then, in EDC(G, σ),
there exist an (x+ − y−)-walk and an (x− − y+)-walk, both of which are positive and of length p,
and an (x+ − y+)-walk and an (x− − y−)-walk, both of which are negative and of length p+ 1.

The following computes the algebraic distance between two vertices in EDC(G, σ).

Proposition 18. Let (G, σ) be a g-wide signed graph with x, y two of its vertices that are in a
common negative cycle of length g, and ad(G,σ)(x, y) = p. Then, the following statements hold.

• If p > 0, then adEDC(G,σ)(x
+, y+) = adEDC(G,σ)(x

−, y−) = p. Moreover:

– if dG(x, y) = bg
2
c, then adEDC(G,σ)(x

+, y−) = adEDC(G,σ)(x
−, y+) = g − p = dg

2
e;

– otherwise, adEDC(G,σ)(x
+, y−) = adEDC(G,σ)(x

−, y+) = −p− 1.

• If p < 0, then adEDC(G,σ)(x
+, y−) = adEDC(G,σ)(x

−, y+) = −p. Moreover:

– if dG(x, y) = bg
2
c, then adEDC(G,σ)(x

+, y+) = adEDC(G,σ)(x
−, y−) = g + p = dg

2
e;

– otherwise, adEDC(G,σ)(x
+, y+) = adEDC(G,σ)(x

−, y−) = p− 1.

Proof. Without loss of generality, by the symmetries of EDC(G, σ), we only focus on the pairs
(x+, y+) and (x+, y−). As ad(G,σ)(x, y) = p, and x, y are in a negative cycle of length g, by the
definition of algebraic distance, we know that |p| ≤ bg

2
c. Since (G, σ) is g-wide, by Lemma 15,

EDC(G, σ) is (g + 1)-wide.
First assume that p > 0. Then, there exist a positive (x − y)-path of length dG(x, y) = p

and a negative (x − y)-path of length g − p in (G, σ). By Observation 17, in EDC(G, σ), there
exist a positive (x+ − y+)-path P1 of length p, a negative (x+ − y−)-path P2 of length p + 1 and
a positive (x+ − y−)-path P3 of length g − p. So the distances between x+ and y+, x+ and y− in
the underlying graph of EDC(G, σ) are p and min{p + 1, g − p}, respectively. By Definition 12,
adEDC(G,σ)(x

+, y+) = p. If p = bg
2
c, then p+1 = bg

2
c+1 ≥ dg

2
e = g−p, hence min{p+1, g−p} = g−p

and adEDC(G,σ)(x
+, y−) = g−p = dg

2
e. Otherwise, we know that p ≤ bg

2
c−1, which implies that the

distance between x+ and y− in the underlying graph of EDC(G, σ) is min{p+1, g−p} = p+1. Note
that there is no positive (x+ − y−) path of length p + 1, since otherwise such path, together with
P2, consists of a cycle of length 2(p+ 1) = 2bg

2
c ≤ g, a contradiction to the fact that EDC(G, σ) is

(g + 1)-wide. Thus, by Definition 12, adEDC(G,σ)(x
+, y−) = −(p+ 1).

Now assume that p < 0. By similar arguments as above, there exist a negative (x − y)-path
of length dG(x, y) = −p and a positive (x − y)-path of length g + p in (G, σ). By Observation 17,
there exist a positive (x+ − y−)-path P4 of length −p, a negative (x+ − y+)-path P5 of length
−p + 1 and a positive (x+ − y+)-path P6 of length g + p. Recall that EDC(G, σ) is (g + 1)-
wide and p ≥ −bg

2
c, so the distances between x+ and y+, x+ and y− in the underlying graph

of EDC(G, σ) are min{−p + 1, g + p} and −p, respectively. Thus, adEDC(G,σ)(x
+, y−) = −p. If

p = −dG(x, y) = −bg
2
c, then −p+ 1 = bg

2
c+ 1 ≥ dg

2
e = g + p, so adEDC(G,σ)(x

+, y+) = g + p = dg
2
e.

Otherwise, p ≥ −bg
2
c+ 1, hence min{−p+ 1, g+p} = −p+ 1. Also observe that there is no positive

(x+ − y+)-path of length −p + 1, since otherwise such path together with P5 consist of a negative
cycle of length 2(−p + 1) ≤ 2bg

2
c ≤ g, a contradiction to the fact that EDC(G, σ) is (g + 1)-wide.

Thus adEDC(G,σ)(x
+, y+) = −(−p+ 1) = p− 1.
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3 K4-minor-free graphs

A 2-tree is a graph that can be built from the complete graph K2 in a sequence G0 = K2, G1, . . . , Gt

where Gi is obtained from Gi−1 by adding a new vertex joined to two adjacent vertices of Gi−1, thus
forming a new triangle. A partial 2-tree is a subgraph of a 2-tree. It is well-known that a graph is
K4-minor-free if and only if it is a partial 2-tree (see for example [6]). The class of K4-minor free
graphs is also known as the class of series-parallel graphs, see for example [3]. Thus we will use the
abbreviation SP to denote this class of graphs.

As observed from the definition of 2-trees, the triangle is the building block of edge-maximal
K4-minor free graphs. When a girth condition is imposed on a signed K4-minor free graph (G, σ),
then G will no longer be edge-maximal, but rather a partial 2-tree. To take advantage of the
structure of such signed graphs then, in [1] and [2], weighted 2-trees are employed. Next we present
these techniques in a uniform language of signed graphs (with no positive walk of odd length). We
rather use the terminology developed in [5] while extending it to signed graphs.

3.1 Weighted triangles and g-wideness

Given a positive integer g with g ≥ 3, and three integers p, q and r satisfying 1 ≤ |p|, |q|, |r| ≤ g−1,
the signed graph Tg(p, q, r) is built as follows. Let Cg,p be a negative cycle of length g with a selected
pair x1 and y1 of vertices such that one of the two x1 − y1 paths in Cg,p is of length |p| and has
the same sign as p, and the other, which is of length g − |p|, has the opposite sign as p. Define
Cg,q similarly where selected vertices y2 and z1 are connected by a |q|-path and Cg,r with selected
vertices z2 and x2 which are connected by an |r|-path. We define the signed graph Tg(p, q, r) to be
the signed graph obtained from Cg,p, Cg,q and Cg,r by identifying x1 and x2 (to form the new vertex
x), y1 and y2 (to form the new vertex y), z1 and z2 (to form the new vertex z). See the left picture
in Figure 2 for an example.

z

x

y

−3−2

−4

56

4

z

x

y

Figure 2: Tg(p, q, r) with g = 8, p = 6, q = −4, and r = −3. Dashed (red) edges are negative.

We have a few immediate observations: (i). If p′ is the integer satisfying |p′| = g−|p| and pp′ < 0,
then Cg,p and Cg,p′ are identical and thus Tg(p

′, q, r) is isomorphic to Tg(p, q, r). (ii). A switching at
an internal vertex of an (x−y)-path would result in a different presentation of Tg(p, q, r), but up to a
switching they are isomorphic. (iii). A switching at x, y or z results, respectively, in Tg(−p, q,−r),
Tg(−p,−q, r) and Tg(p,−q,−r) which are also isomorphic Tg(p, q, r) up to a switching.

Note that Tg(p, q, r) could be simply presented as a weighted triangle (multiple edges are allowed
here), see the right picture in Figure 2. But considering (i), between p and p′, we would normally
choose the one whose value is positive. Therefore, we let4(p, q, r) denote a weighted triangle whose
edges are of weight p, q and r, and extend the definition of g-wideness as follows.

Definition 19. Given a positive integer g, g ≥ 3, and three integers p, q and r satisfying 1 ≤
|p|, |q|, |r| ≤ g− 1, we say a weighted triangle 4(p, q, r), or the triple (p, q, r), is g-wide if Tg(p, q, r)
is g-wide.
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In other words, 4(p, q, r) is g-wide if Tg(p, q, r) satisfies the following two conditions:

• There are no positive odd cycles in Tg(p, q, r).

• Each of the negative cycles of Tg(p, q, r) is of the same parity as g and is, furthermore, of
length at least g.

In our work we will need to consider properties of triangles and edges. For a uniform writing,
in the definition of a g-wide triple (p, q, r) we may allow them to be 0 as well. If p = 0, then in
the construction of Tg(p, q, r) the vertices x and y are identified and a negative cycle of length g is
added on the identified vertex which we may ignore. Then for 4(0, q, r) to be g-wide the positive
paths corresponding to q and r must be of the same length. Thus we may assume q = r. Therefore,
in the rest of this work T (0, r, r), r ≤ g − 1, is g-wide. Triples of the form T (0, r, r) will, in essence
of it, represent the essential edges of the weighted graphs we will work with where r would be the
weight of the corresponding edge.

That 4(p, q, r) is g-wide depends only on the values of p, q, r and g. We have already seen
that when p = 0, triples of the form (0, r, r) are the only g-wide triples. For a triple satisfying
1 ≤ |p|, |q|, |r| ≤ g − 1 there are a number of ways to check if it is g-wide. In this work we will use
the test provided in the next proposition.

Proposition 20. Given integers g, p, q and r satisfying 1 ≤ |p|, |q|, |r| ≤ g − 1, the following
statements hold.

(1) If pqr > 0, then the weighted triangle 4(p, q, r) is g-wide if and only if |p| + |q| + |r| ≡ 0
(mod 2) and max{2|p|, 2|q|, 2|r|} ≤ |p|+ |q|+ |r| ≤ 2g.

(2) If pqr < 0, then the weighted triangle 4(p, q, r) is g-wide if and only if |p| + |q| + |r| ≡ g
(mod 2) and g ≤ |p|+ |q|+ |r| ≤ g + min{2|p|, 2|q|, 2|r|}.

Proof.
(1) pqr > 0. There are exactly four positive cycles in Tg(p, q, r), and their lengths, which are of
the same parity, are: |p|+ |q|+ |r|, g−|p|+g−|q|+ |r|, g−|p|+ |q|+g−|r|, and |p|+g−|q|+g−|r|.

Suppose first that 4(p, q, r) is g-wide. By the definition, we have gij(Tg(p, q, r)) ≥ gij(C−g) and
since g01(C−g) =∞, there is no positive odd cycle, in other words |p|+ |q|+ |r| is even. Except the
four cycles we mentioned above, all the other cycles in Tg(p, q, r) are negative. Moreover, the three
cycles containing exactly two of {x, y, z} are all of length g. The four negative cycles containing
all three vertices x, y, z are of length g − |p|+ g − |q|+ g − |r|, g − |p|+ |q|+ |r|, |p|+ g − |q|+ r,
|p|+ |q|+ g − |r|. Since the negative girth of Tg(p, q, r) is g, we have: g − |p|+ g − |q|+ g − |r| ≥ g
which is to say |p|+ |q|+ |r| ≤ 2g. Assuming, without loss of generality, that max{|p|, |q|, |r|} = |p|,
the condition g − |p|+ |q|+ |r| ≥ g implies that max{2|p|, 2|q|, 2|r|} = 2|p| ≤ |p|+ |q|+ |r|.

Conversely, assume that |p| + |q| + |r| is even and max{2|p|, 2|q|, 2|r|} ≤ |p| + |q| + |r| ≤ 2g.
We shall show that gij(Tg(p, q, r)) ≥ gij(C−g), for any ij ∈ {01, 10, 11}. The case ij = 01 follows
from the fact that |p| + |q| + |r| is even and the argument discussed in the first paragraph. The
three cycles containing exactly two of x, y, z are of length g, and all of them are negative. The
four negative cycles containing x, y, z are of length g − |p| + g − |q| + g − |r|, g − |p| + |q| + |r|,
g−|q|+ |p|+ |r|, g−|r|+ |p|+ |q|. By the assumptions, all of these four values are of the same parity
as g, and also are at least g, which implies that g1j(Tg(p, q, r)) ≥ g1j(C−g), for each j ∈ {0, 1}.
(2) pqr < 0. Let p′ = − p

|p|(g − |p|), q
′ = − q

|q|(g − |q|), r
′ = − r

|r|(g − |r|), so pqr < 0 if and only if

p′q′r′ > 0. Since Tg(p, q, r) is isomorphic to Tg(p
′, q′, r′), 4(p, q, r) is g-wide if and only if T (p′, q′, r′)

is g-wide. Therefore, by (1), 4(p, q, r) is g-wide if and only if |p′| + |q′| + |r′| = 0 (mod 2) and
max{2|p′|, 2|q′|, 2|r′|} ≤ |p′| + |q′| + |r′| ≤ 2g. Equivalently, g − |p| + g − |q| + g − |r| = 0 (mod 2)
and max{2g − 2|p|, 2g − 2|q|, 2g − 2|r|} ≤ g − |p| + g − |q| + g − |r| ≤ 2g, after simplification, we
have |p|+ |q|+ |r| = g (mod 2) and g ≤ |p|+ |q|+ |r| ≤ g + min{2|p|, 2|q|, 2|r|}.
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3.2 A test for SP-completeness

We denote by Lg the set of ordered triples (p, q, r), satisfying |p|, |q|, |r| ≤ g − 1 and such that
4(p, q, r) is g-wide. Observe that because of the condition |p|, |q|, |r| ≤ g− 1 we have less than 8g3

non-isomorphic weighted triangles (or edges) 4(p, q, r), thus [Lg| ≤ 8g3.
Recall that for each p with 1 ≤ |p| ≤ g − 1, if p′ is the integer satisfying |p′| = g − |p| and

pp′ < 0, then Tg(p
′, q, r) is the same as Tg(p, q, r). Thus a triple (p, q, r) can be represented in Lg in

8 possible ways among which there is a unique presentation where p, q, r ≥ 1.
Similarly, recall that in the definition of (G, σ)-distance graph, for each weighted edge, the

weight represents the algebraic distance between the two endpoints in (G, σ), which could be either
positive or negative. Another special weighted signed graph is obtained from (G, σ) by using only
positive weights, which represent the length of positive paths joining pairs of vertices on a shortest
negative cycle of (G, σ) containing both of them. For this point, we define the following.

Definition 21. Given a g-wide signed graph (G, σ) and a weighted signed graph (G′, ω), where
V (G′) = V (G) and G′ is such that for each edge xy of G′, the pair x, y is in a negative cycle of
length g in (G, σ), we say that (G′, ω) is a girth-transformed (G, σ)-distance graph if for every edge
uv of G′, ω(uv) = fg(ad(G,σ)(u, v)), where fg is defined on −

⌈
g
2

⌉
+1 ≤ x ≤

⌊
g
2

⌋
, x 6= 0, as following:

fg(x) =

{
x, if x > 0,

g + x, otherwise,

If for every edge xy of G′, ω(uv) ≤ k, we say that (G′, ω) is a k-partial girth-transformed (G, σ)-
distance graph.

Now, with this transformation, we can address weighted signed graphs with only positive weights.
Also, some known theorems can be also restated in this language. The following definition is a
restatement of the “all g-good property” in [1] and [2].

Definition 22. Given a g-wide weighted signed graph (G,ω) satisfying 1 ≤ ω(e) ≤ g − 1 for every
edge e, a set T of triangles of G is said to be g-closed if the following condition is satisfied:

Denoting by E the set of weighted edges of the triangles in T , for each edge xy ∈ E (assuming
ω(xy) = p) and for each triple (p, q, r) ∈ Lg, there is a triangle xyz ∈ T such that ω(zx) = q and
ω(zy) = r, or ω(zx) = g − q and ω(zy) = g − r.

Remark 1. The only difference between all g-good property and g-closed is that in the former one,
(i). 1 ≤ |w(e)| ≤ bg

2
c; (ii). the last condition is w(zx) = q, w(zy) = r or w(zx) = −q, w(zy) = −r.

Note that in the condition above, if q 6= r, then the order of p, q, r matters. To be precise, in such
a case, say for (p, r, q), while the definition implying existence of a vertex z satisfying ω(zx) = q and
ω(zy) = r, or ω(zx) = g−q and ω(zy) = g−r by consider the triple (p, r, q) instead of (p, q, r) there
must also be a vertex z′ satisfying ω(xz′) = r and ω(yz′) = q, or ω(xz′) = g− r and ω(yz′) = g− q.

The following then is a uniform restatement of results of [1] and [2]. (see also [5])

Theorem 23. A g-wide signed graph (B, π) is SP-complete if and only if there exists a
⌊
g
2

⌋
-partial

(B, π)-distance graph with a nonempty set T having all g-good property.

Then we have the following observation.

Observation 24. Let (B, π) be a g-wide signed graph, (B′, ω) be a
⌊
g
2

⌋
-partial (B, π)-distance graph

with a nonempty set T having all g-good property. Then for every edge xy in T ∈ T , x and y are
in a negative cycle of length g in (B, π).

11



Proof. Let ω(x, y) = p with |p| ≤ bg
2
c. By Proposition 20(2), if p > 0, then (p,−bg−p

2
c, dg−p

2
e) ∈ Lg,

and if p < 0, then (p, bg+p
2
c, dg+p

2
e) ∈ Lg . Thus in each case, there exists a vertex z in B such that

|ω(xy)|+ |ω(zx)|+ |ω(zy)| = |p|+
⌊
g − |p|

2

⌋
+

⌈
g − |p|

2

⌉
= g,

and ω(xy) · ω(zx) · ω(zy) < 0, which implies that there is a negative cycle of length g in (B, π)
containing both x and y.

Then Theorem 23 and Observation 24 can be restated with only positive weights as follows,
respectively.

Theorem 25. A g-wide signed graph (B, π) is SP-complete if and only if there exists a (g−1)-partial
girth-transformed (B, π)-distance graph (B′, ω) which has a nonempty g-closed set T of triangles.

Observation 26. Let (B, π) be a g-wide signed graph, (B′, ω) be a (g−1)-partial girth-transformed
(B, π)-distance graph which has a nonempty g-closed set T of triangles. Then for every edge xy in
T , x and y are in a negative cycle of length g in (B, π).

Now, we are ready to state and prove our main theorem.

Theorem 27. For any positive integer g, if a g-wide signed graph (B, π) is SP-complete, then so
is EDC(B, π).

Proof. Let (B, π) be a g-wide signed graph which is SP-complete. By Theorem 25, there exists a
g-partial (B, π)-distance graph (B′, w) which has a nonempty and g-closed set T of triangles whose
vertex set is V and (weighted) edges form the set E . We first define the weighted signed graph

(B̂, ŵ) on vertex set V + ∪ V −, where V + := {v+ : v ∈ V } and V − := {v− : v ∈ V } as follows: for
each v ∈ V , vertices v+ and v− are joined by an edge with ŵ(v+v−) = g. If uv ∈ E with weight
w(uv), then we add four edges {u+v+, u+v−, u−v−, u−v+} with ŵ(u+v+) = ŵ(u−v−) = w(uv), and
ŵ(u+v−) = ŵ(u−v+) = g − w(uv).

Claim 1. (B̂, ŵ) is a g-partial girth-transformed EDC(B, π)-distance graph.

Proof. Let x, y be two vertices of B′ forming an edge in E , by Observation 26, x, y are contained in a
negative cycle of length g in (B, π). By Lemma 16, xα and yβ are in a negative cycle of length g+1 in
EDC(B, π) for any α, β ∈ {+,−}. Thus, it suffices to show that ω̂(xαyβ) = fg+1(adEDC(B,π)(x

α, yβ)).
For each vertex x in B, adEDC(B,π)(x

+, x−) = −1 < 0, so fg+1(adEDC(B,π)(x
+, x−)) = g+ 1− 1 =

g = ω̂(x+x−).
Assume x and y are two vertices in B with ad(B,π)(x, y) = p > 0. Thus ω(xy) = p. By Propo-

sition 18, adEDC(B,π)(x
+, y+) = adEDC(B,π)(x

−, y−) = p. Then we have fg+1(adEDC(B,π)(x
+, y+)) =

fg+1(adEDC(B,π)(x
−, y−)) = p = ω(xy) = ω̂(x+y+) = ω̂(x−y−). If dB(x, y) = bg

2
c, then ω(xy) = p =

bg
2
c. By Proposition 18, adEDC(B,π)(x

+, y−) = adEDC(B,π)(x
−, y+) = dg

2
e, so we have

fg+1(adEDC(B,π)(x
+, y−)) = fg+1(adEDC(B,π)(x

−, y+)) = dg
2
e = g − ω(xy) = ω̂(x+y−) = ω̂(x−y+).

Otherwise, by Proposition 18, adEDC(B,π)(x
+, y−) = adEDC(B,π)(x

−, y+) = −p− 1 < 0, so we have

fg+1(adEDC(B,π)(x
+, y−)) = fg+1(adEDC(B,π)(x

−, y+))
= g + 1 + (−p− 1) = g − p
= g − ω(xy) = ω̂(x+y−) = ω̂(x−y+).

The case ad(B,π)(x, y) = p > 0 could be verified similarly, we do not repeat again.
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Let T ′ be the family of all the triangles in B̂ and E ′ consisting of the edges of the triangles in
T ′, we shall show that T ′ is (g + 1)-closed and nonempty.

Let p, q, r be positive integers such that (p, q, r) ∈ Lg+1 and e = xαyβ ∈ E ′ with ω̂(e) = p, where
x, y ∈ V (B), α, β ∈ {+,−} (it is possible that x = y, in which case, α 6= β). Following Theorem 25
and Definition 22, we shall prove that there is a triangle in T ′ on e. That is equivalent to finding a
vertex zγ, where z ∈ V (B), γ ∈ {+,−}, such that either

ω̂(zγxα) = q, ω̂(zγyβ) = r, (C1-1)

or
ω̂(zγxα) = g + 1− q, ω̂(zγyβ) = g + 1− r. (C1-2)

Note that the statement clearly holds for the case g = 1, indeed, in this case, (B, π) is a
negative loop. Then EDC(B, π) is a digon, which is obviously SP-complete. For the case that
g = 2, (B, π) is a digon. In the complete EDC(B, π)-distance graph (containing weighted edge uv
for any u, v ∈ V (B)), there are four triangles, each of which is a weighted triangle isomorphic to
4(1, 1, 2), and it is trivial to check that T ′ consisting of these four triangles is g-closed.

Now, consider that g ≥ 3 and let e be an edge with ω̂(e) = p. We first assume that e = x+x−: it
follows that p = g = max{|p|, |q|, |r|}. By Proposition 20(1), 2g ≤ g + q + r ≤ 2g + 2 and g + q + r
is even, we have q + r ∈ {g, g + 2}.

If q+r = g+2, then we have min{q, r} ≥ 2, so g+1−q, g+1−r ≤ g−1. Moreover, p+g+1−q+
g+1−r = p+g = 2g is even, thus by Proposition 20(1), (p, g+1−q, g+1−r) ∈ Lg. By Theorem 25,
there is a triangle xyz ∈ T such that either ω(zx) = q − 1 or ω(zx) = g − (q − 1) = g + 1 − q.
Therefore, if ω(zx) = q− 1, then ω̂(z−x+) = g+ 1− q, and ω̂(z−x−) = q− 1 = g+ 1− r, so (C1-2)
holds with zγ = z−. If ω(zx) = g+1−q, then ω̂(z+x+) = g+1−q, and ω̂(z+x−) = q−1 = g+1−r,
so (C1-2) holds with zγ = z+.

If q + r = g, then (p, q, r) = (g, q, g − q) ∈ Lg (as g + q + g − q = 2g and by Proposition 20(1)).
So there is a triangle xyz ∈ T such that either ω(zx) = q or ω(zx) = g − q. If ω(zx) = q, then
ω̂(z+x+) = q, and ω̂(z+x−) = g − q = r, thus (C1-1) holds with zγ = z+. If ω(zx) = g − q, then
ω̂(z−x+) = q, and ω̂(z−x−) = g − q = r, thus (C1-1) holds with zγ = z−.

Now, without loss of generality, we assume that e = x+yβ and x 6= y. It follows that ω(xy) =
p < g if β = + and ω(xy) = g − p if β = −. We consider the following two cases.

Case 1. max{q, r} = g. In this case, without loss of generality, assume that q = g. As by
Proposition 20(1) 2g ≤ p+ g + r ≤ 2g + 2 and p+ g + r is even, we have p+ r ∈ {g, g + 2}.

If p+ r = g, then (p, q, r) = (p, g, g− p). Note that ω̂(x−x+) = q = g, and ω̂(x−yβ) = g− p = r,
by setting zγ = x−, (C1-1) holds.

Next, assume that p+r = g+2, i.e., r = g+2−p. Then, min{p, r} ≥ 2, and by Proposition 20(1)
we have that (p, 1, p− 1), (g − p, g − 1, p− 1) ∈ Lg.

• If β = +, then ω(xy) = p. As (p, 1, p− 1) ∈ Lg, there is a triangle xyz ∈ T such that either
ω(zx) = 1 and ω(zy) = p− 1, or ω(zx) = g − 1 and ω(zy) = g − p + 1. For the former case,
ω̂(z+x+) = 1, and ω̂(z+y+) = p− 1; for the latter case, ω̂(z−x+) = 1, ω̂(z−y+) = p− 1.

• If β = −, then ω(xy) = g − p. As (g − p, g − 1, p − 1) ∈ Lg, there exists a triangle xyz ∈ T
such that either ω(zx) = g − 1 and ω(zy) = p − 1, or ω(zx) = 1 and ω(zy) = g + 1 − p.
For the former case, ω̂(z−x+) = 1, and ω̂(z−y−) = p − 1. For the latter case, ω̂(z+x+) = 1,
ω̂(z+y−) = p− 1.

For each case above, since g + 1− q = 1 and g + 1− r = p− 1, (C1-2) holds.

Case 2. max{q, r} < g. First, assume that q + r ≤ g + 1. Recall that p < g (because the only

edges of weight g in (B̂∗, ω̂) are those of the form x+x−), so we have p+ q + r ≤ 2g. Thus we have
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(p, q, r), (−p,−q, r) ∈ Lg. As Tg(p, q, r) is equivalent to Tg(−p,−q, r), Tg(−p,−q, r) is equivalent to
Tg(g − p, g − q, r), so (g − p, g − q, r) ∈ Lg.

• If β = +, then ω(xy) = p. As (p, q, r) ∈ Lg, there exists a triangle xyz ∈ T such that
either ω(zx) = q and ω(zy) = r, or ω(zx) = g − q and ω(zy) = g − r. For the former case,
ω̂(z+x+) = q, ω̂(z+y+) = r; for the latter case, ω̂(z−x+) = q, ω̂(z−y+) = r.

• If β = −, then ω(xy) = g − p. As (g − p, g − q, r) ∈ Lg, there exists a triangle xyz ∈ T such
that either ω(zx) = g − q and ω(zy) = r, or ω(zx) = q and ω(zy) = g − r. For the former
case, we have that ω̂(z−x+) = q, ω̂(z−y−) = r. For the latter case, we have that ω̂(z+x+) = q,
ω̂(z+y−) = r.

For each case above, (C1-2) holds.
Now, assume that q + r ≥ g + 2, and let q′ = g + 1− q and r′ = g + 1− r. Thus, we have that

q′ + r′ ≤ g < g + 1 and max{q′, r′} < g. Then, by the previous part, that is, when q + r ≤ g + 1,
we know that there exists a vertex such that (C1-2) holds. More precisely, there exists a vertex zγ

such that ω̂(zγxα) = g + 1− q′ = q, and ω̂(zγyβ) = g + 1− r′ = r, that is, (C1-1) holds.
This completes the proof.

4 A class of smaller g-wide SP-complete signed graphs

In this section, we describe a new family of SP-complete signed graphs from G10 ∪ G11. For each
g ≥ 2, we will construct a g-wide SP-complete signed graph of order bg2/2c. These graphs are
smaller than the previously known examples: for odd values of g, bounds of order (g − 1)2 were
constructed [1]; for even values of g, the only previously known examples were the signed projective
cubes, of order 2g−1 [2].

For any pair of integers (a, b), let C(2a, b) denote the Cartesian product C2a�Pb, viewed as a
cylinder. The graph C(2a, b) is of diameter a+ b−1, and for any vertex v with degree 3 in C(2a, b),
there is a unique vertex at distance a + b− 1 of v which is therefore called antipodal of v, denoted
v̄. For any pair of integers (a, b), the Augmented Cylindrical grid of dimensions 2a and b, denoted
by AC(2a, b), is obtained from C(2a, b) by adding an edge between each pairs of antipodal vertices,
we denote by J the set of edges between antipodal pairs (see Figure 3 for an example). More
specifically, let AC(2a, b) be the graph defined on vertex set {0, 1, . . . , 2a − 1} × {0, 1, . . . , b − 1}
such that a pair {(i1, j1), (i2, j2)} is an edge if

• i1 = i2 and |j1 − j2| = 1 (vertical edges), or

• j1 = j2 and |i1 − i2| ∈ {1, 2a− 1} (horizontal edges), or

• |i2 − i1|+ |j2 − j1| = a+ b− 1. (J)

Figure 3: The augmented Cylindrical grid AC(8, 4). Sloped (red) edges are the edges in J .

We note that the signed graph (AC(2a, b), J) could be SPg-complete for various choices of a
and b (for example, P5�P6 is SP8-complete). Here, we will prove this for a = bg

2
c, b = dg

2
e, which

results in a family of very symmetric signed graphs.
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For convenience and readability, we let T(g) = C(2bg
2
c, dg

2
e). Also we let TT(g) = AC(2bg

2
c, dg

2
e),

in short of twisted tube of dimension g, in the sense that AC(2bg
2
c, dg

2
e) looks like a twisted toroidal

grid. Indeed, AC(2bg
2
c, dg

2
e) can be btained from C(2bg

2
c, dg

2
e+1) by identifying each pair of vertices

(i, 0) and (i+ bg
2
c, dg

2
e+ 1), where 0 ≤ i ≤ bg

2
c, in the fashion of a Dehn twist studied in algebraic

topology.

4.1 Properties of the signed graph (TT(g), J)

Lemma 28. For any integer g ≥ 2, the following statements are true.

(i) (TT(g), J) is a subgraph of SPC(g − 1).

(ii) (TT(g), J) is vertex-transitive.

(iii) Any two vertices in (TT(g), J) belong to a common negative cycle of length g.

(iv) (TT(g), J) is g-wide.

Proof. (i) We first label the edges of (TT(g), J) with canonical vectors {e1, e2, . . . , eg−1} of {0, 1}g−1
and eJ (all coordinates are 1) as follows (indices are now to be understood modulo 2bg

2
c):

• {(i− 1, j), (i, j)} with label ei if i ≤ bg
2
c and with ei−b g

2
c otherwise.

• {(0, j), (2bg
2
c − 1, j)} with label eb g

2
c.

• {(i, j − 1), (i, j)} with label eb g
2
c+j.

• {(i, j), (i+ bg
2
c, j + bg

2
c)} with label eJ .

Note that the binary sum of the labels of the edges along any cycle of TT(g) is the all-zero vector.
Conversely, if the sum of the labels along a walk is the all-zero vector, then this walk is closed.
Then for any path from vertex (0, 0) to some vertex v of TT(g), the binary sum of the labels is
the same. Thus we may define the mapping φ from the vertices of (TT(g), J) to the vertices of
SPC(g− 1) such that for any vertex v of (TT(g), J), φ(v) is the binary sum of the labels along any
path from (0, 0) to v. Observe that the number of different coordinates between φ(u) and φ(v) is
exactly the same a the number of different coordinates between u and v. On the other hand, if uv is
a positive edge in (TT(G), J), then uv /∈ J , and u and v differ in exactly one coordinate; if uv is a
negative edge, then uv ∈ J , and u and v differ in all coordinates. So by Proposition 7, the mapping
φ is an injective homomorphism from (TT(g), J) to SPC(g− 1), which implies that (TT(g), J) is a
subgraph of SPC(g − 1).

(ii). Let v1 = (i1, j1) and v2 = (i2, j2) be two vertices of TT(g). Let φ be the mapping

φ : (i, j) 7−→
{

((i+ i2 − i1) mod 2
⌊
g
2

⌋
, j + j2 − j1), if 0 ≤ j ≤

⌈
g
2

⌉
− 1− (j2 − j1),

((i+
⌊
g
2

⌋
+ i2 − i1) mod 2

⌊
g
2

⌋
, (j + j2 − j1) mod

⌈
g
2

⌉
), if j ≥

⌈
g
2

⌉
− (j2 − j1).

First observe that φ is an automorphism of TT(g) mapping v1 to v2, as φ−1 exists, one can check
it, we omit the details. On the other hand, in the signed graph φ(TT(g), J), the negative edges
are {{(i, j2 − j1), (i, j2 − j1 − 1)}|0 ≤ i ≤ 2

⌊
g
2

⌋
− 1}. So switching at V = {(i, j)|j ≥ j2 − j1} in

φ(TT (g), J) gives us (TT(g), J).

(iii). Since TT(g) is vertex-transitive, we may assume that one of these two vertices is the origin
(0, 0). Let i be an integer between 0 and 2

⌊
g
2

⌋
− 1 and j be an integer between 0 and

⌈
g
2

⌉
− 1,

where i+ j 6= 0. We need to prove that (0, 0) and (i, j) are in a common negative cycle of length g.
By the symmetries of TT(g), we may assume that i ≤

⌊
g
2

⌋
and i ≤

⌈
g
2

⌉
− 1. If we forget about the
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antipodal edges, there is a shortest path from (0, 0) to (
⌊
g
2

⌋
,
⌈
g
2

⌉
− 1) going through (i, j). Together

with the antipodal edge {(0, 0), (
⌊
g
2

⌋
,
⌈
g
2

⌉
− 1)}, we get a negative cycle of length g in (TT(g), J).

(iv). By Definition 6 and Lemma 15, SPC(g − 1) is g-wide. By (i) and the fact that taking
subgraphs will not decrease the girths gij, the statement follows.

In the sequel, for any two vertices u1 = (i1, j1) and u2 = (i2, j2) in T(g), we define

d+T(g)(u1, u2) = |i1 − i2|+ |j1 − j2|, d−T(g)(u1, u2) = 2
⌊g

2

⌋
− |i1 − i2|+ |j1 − j2|.

Intuitively speaking, d+T(g)(u1, u2) is the shortest length of a (u1 − u2)-path that does not use any

edges of type {(0, j), (2
⌊
g
2

⌋
− 1, j)}, while d−T(g)(u1, u2) does. As

d+T(g)(u1, u2) + d−T(g)(u1, u2) = 2
⌊g

2

⌋
+ 2|j1 − j2| ≤ 2

⌊g
2

⌋
+ 2(

⌈g
2

⌉
− 1) = 2g − 2,

we have the following observation.

Observation 29. For any two vertices u = (i1, j1) and v = (i2, j2) in T(g),

dT(g)(u, v) = min{d+T(g)(u, v), d−T(g)(u, v)} ≤ g − 1.

Consequently, if |i1−i2| ≤
⌊
g
2

⌋
, then d+T(g)(u, v) ≤ d−T(g)(u, v), so dT(g)(u, v) = d+T(g)(u, v). Otherwise,

d+T(g)(u, v) > d−T(g)(u, v), so dT(g)(u, v) = d−T(g)(u, v).

The following observation is easy but useful, and also mentioned in [1, 2].

Observation 30. Let (G, σ) be a g-wide signed graph and let C be a negative cycle of length g in
(G, σ). Then, for any pair (u, v) of vertices of C, the distance in G between u and v is determined
by their distance in C.

By Observation 29, the following special case holds.

Observation 31. Suppose u = (i, j) is a vertex in T(g) with 0 ≤ i < 2
⌊
g
2

⌋
and 0 ≤ j <

⌈
g
2

⌉
, and

t is an integer satisfying 1 ≤ t ≤ g − 1. Then, dT(g)((0, 0), (i, j)) = t if and only if either

• i ≤
⌊
g
2

⌋
and i+ j = t, or

• i >
⌊
g
2

⌋
and i− j = 2

⌊
g
2

⌋
− t.

Lemma 32. For any two vertices u and v in (TT(g), J), fg(ad(TT(g),J)(u, v)) = dT(g)(u, v).

Proof. By Lemma 28(iv), TT(g) is g-wide, and by Lemma 28(iii), for any two vertices u, v in TT(g),
there is a negative cycle of length g in (TT(g), J) containing u, v.

If dT(g)(u, v) ≤
⌊
g
2

⌋
, then by Observation 30, dTT(g)(u, v) = dT(g)(u, v) ≤

⌊
g
2

⌋
, which means

that there exists a positive (u− v)-path of length dT(g)(u, v) in (TT(g), J). Thus, by Definition 12,
ad(TT(g),J)(u, v) = dT(g)(u, v) > 0, hence fg(ad(TT(g),J)(u, v)) = dT(g)(u, v);

If dT(g)(u, v) >
⌊
g
2

⌋
, then by Observation 30, dTT(g)(u, v) = g − dT(g)(u, v) < dT(g)(u, v), which

implies that there does not exist a positive (u − v)-path of length dTT(g)(u, v) in (TT(g), J).
Thus, by Definition 12, ad(TT(g),J)(u, v) = dT(g)(u, v) − g < 0, hence fg(ad(TT(g),J)(u, v)) = g +
ad(TT(g),J)(u, v) = dT(g)(u, v).
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4.2 (TT(g), J) is SP-complete.

In this section, we provide a new family of smaller bounds that are SP-complete.

Theorem 33. For every integer g ≥ 2, the signed graph (TT(g), J), of order bg2/2c, is SP-
complete.

Proof. Let (B,w) be a weighted signed graph where B is a complete graph on vertex set V (TT(g)),
and for each edge uv, ω(uv) = fg(ad(TT(g),J)(u, v)). By Lemma 28 (iii) and Definition 21, (B,w) is
a (g− 1)-partial girth-transformed (TT (g), J)-distance graph. It is clear that the edge set of (B,w)
is non-empty. Let T be the collection of all triangles in (B,w), we shall show that T is g-closed.

Let p, q, r be three integers satisfying 1 ≤ p, q, r ≤ g−1, such that (p, q, r) is g-wide, E be the set
of edges appeared in T . Assume e = xy ∈ E with ω(e) = p. We shall find a triangle xyz ∈ T such
that either ω(zx) = q and ω(zy) = r, or ω(zx) = g− q and ω(zy) = g− r. By Lemma 28(ii), TT(g)
is vertex-transitive, so we may assume that x = (0, 0). By the horizontal symmetries of TT(g)
(recall that there is an edge {(2

⌊
g
2

⌋
−1, j), (0, j)} for each j), we may assume that y = (a, b), where

0 ≤ a ≤
⌊
g
2

⌋
, so by Observation 31, b = p − a. Therefore, by Lemma 32, it suffices to show that

there exists a vertex z = (c, d) in TT(g) where c and d are two integers satisfying 0 ≤ c ≤ 2
⌊
g
2

⌋
− 1

and 0 ≤ d ≤
⌈
g
2

⌉
− 1, such that either

dT(g)(z, x) = q, dT(g)(z, y) = r, (C2-1)

or
dT(g)(z, x) = g − q, dT(g)(z, y) = g − r. (C2-2)

We may also assume that q ≤
⌊
g
2

⌋
, for otherwise, we can replace q with g − q and replace r with

g − r such that (C2-1) or (C2-2) holds.
By Proposition 20(1), p, q, r satisfy the triangle-inequality. So |a + b − q| = |p − q| ≤ r ≤

min{p+ q, 2g− p− q} = min{a+ b+ q, 2g− a− b− q}, also r and p+ q = a+ b+ q have the same
parity. We also observe that all of a+ b+ q, a+ |b− q|, 2

⌊
g
2

⌋
+ b− a− q and 2g − a− b− q have

the same parity, so depending on the value of r, we determine z = (c, d) as follows.

(i) |a+ b− q| ≤ r ≤ a+ |b− q|.

• If b ≥ q, then r = a+ b− q, and we let c = 0 and d = q.

• If b < q, then |a+ b− q| ≤ r ≤ a+ q − b, let c = a−b+q−r
2

and d = q+r−a+b
2

.

(ii) If a+|b−q|+2 ≤ r ≤ min{2
⌊
g
2

⌋
+b−a−q, a+b+q, 2g−a−b−q}, then let c = 2

⌊
g
2

⌋
+ a+b−q−r

2

and d = a+b+q−r
2

.

(iii) If 2
⌊
g
2

⌋
+ b − a − q + 2 ≤ r ≤ min{a + b + q, 2g − a − b − q}, then let c = a−b−q+r

2
and

d = g − a−b+q+r
2

.

As (p, q, r) is g-wide, p+q+r = a+b+q+r is even, and consequently, a+b−q−r, a+b+q−r,
a− b− q + r and a− b+ q + r are all even, so in each case, c and d are integers. We now proceed
to prove the validity of our choices.

It is trivial to verify that (C2-1) holds for Case (i) with b ≥ q.

For Case (i) with b < q, note that c = a− a+b−q+r
2

, as |a+ b− q| ≤ r ≤ a+ q − b, we have

0 =
a− b+ q − (a+ q − b)

2
≤ c ≤ a− a+ b− q + |a+ b− q|

2
≤ a ≤

⌊g
2

⌋
. (4.1)
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Similarly, recall that d = b+ r−(a+b−q)
2

, so we have

b ≤ b+
|a+ b− q| − (a+ b− q)

2
≤ d ≤ (a+ q − b) + (q + b− a)

2
= q ≤

⌊g
2

⌋
. (4.2)

Observe that c+ d = q, so by Observation 31, we have

dT(g)(z, x) = q. (4.3)

By Inequality (4.1), we have |a− c| ≤
⌊
g
2

⌋
. Thus by Observation 29, Inequalities (4.1), (4.2),

dT(g)(z, y) = d+T(g)(z, y) = (a− c) + (d− b) = r. (4.4)

Therefore, by Inequalities (4.3), (4.4), (C2-1) holds and the case is done.

For Case (ii), note that c = a+
⌊
g
2

⌋
+

2b g2c+b−a−q−r
2

and r ≤ 2
⌊
g
2

⌋
+ b− a− q, we have

c ≥ a+
⌊g

2

⌋
+

2
⌊
g
2

⌋
+ b− a− q − (2

⌊
g
2

⌋
+ b− a− q)

2
= a+

⌊g
2

⌋
≥
⌊g

2

⌋
.

On the other hand, as c = 2
⌊
g
2

⌋
+ a+b−q−r

2
and r ≥ a+ |b− q|+ 2, we have

c ≤ 2
⌊g

2

⌋
+
a+ b− q − (a+ |b− q|+ 2)

2
= 2

⌊g
2

⌋
− 1 +

b− q − |b− q|
2

≤ 2
⌊g

2

⌋
− 1.

Thus we have ⌊g
2

⌋
≤
⌊g

2

⌋
+ a ≤ c ≤ 2

⌊g
2

⌋
− 1, (4.5)

Similarly, note that d = q + a+b−q−r
2

and r ≥ a+ |b− q|+ 2, we have

d ≤ q +
a+ b− q − (a+ |b− q|+ 2)

2
= q − 1 +

b− q − |b− q|
2

≤ q − 1.

On the other hand, as r ≤ a+ b+ q, d ≥ a+b+q−(a+b+q)
2

= 0. Therefore,

0 ≤ d ≤ q − 1 +
b− q − |b− q|

2
≤ q − 1. (4.6)

Note that c− d = 2
⌊
g
2

⌋
− q, by Inequality (4.5) and Observation 31, we have

dT(g)(z, x) = q. (4.7)

By Inequality (4.6), if b ≥ q, then d ≤ q− 1 < b, otherwise d ≤ q− 1 + (b− q) = b− 1. So it always
holds that d < b. Recall that Inequality (4.5) ensures that c− a ≥

⌊
g
2

⌋
, so by Observation 29,

dT(g)(z, y) = d−T(g)(z, y) = 2
⌊g

2

⌋
− (c− a) + (b− d) = r. (4.8)

Thus, by Inequality (4.7) and Inequality (4.8), Inequality (C2-1) holds, and this case is done.

For Case (iii), recall that c = a−b−q+r
2

and 2
⌊
g
2

⌋
+ b− a− q + 2 ≤ r ≤ a+ b+ q, it follows that

0 <
⌊g

2

⌋
− q + 1 =

a− b− q + (2
⌊
g
2

⌋
+ b− a− q + 2)

2
≤ c ≤ a− b− q + (a+ b+ q)

2
= a ≤

⌊g
2

⌋
.

(4.9)
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Similarly, recall that d = g − a−b+q+r
2

= b+ g − a+b+q+r
2

, and r ≤ 2g − a− b− q, we have

d ≥ b+ g − a+ b+ q + (2g − a− b− q)
2

= b ≥ 0.

On the other hand, as r ≥ 2
⌊
g
2

⌋
+ b− a− q + 2, we have

d ≤ g −
a− b+ q + (2

⌊
g
2

⌋
+ b− a− q + 2)

2
=
⌈g

2

⌉
− 1.

Therefore, we have

0 ≤ b ≤ d ≤
⌈g

2

⌉
− 1. (4.10)

Note that c+ d = g − q, so by Observation 31, we have

dT(g)(z, x) = g − q. (4.11)

By Inequality (4.9), 0 ≤ a−c ≤
⌊
g
2

⌋
. Thus, by Observation 29, Inequality (4.9) and Inequality (4.10),

dT(g)(z, y) = d+T(g)(z, y) = (a− c) + (d− b) = g − r. (4.12)

Thus, by Inequality (4.11) and Inequality (4.12), we know that (C2-2) holds, and this case is done.

This completes the proof of this theorem.

5 Concluding remarks

In this work we have observed a strong connection between the notion of Extended Double Cover and
some strong conjectures in extension of the Four-Color Theorem. We propose a stronger conjecture
as follows:

Conjecture 34. Given a signed graph (B, π) in C11 ∪ C10, if it is P-complete, then EDC(B, π) is
also P-complete.

In support of this conjecture, we showed that the claim holds if we work with the subclass of
signed K4-minor-free graphs.

Let SPk be the class of signed K4-minor-free graphs (G, σ) satisfying gij(G, σ) ≥ gij(C−k). For
even values of k, this is the class of signed bipartite K4-minor free graphs of negative girth at least
k, and for odd values of k, the class of signed antibalanced K4-minor-free graphs of odd-girth k.

We have provided nearly optimal (in terms of number of vertices of the underlying graph) bound
(B, π) of order 2bk

2
cdk

2
e for SPk satisfying gij(B, π) ≥ gij(C−k).

The best possible such bounds are of order 2, 3, 6, 8, 12, 15 for k = 2, 3, 4, 5, 6, 7 respectively [1,2].
This suggest the following formula for the best order of such a bound: bk

2
c(dk

2
e+1). These formulas

support a search among grid-like graphs, and we have provided some nearly optimal graphs based
on this class of graphs.

We note that when k is an odd number, the study of the homomorphism properties of SPk
is the same as the study of homomorphism properties of the class of series-parallel graphs of odd
girth at least k. Precise bounds on the circular chromatic number in this class are given in [16],
and on the fractional chromatic number, in [1, 7, 8]. The optimal bounds of order 3, 8, 15 for the
cases k = 3, 5, 7 from [1] each have both circular and fractional chromatic numbers that are the
same as the best bound for that of series-parallel graphs of odd girth at least k for k = 3, 5, 7, hence
strengthening results on both the circular chromatic number and the fractional chromatic number.
We expect that this will be the case for general odd values of k. This is an alternative motivation
for finding the optimal choice for B.
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