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Abstract

The notion of the circular coloring of signed graphs is a recent one that simultaneously extends both
notions of the circular coloring of graphs and 0-free coloring of signed graphs. A circular r-coloring of
a signed graph (G, σ) is to assign points of a circle of circumference r, r ≥ 2, to the vertices of G such
that vertices connected by a positive edge are at circular distance at least 1 and vertices connected by
a negative edge are at circular distance at most r

2 − 1. The infimum of all r for which (G, σ) admits a
circular r-coloring is said to be the circular chromatic number of (G, σ) and is denoted by χc(G, σ).
For any rational number r = p

q , two notions of circular cliques are presented corresponding to the
edge-sign preserving homomorphism and the switching homomorphism.
It is also shown that the restriction of the study of circular chromatic numbers to the class of signed
bipartite simple graphs already captures the study of circular chromatic numbers of graphs via ba-
sic graph operations, even though the circular chromatic number of every signed bipartite graph is
bounded above by 4.
In this work, we consider the restriction of the circular chromatic number to this class of signed graphs
and construct signed bipartite circular cliques with respect to both notions of homomorphisms. We
then present reformulations of the 4-Color Theorem and the Grötzsch theorem. As a bipartite analogue
of Grötzsch’s theorem, we prove that every signed bipartite planar graph of negative girth at least 6
has circular chromatic number at most 3.

1 Introduction

A signed graph is a graph G (allowing loops and multi-edges) together with an assignment σ : E(G)→
{+,−}, denoted by (G, σ). We note that signed graphs are allowed to have multi-edges, but we
consider multi-edges only if they are of different signs. The signed graph on two vertices connected
by two parallel edges of different signs is called digon. Furthermore, unless specified, graphs are
considered to have no loop. The sign of a closed walk of (G, σ) is the product of signs of all its edges
(allowing repetition). Given a signed graph (G, σ) and a vertex v of (G, σ), a switching at v is to
switch the signs of all the edges incident to v. We say a signed graph (G, σ′) is switching equivalent
to (G, σ) if it is obtained from (G, σ) by a series of switchings at vertices. In this case, we say the
signature σ′ is equivalent to σ. It has been proved in [28] that two signed graphs (G, σ1) and (G, σ2)
are switching equivalent if and only if they have the same set of negative cycles.
A (switching) homomorphism of a signed graph (G, σ) to (H,π) is a mapping of V (G) and E(G)
to V (H) and E(H) (respectively) such that the adjacencies, the incidences and the signs of the
closed walks are preserved. When there exists such a homomorphism, we write (G, σ) → (H,π). A
homomorphism of (G, σ) to (H,π) is said to be edge-sign preserving if it, furthermore, preserves the
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signs of the edges. When there exists an edge-sign preserving homomorphism of (G, σ) to (H,π), we

write (G, σ)
s.p.−→ (H,π). The connection between these two kinds of homomorphisms is established

as follows: Given two signed graphs (G, σ) and (H,π), (G, σ) → (H,π) if and only if there exists a

signature σ′ which is equivalent to σ, such that (G, σ′)
s.p.−→ (H,π). An equivalent reformulation of

this is through the following definition.

Definition 1.1. Given a signed graph (G, σ), the Double Switch Graph of it, denoted DSG(G, σ), is
the signed graph built from two disjoint copies (G1, σ1) and (G2, σ2) of (G, σ) by adding the following
set of edges in between. If xy is a positive (resp. negative) edge of (G, σ), then x1y2 and x2y1 are
negative (resp. positive) edges of DSG(G, σ). Here x1, x2, y1, y2 are representing copies of x and y in
G1 and G2 in the most natural way.

The connection between the two notions of homomorphisms is as follows.

Theorem 1.2. [1] A signed graph (G, σ) admits a switching homomorphism to (H,π) if and only if
it admits an edge-sign preserving homomorphism to DSG(H,π).

We note that in building DSG(H,π) for the purpose of this theorem, if for a vertex x there already
exists a vertex x′ which is like obtained from x by a switching, then we do not need to add a copy of
x. When (H,π) has the property that for each vertex x of it, there is a such a vertex x′ (which is like
a switched copy of x), then a signed graph (G, σ) admits a homomorphism to (H,π) if and only if it
also admits an edge-sign preserving homomorphism to (H,π). That is because if a vertex u of (G, σ)
is mapped to the vertex x of (H,π) after a switching, then one may instead map u to x′ without a
switching. We note that some of the circular cliques that we will discuss here are of this form.
Observe that the parity of the lengths and the signs of closed walks are preserved by a homomorphism.
Given a signed graph (G, σ) and an element ij ∈ Z2

2, we define gij(G, σ) to be the length of a shortest
closed walk whose number of negative edges modulo 2 is i and whose length modulo 2 is j. When
there exists no such closed walk, we say gij(G, σ) =∞. In general, the length of the shortest negative
closed walk of a signed graph is said to be its negative girth. By the definition of the homomorphism
of signed graphs, we have the following no-homomorphism lemma.

Lemma 1.3. [22][No-homomorphism lemma] If (G, σ)→ (H,π), then gij(G, σ) ≥ gij(H,π) for each
ij ∈ Z2

2.

1.1 Homomorphisms of signed bipartite graphs

Given a graph G, we construct a signed bipartite graph S(G) as follows: The vertex set of S(G)
consists of V (G) and {xuv, yuv | uv ∈ E(G)}; For the edge set, we join each of xuv and yuv to each of u
and v, and for the signature, we assign signs such that each 4-cycle uxuvvyuv is negative. Intuitively,
in constructing S(G), we replace each edge uv of G with a negative 4-cycle. We note there is more
than one choice of signature here, and moreover, having vertices already labeled, not every two such
signatures are switching equivalent. That which of the two sides of a 4-cycle is chosen to be negative
makes a difference here. However, up to a switching isomorphism, any two signature choices of S(G)
are the same.
The first easy observation on S(G) is that it is a signed bipartite graph where in one part all vertices
are of degree 2. This construction was introduced in [21] where the next two theorems are proved in
order to show the importance of the study of homomorphisms of signed bipartite graphs.

Theorem 1.4. [21] Given graphs G and H, G→ H if and only if S(G)→ S(H).

Theorem 1.5. [21] Given a graph G, we have the followings.

• χ(G) ≤ 2 if and only if S(G)→ (K2,2, e);

• χ(G) ≤ k if and only if S(G)→ (Kk,k,M) for k ≥ 3.

As the problem of mapping signed graphs to (Kk,k,M) could capture the problem of the coloring of
ordinary graphs, signed graphs (Kk,k,M) are of special interests in the study of the homomorphism
of signed graphs. In particular, when k = 4, we have a restatement of 4-Color Theorem as follows.
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Theorem 1.6. For any planar graph G, S(G)→ (K4,4,M).

Notice that the planarity is preserved when we construct S(G) from a planar graph G. Moreover,
based on an edge-coloring result of B. Guenin [9] which in turn is based on the 4-Color Theorem, the
following strengthening of the 4-Color Theorem has been proved in [21]: Every signed planar graph
(G, σ) satisfying that gij(G, σ) ≥ gij(K4,4,M) for ij ∈ Z2

2 maps to (K4,4,M). A signed graph (G, σ)
satisfies the conditions gij(G, σ) ≥ gij(K4,4,M) if and only if its underlying graph is bipartite and it
has no digon. The next theorem is a reformulation of this strengthening of the 4-Color Theorem.

Theorem 1.7. Every signed bipartite planar simple graph admits a homomorphism to (K4,4,M).

The 4-Color Theorem states that every planar graph admits a homomorphism to K4, while the
Grötzsch theorem states that every planar graph of girth at least 4 maps to K3, noting that K3 is a
subgraph of K4. Motivated by this observation, Theorem 1.5, and Theorem 1.7, it is quite natural
to ask for which families of signed bipartite planar graphs admit (K3,3,M) as a homomorphism
bound. Observe that here (K3,3,M) is a subgraph of (K4,4,M). We further note that, considering
Theorem 1.5, the problem of mapping signed bipartite planar graphs to (K3,3,M) captures the 3-
coloring problem of (ordinary) planar graphs. In this work, among other results, we prove the following
theorem in Section 3.1 noting that our proof is based on the 4-Color Theorem.

Theorem 1.8. Every signed bipartite planar graph of negative girth at least 6 admits a homomorphism
to (K3,3,M). Moreover, the girth condition is best possible.

2 Circular chromatic number of signed graphs

Given a signed graph (G, σ) and a positive integer k, a 0-free 2k-coloring of (G, σ) (introduced in
[28]) is a mapping f : V (G) → {±1,±2, . . . ,±k} such that for any edge e = uv, f(u) 6= σ(e)f(v).
The notion of the circular coloring of signed graphs defined in [23] is a common extension of circular
coloring of graphs and 0-free 2k-coloring of signed graphs.
For a real number r ≥ 1, let Cr be a circle of circumference r. For two points x, y on Cr, the distance
between x and y on Cr, denoted dCr(x, y), is the length of the shorter arc of Cr connecting x and y.
For each point x on Cr, the antipodal of x, denoted by x̄, is the unique point at distance r

2 from x.
Given a real number r, a circular r-coloring of a signed graph (G, σ) is a mapping ϕ : V (G) → Cr

such that

• for each positive edge uv of (G, σ), dCr(ϕ(u), ϕ(v)) ≥ 1;

• for each negative edge uv of (G, σ), dCr(ϕ(u), ϕ(v)) ≥ 1.

The circular chromatic number of a signed graph (G, σ) is defined as

χc(G, σ) = inf{r ≥ 1 : (G, σ) admits a circular r-coloring}.

For integers p ≥ 2q > 0 such that p is even, the signed circular clique Ks
p;q has the vertex set

[p] = {0, 1, . . . , p − 1}, in which ij is a positive edge if and only if q ≤ |i − j| ≤ p − q and ij is a
negative edge if and only if either |i− j| ≤ p

2 − q or |i− j| ≥ p
2 + q. Moreover, let K̂s

p;q be the signed
subgraph of Ks

p;q induced by vertices {0, 1, . . . , p2−1}. In this definition loops are allowed, and indeed,
by the definition, there will be a negative loop on each vertex but there will be no positive loop. As
shown in [23], the following statements are equivalent:

• (G, σ) admits a circular p
q -coloring;

• (G, σ) admits an edge-sign preserving homomorphism to Ks
p;q;

• (G, σ) admits a switching homomorphism to K̂s
p;q.

In other words, in the order induced by edge-sign preserving homomorphism on the class of all signed
graphs, the circular chromatic number of a signed graph (G, σ) is the smallest value of a rational

number p
q such that (G, σ)

s.p.−→ Ks
p;q. Normally we choose the minimal element (the core) of each
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homomorphically equivalent class to present the class. In such cases then we will choose Ks
p;q where

p is an even integer and, with respect to this condition, p
q is in its simplest form, e.g. Ks

16;5 or Ks
8;2.

Observe that in Ks
p;q if we apply a switching at a vertex i, i ≤ p

2 − 1, then we get a copy of the vertex

i + p
2 . Furthermore, Ks

p;q = DSG(K̂s
p;q). Thus K̂s

p;q is a homomorphic image of Ks
p;q with respect to

the (switching) homomorphism. Furthermore, with the same assumption on p and q, K̂s
p;q is a core.

The next lemma is a straightforward consequence of the transitivity of the homomorphism relation.

Lemma 2.1. If (G, σ)→ (H,π), then χc(G, σ) ≤ χc(H,π).

Let D be a digon. It follows immediately that every signed bipartite graph admits an (edge-sign
preserving) homomorphism to D and, as χc(D) = 4, we have an upper bound of 4 for the circular
chromatic number of signed bipartite graphs. However, the restriction of the problem to this subclass
of signed graphs is still of high interest as shown by the following result of [23].

Theorem 2.2. Given a graph G, we have

χc(S(G)) = 4− 4

χc(G) + 1
.

That is equivalent to: χc(G) = χc(S(G))
4−χc(S(G)) . In particular, we have that

• χc(G) ≤ 4 if and only if χc(S(G)) ≤ 16
5 ,

• χc(G) ≤ 3 if and only if χc(S(G)) ≤ 3.

In the next section, we study the restriction of the circular chromatic number to the class of signed
bipartite graphs and especially, we introduce the signed bipartite circular clique.

2.1 Signed bipartite circular clique Bp;q

One may view the class of signed circular cliques Ks
p;q or K̂s

p;q as a representation of rational numbers
in the homomorphism order of the class of all signed graphs. Then the circular chromatic number of
a signed graph (G, σ) is determined by the first element of this chain (representing rational numbers)
which is larger than (G, σ) with respect to the homomorphism order.
In Theorems 1.4, 1.5 and 2.2, we have seen the importance of the restriction of the study into the
subclass SB of signed bipartite graphs. A natural question to ask is if the homomorphism order
restricted to this subclass behaves similarly? More precisely, we would like to know if there is a chain
of signed bipartite graphs in the homomorphism order on SB which plays the role of circular clique?
We note that no signed circular clique K̂s

p;q or Ks
p;q is bipartite. Indeed each vertex in any of these

cliques has a negative loop on it. In this section, for p
q ≤ 4, we introduce a bipartite subgraph of these

circular cliques that plays the role of circular clique in the restricted class SB.

Definition 2.3. Given a rational number p
q where p is an even number, 2 ≤ p

q ≤ 4 and subject

to these conditions p
q is in its simplest form, we define the signed graph Bp;q to be the following

subgraph of Ks
p;q: The vertex set [p] = {0, 1, . . . , p − 1} is partitioned to two parts X and Y where

X = {0, 2, . . . , p − 2} and Y = {1, 3, . . . , p − 1}. The edge set is formed by the edges of Ks
p;q which

have exactly one endpoint in X and another endpoint in Y . The signs of edges are also induced by
Ks
p;q.

We will show that Bp;q, which itself is a signed bipartite graph, plays the roll of circular clique in
the subclass of signed bipartite graphs. However, this class of signed graphs is partitioned into two
subclasses depending on whether p is a multiple of 4 or it is 2 (mod 4).
When p is a multiple of 4, then we will show that Bp;q is a circular clique with respect to the edge-sign
preserving homomorphism. It means that any signed bipartite graph of circular chromatic number
at most p

q admits an edge-sign preserving homomorphism to Bp;q. In this case, as we will show, the

subgraph induced on the vertices [p2 ] = {0, 1, . . . , p2 −1} forms the core of Bp;q and will play the role of
signed bipartite clique with respect to the switching homomorphism. For example, B16;5 is depicted
in Figure 1 and its switching core, which is a signed graph on K4,4, is depicted in Figure 9.
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Figure 1: B16;5
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Figure 2: B10;3

When p ≡ 2 (mod 4), and again noting our assumption that p
q is in its simplest form subject to p

being even, the signed graph Bp;q is already a core with respect to the switching homomorphism.
For example, B10;3 is depicted in Figure 2. In this case then to have a signed circular clique with
respect to the edge-sign preserving homomorphism, we must consider DSG(Bp;q). To be more precise,
when p ≡ 2 (mod 4), for a signed bipartite graph (G, σ) to satisfy that χc(G, σ) ≤ q

q , it is necessary
and sufficient that (G, σ) admits a (switching) homomorphism to Bp;q. However, for some choices of
σ, this homomorphism might not be an edge-sign preserving homomorphism and a switching might
be necessary. To be sure to have an edge-sign preserving homomorphism then we must consider
DSG(Bp;q). For the example of p = 6 and q = 2, which corresponds to circular chromatic number
at most 3, see Figures 3, 4, 5 and 6. The first one, the signed graph of Figure 3 on three vertices,
is the signed circular 3-clique with respect to the switching homomorphism. The second one, the
signed graph of Figure 4, which is the Double Switch Graph of the first one, is the signed circular
3-clique with respect to the edge-sign preserving homomorphism. The third one, the signed graph
of Figure 5, also on 6 vertices, is the signed bipartite circular 3-clique with respect to the switching
homomorphism. Finally the last one, the signed graph of Figure 6, on 12 vertices, is the Double
Switch Graph of the previous one and is the signed bipartite circular 3-clique with respect to the
edge-sign preserving homomorphism.
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Fig 5: B6;2
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Fig 6: DSG(B6;2)

To distinguish which of the two notions of homomorphisms we are working with, we may define Bs
p;q

and B̂s
p;q as follows.

Given a positive even integer p and a positive integer q such that subject to p being even, p
q is in its

simplest form and p
q ≥ 2, we define Bs

p;q to be Bp;q when 4 | p and to be DSG(Bp;q) when 4 - p. As
mentioned before, these signed graphs play the role of signed bipartite circular clique with respect to
the edge-sign preserving homomorphism. For the switching homomorphism, we define B̂s

p;q to be Bp;q
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when 4 - p and to be the subgraph of Bp;q induced on the vertices {0, . . . , p2 − 1} when 4 | p.
We should also note that in defining Ks

p;q and K̂s
p;q, we did not need to assume p

q is in the simplest

form, however, we note that Ks
ap;aq and K̂s

ap;aq map, respectively, to Ks
p;q and K̂s

p;q. By taking such a

homomorphism and then taking the pre-image of Bs
p;q and B̂s

p;q, one may define Bs
ap;aq and B̂s

ap;aq.

That Bs
p;q and B̂s

p;q play the role of circular cliques in the subclass of signed bipartite graphs is the
subject of the next theorem. For simplicity, it is stated using Bp;q and switching homomorphism but
one can easily restated by using Bs

p;q or B̂s
p;q and the associated notion of homomorphism.

Theorem 2.4. Given a signed bipartite graph (G, σ) and a rational number
p

q
in [2, 4] where p is a

positive even integer and subject to this, p
q is in its simplest form, we have

χc(G, σ) ≤ p

q
if and only if (G, σ)→ Bp;q.

Proof. Let (G, σ) be a signed bipartite graph. One direction is quite trivial. As Bp;q is a subgraph of
Ks
p;q, χc(Bp;q) ≤

p
q . If (G, σ)→ Bp;q, then, by Lemma 2.1, we have χc(G, σ) ≤ p

q .

It remains to show that if χc(G, σ) ≤ p
q , then (G, σ)→ Bp;q. Since Bp;q behaves differently depending

on whether p divides 4 or not, we divide the proof into two cases based on this criteria: (1) p = 4k.
(2) p = 4k + 2. We note that in the first case, q must be an odd number.

Case 1 p = 4k.

As p
q ≥ 2, we know q is an odd number smaller than 2k − 1. Let (X,Y ) be the bipartition of

B4k;q and let (A,B) be the bipartition of (G, σ). Since χc(G, σ) ≤ 4k
q , there is an edge-sign preserving

homomorphism of (G, σ) to Ks
4k;q. Let ϕ be such a homomorphism. Our goal is to modify ϕ, if needed,

so that we obtain a mapping of (G, σ) to B4k;q. This would of course be based on the bipartition of
G. One such modification is given as follows:

φ(u) =

{
ϕ(u) + 1 either u ∈ A and ϕ(u) ∈ Y or u ∈ B and ϕ(u) ∈ X,

ϕ(u) otherwise.

Intuitively, we aim at modifying the mapping such that the vertices in the part A of G are mapped
to the vertices in the part X of B4k;q and the vertices in the part B are mapped to the vertices in
the part Y . In defining φ, for vertices of G satisfying these conditions under the mapping ϕ, we give
a same image under φ. If this condition is not met, then we shift the image by 1 in the clockwise
direction of the circle. What remains is to show that φ is also an edge-sign preserving homomorphism
of (G, σ) to Ks

4k;q. Then it would naturally be a homomorphism of (G, σ) to B4k;q as well.
Given an edge e = uv of G, if both φ(u) = ϕ(u) and φ(v) = ϕ(v) hold, then e is already mapped to
an edge of a same sign under ϕ and nothing left to show. If φ(u) = ϕ(u) + 1 and φ(v) = ϕ(v) + 1,
then the claim follows from the circular structure of Ks

p;q, that is, if there is an edge ij of sign η in
B4k;q, then there is also an (i + 1)(j + 1) (additions done modulo 4k) edge of sign η. It remains to
consider the case that only one endpoint of e = uv has been shifted. By the symmetry, we may assume
φ(u) = ϕ(u) and φ(v) = ϕ(v) + 1. Moreover, noting that u and v must be in different parts of the
bipartite graph G, and again by the symmetries, we assume u ∈ A and v ∈ B with ϕ(u), ϕ(v) ∈ X.
Hence, by our assumption, φ(u) = ϕ(u) and φ(v) = ϕ(v) + 1 ∈ Y . Depending on the signature of e,
we consider two cases.
If e is a positive edge, then ϕ(u)ϕ(v) is a positive edge of Ks

4k;q. Thus q ≤ |ϕ(u)−ϕ(v)| ≤ p−q = 4k−q.
Observe that, as ϕ(u) and ϕ(v) are both in X, they have a same parity, and thus |ϕ(u)− ϕ(v)| is an
even number. However, since q is an odd number, both sides of the inequality (i.e., q and 4k− q) are
odd numbers and, therefore, equality cannot hold there. It is implied that if we change (only) one
of ϕ(u) and ϕ(v) by a value of at most 1, then the inequality would still hold. Thus φ(u)φ(v) is a
positive edge of Ks

4k;q.
If e is a negative edges, then (only) one of the following must hold: either |ϕ(u)−ϕ(v)| ≤ p

2−q = 2k−q
or |ϕ(u) − ϕ(v)| ≥ p

2 + q = 2k + q. As in the previous case, we conclude that |ϕ(u) − ϕ(v)| is an
even number. However, p

2 = 2k is an even number while q must be an odd number. Thus both of
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2k− q and 2k+ q are odd numbers and once again the equality cannot hold. Therefore, after shifting
only one of the values of ϕ(u), ϕ(v) by 1, the corresponding inequality holds with respect to the new
function which is φ, that is to say, either |φ(u)− φ(v)| ≤ 2k − q or |φ(u)− φ(v)| ≥ 2k + q. Hence e is
mapped to a negative edge φ(u)φ(v) of Ks

4k;q.

Case 2 p = 4k + 2.

Notice that in this case, p
2 = 2k + 1 is an odd number. Let (X,Y ) be the bipartition of B4k+2;q and

let (A,B) be a bipartition of (G, σ).
Since χc(G, σ) ≤ 4k+2

q , there exists an edge-sign preserving homomorphism of (G, σ) to Ks
4k+2;q, say

ϕ. Our goal is to modify ϕ to obtain a (switching) homomorphism of (G, σ) to B4k+2;q. This would
be based on the bipartition of G. Intuitively, we want a mapping that maps vertices in A to X and
those in B to Y . We observe that for each pair of antipodal vertices of Ks

4k+2;q, one is in X and
the other is in Y . Thus in the mapping ϕ, if one vertex is not mapped to the correct part, then we
first apply a switching at that vertex and then map it to the antipodal of the original image. This is
formalized as follows.

φ(u) =

{
ϕ(u) (switching at u) either u ∈ A and ϕ(u) ∈ Y or u ∈ B and ϕ(u) ∈ X,

ϕ(u) otherwise.

What remains is to show that φ is a (switching) homomorphism of (G, σ) to Ks
4k+2;q. Then it would

naturally be a homomorphism of (G, σ) to B4k+2;q as well.
Given an edge e = uv of G, if both φ(u) = ϕ(u) and φ(v) = ϕ(v) hold, then it follows easily that
φ(u)φ(v) is the required edge. If φ(u) = ϕ(u) and φ(v) = ϕ(u), then we switch at both of vertices u
and v. Thus the sign of uv does not change. Moreover, vertices i and j are connected by an edge of
sign η in Ks

4k+2;q, then their antipodals are also connected by an edge of the same sign. Therefore,
φ(u)φ(v) is an edge of Ks

4k+2;q with the same sign as ϕ(u)ϕ(v) and thus as uv. The final case is that
only one endpoint of e = uv has been switched and mapped to the antipodal. By the symmetries,
we may assume that we switch at v and φ(v) = ϕ(v). Moreover, noting that u and v must be in
different parts of the bipartite graph G, and again by the symmetries, we assume u ∈ A and v ∈ B
with ϕ(u), ϕ(v) ∈ X. Hence, by our assumption, φ(u) = ϕ(u) and φ(v) = ϕ(v) ∈ Y . Depending on
the sign of e, we consider two cases.
If e is a positive edge, then ϕ(u)ϕ(v) is a positive edge of Ks

4k+2;q. Thus q ≤ |ϕ(u)− ϕ(v)| ≤ p− q =

4k+2−q. As |ϕ(v)−ϕ(v)| = p
2 = 2k+1, we have |ϕ(u)−ϕ(v)| ≤ 2k+1−q or |ϕ(u)−ϕ(v)| ≥ 2k+1+q.

Note that now uv is a negative edge of (G, σ′) where σ′ is obtained from σ by switching at v. Since
ϕ(u)ϕ(v) satisfies the condition for being a negative edge of Ks

4k+2;q, φ(u)φ(v) is a negative edge that
we required.
If e is a negative edges, then (only) one of the following must hold: either |ϕ(u) − ϕ(v)| ≤ p

2 −
q = 2k + 1 − q or |ϕ(u) − ϕ(v)| ≥ p

2 + q = 2k + 1 + q. As in the previous case, we have that

|ϕ(v) − ϕ(v)| = p
2 = 2k + 1. Thus q ≤ |ϕ(u) − ϕ(v)| ≤ 4k + 2 − q. Switching at v makes uv become

a positive edge. Now ϕ(u)ϕ(v) satisfies the condition for being a positive edge of Ks
4k+2;q, in other

words, φ(u)φ(v) is a positive edge. Therefore, we verify that φ is a (switching) homomorphism of
(G, σ) to Ks

4k+2;q and thus also to its signed bipartite subgraph B4k+2;q.

We note that the assumption p
q ≤ 4 is not used explicitly in the proof. If p

q > 4, then the signed
bipartite graph induced by odd versus even vertices will contain a digon which admits a homomorphism
from any signed bipartite graph and provides the upper bound of 4 for the circular chromatic number
of this class of signed graphs. That leaves us with circular 3-coloring as a special case. In this case,
by switching at all vertices of one part of B6;2, we get a signed graph on K3,3 where all negative edges
form a perfect matching. Thus we denote it by (K3,3,M). Hence, as a special case we have:

Corollary 2.5. Given a signed bipartite graph (G, σ),

χc(G, σ) ≤ 3 if and only if (G, σ)→ (K3,3,M).
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Another special case is when p = 4k and q = 2k−1. In this case, one may observe that the (switching)
core of B4k;2k−1 (on 2k vertices) is switching equivalent to the negative cycle C−2k. Hence, we have
the following corollary.

Corollary 2.6. Given a signed bipartite graph (G, σ),

χc(G, σ) ≤ 4k

2k − 1
if and only if (G, σ)→ C−2k.

This helps to fill the parity gap in some study of circular coloring of graphs where homomorphism to
odd cycle C2k+1 is known to be equivalent to a circular 4k+2

2k -coloring. A uniform presentation of the
two is as follows.

Theorem 2.7. Given a positive integer `, ` ≥ 2, and a signed graph (G, σ) satisfying gij(G, σ) ≥
gij(C−`) for each ij ∈ Z2

2, we have

χc(G,−σ) ≤ 2`

`− 1
if and only if (G, σ)→ C−`.

2.2 Circular coloring and subdivision

A classic relation between the chromatic number of a graph and homomorphism from a certain
subdivisions of it to the odd cycle is extended, in [19], to a relation between the circular chromatic
number of signed graphs and homomorphism of its subdivision to negative cycles. Here we present a
slightly stronger version and then use it to build examples in the next sections.

Definition 2.8. Given a signed graph (G, σ) and a positive integer `, we define T ∗` (G, σ) to be the
signed graph obtained from (G, σ) by replacing each edge e with a path P` of length ` where internal
vertices of the path are disjoint and assigning a signature satisfying that P` contains an odd number
of positive edges if e is a positive edge and P` contains an even number of positive edges if e is a
negative edge.

We note that there are many choices for the signature in defining T ∗` (G, σ), but, as all such choices
are switching equivalent, one may take any. The relation between the circular chromatic number of
(G, σ) and T ∗` (G, σ) follows from two lemmas based on the following notation of indicator.
Given a signed graph I with two specific vertices u and v, we refer to I = (I, u, v) as an indicator.
Given an indicator I and a real number r, r ≥ 2, with [0, r) viewed as the circle of circumference r,
we define Z(I) to be the set of possible choices for u in a circular r-coloring of I where v is colored
by 0.
Given two indicators I+ = (I1, u1, v2) and I− = (I2, u2, v2), for each signed graph Ω, we define
Ω(I+, I−) to be the signed graph obtained from Ω by replacing each positive edge xy with a distinct
copy of I+ where x is identified with u1 and y with u2 and similarly replacing each negative edge with
I−. For some indicators, the circular chromatic number of Ω(I+, I−) could be determined by χc(Ω).

Lemma 2.9. [23] Assume I+ and I− are two signed indicators, r ≥ 2 is a real number such that
Z(I+) = [t, r2 ] and Z(I−) = [0, r2 − t] for some 0 < t < r

2 . Then for any signed graph Ω, we have

χc(Ω(I+, I−)) = tχc(Ω).

We denote a path of length ` which contains an odd number of positive edges by P o` and a path of
length ` which contains an even number of positive edges by P e` . The special choice for the indicators
are P o` and P e` , with the two endpoints as special vertices. The range of possible choices for the ends
in the circular colorings of these paths is computed in [26].

Lemma 2.10. [26] Given an integer ` ≥ 1 and a real number r < 2`
`−1 ,

Z(P e` ) = [0, `
r

2
− `] and Z(P o` ) = [`− (`− 1)

r

2
,
r

2
].
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Combining these two lemmas, where we take I+ = P o` , I− = P e` and t = ` − (` − 1) r2 , we have the
following.

Lemma 2.11. For any signed graph Ω,

χc(T
∗
` (Ω)) =

2`χc(Ω)

(`− 1)χc(Ω) + 2
.

A few comments are to be mentioned here.
The first is to note that for each positive integer `, and by considering a graph G as a signed graph
where all edges are regarded positive, the 4-colorability of G is equivalent to proving that χc(T

∗
` (G)) ≤

8`
4`−2 . Furthermore, noting that subdivision preserves the planarity, for each choices of `, we have a
reformulation of the 4-Color Theorem. For each such ` then one line of study is to introduce an
interesting classes of signed graphs that includes T ∗` (G) for all planar graphs G and admits the same
upper bound for the circular chromatic number.
A second note here is that for even values of `, T ∗` (Ω) is a signed bipartite graph and thus the subject
of the main study in this work.
And the last note is that the S(G) construction mentioned before is a special case of this indicator
construction. Given a graph G, one may first build a signed graph G̃ by replacing each edge with a
digon. Then T ∗2 (G̃) is the same as S(G).

3 Coloring planar signed graphs

We have already noted that, via constructions such as S(G), most homomorphisms and coloring
question can be restated in the language of homomorphisms of singed bipartite graphs. Here we have
a look at what this means to the coloring of planar graphs and restate some famous theorems such
as the 4-Color Theorem and Grötzsch’s theorem.
As a direct corollary of Theorem 1.4, we have the following reformulation of 4-Color Theorem.

Theorem 3.1. [4CT restated] For any planar graph G, we have S(G)→ S(K4).

Noting that the 4-Color Theorem is equivalent to bounding the circular chromatic number of all planar
graphs by 4, and applying Theorem 2.2, another restatement of 4-Color Theorem is as follows.

Theorem 3.2. [4CT restated] For any planar graph G, we have χc(S(G)) ≤ 16
5 .

Since every S(G) is a signed bipartite graph, the claim of this theorem is equivalent to the existence
of an edge-sign preserving mapping from S(G) to Bs

16;5. Note that B̂s
16;5, the switching core of Bs

16;5,
is a signed graph on K4,4. With one random choice of a signature, (among all equivalent signatures),
this core is presented in Figure 9. We recall that the 4-Color Theorem is also restated in Theorem 1.6
in the form of mapping S(G), for every planar G, to (K4,4,M).
Let P ′ be the class of all simple planar graphs and let S(P ′) = {S(G) | G ∈ P ′}. Then, by the
discussion above, the 4-Color Theorem is equivalent to bounding the class S(P ′) by either of the
signed bipartite graphs of Figures 7, 8, or 9. One may observe that S(K4) admits a homomorphism
to both (K4,4,M) and B̂s

16;5 but that (K4,4,M) and B̂s
16;5 are homomorphically incomparable. The

latter is a consequence of the following two facts: 1. Any pair of nonadjacent vertices in (K4,4,M) or
in B̂s

16;5 belongs to a negative 4-cycle which means identifying them would result in a digon, 2. the

two signed graphs are not switching isomorphic, for example, χc(K4,4,M) = 4 and χc(B̂
s
16;5) = 16

5 .
As S(K4) itself is in the family S(P ′), one does not expect much room to strengthen the result
regarding this one beyond expected strengthening of the 4-Color Theorem. For example, the statement
holds when G is K5-minor-free, and is expected to hold if (G,−) has no (K5,−)-minor.
Since S(K4) admits a homomorphism to each of (K4,4,M) and B̂s

16;5, it would not be a surprise if a
stronger statement can be proved regarding these two targets. Indeed that is the case for (K4,4,M):
it bounds the class of all signed bipartite planar simple graphs [20]. As the limit of the circular
chromatic number of signed bipartite planar simple graphs is 4 (see [23] and [12]), this cannot be the
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Figure 8: (K4,4,M)
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Figure 9: B̂s
16;5

case for B̂s
16;5. Thus it remains an open question to bound a larger class of signed bipartite planar

graphs with B̂s
16;5.

It is shown in [19] that every signed bipartite planar graph of negative girth at least 8 maps to C−4
and that this girth condition cannot be improved to 6. We observe that C−4 is a subgraph of each of
the three homomorphism targets of this discussion.
Another common subgraph of (K4,4,M) and B̂s

16;5 which is of high interest for this discussion is
(K3,3,M). A restatement of the Grötzsch theorem is the following.

Theorem 3.3. [Grötzsch theorem restated] For any triangle-free planar graph G (with no loop), we
have χc(S(G)) ≤ 3.

In the next section, we prove Theorem 1.8 which may be viewed as a parallel theorem to Grötzsch’s
theorem. In Section 4 then we propose a question as potentially common strengthening of the two
theorems.

3.1 Bounding the circular chromatic number by 3

For a class C of signed graphs, we define χc(C) = sup{χc(G, σ) : (G, σ) ∈ C}.
For a given integer k, let P∗k be the class of singed planar graphs (G, σ) such that the signed graph
(G,−σ) satisfies the following conditions: for each ij ∈ Z2

2, we have gij(G,−σ) ≥ gij(C−k). Thus for
an odd integer k, and after suitable switchings, P∗k consists of all planar graphs of odd girth at least k
with all edges being assigned positive signs. For an even value of k, the class P∗k consists of all signed
planar bipartite graphs of negative girth at least k.
A main question then is to find χc(P∗k) for each k. For k = 3 and 4 both answers are 4, the first by
the 4-Color Theorem, the second by the observation that 4 is the upper bound for the class of signed
bipartite simple graphs and a construction given in [23] showing that 4 cannot be improved (see also
[12]). For k = 5, we have the Grötzsch theorem, that gives upper bound of 3 which is also shown
to be the optimal value. For k = 4p+ 1, this question is the subject of widely studied Jaeger-Zhang
conjecture. And for other values of k, similar conjectures are proposed. Here, addressing the case
k = 6 we prove the followings.

Theorem 3.4. We have
14

5
≤ χc(P∗6 ) ≤ 3.

The proof of the upper bound is based on the following theorem which is implied by combining results
from [6] and [20], noting that the 4-Color Theorem is used in proving this claim.

Theorem 3.5. Given a signed bipartite planar graph (G, σ) of negative girth at least 6, one can find six
disjoint subsets of edges, E1, E2, . . . , E6, such that each of the signed graphs (G, σi), i ∈ {1, 2, . . . , 6},
where Ei is the set of negative edges of (G, σi), is switching equivalent to (G, σ).

In other words, the signature packing number of (G, σ) is at least 6 (see [24] for more details).

Proof of Theorem 3.4. Let (G, σ) be a signed bipartite planar graph of negative girth at least 6 with a
bipartition (A,B). By Theorem 3.5, there are disjoint subsets E1, E2, . . . , E6 of edges of G such that
for each i ∈ [6], the signature σi, whose negative edges are Ei, is equivalent to σ.
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We consider the signed graph (G, σ1) where the set of negative edges is E1. Let G′ be the graph
obtained from G by contracting all the edges in E1. In this notion of contracting, we delete the
contracted edge (those in E1) but all other edges remain. Thus in theory we may have loops and
parallel edge in the resulting graph. However, we show next that not only G′ has no loop, it has no
triangle either. In other words, we claim that every odd cycle of G′ is of length at least 5.
To see this, let C ′ be an odd cycle of G′. This cycle is obtained from a cycle C of G by contracting some
edges (of E1). As G is bipartite, C must be of even length. Thus the number of the contracted edges
is odd. Therefore, C is a negative cycle in the signed graph (G, σ1). As all the (G, σi), i = 1, 2, . . . , 6,
are equivalent, C is negative in all of them which means it has an odd number of edges from each of
Ei’s. As these sets are disjoint, and as for i = 2, 3, . . . 6, they still present in G′, the cycle C ′ has an
odd number of edges from each Ei, i = 2, 3, . . . 6. In particular, that is at least one edge from each,
and noting again that they are disjoint sets, we conclude that C ′ is of length at least 5.
Having shown that G′ is a triangle-free planar graph with no loop (might have parallel edges), we
may apply the Grötzsch theorem to obtain a 3-coloring ϕ : V (G′) → {1, 2, 3} of G′. Let (X,Y )
be the bipartition of (K3,3,M). Label the vertices X = {x1, x2, x3} and Y = {y1, y2, y3} such that
{x1y1, x2y2, x3y3} is the set of negative edges.
We define the mapping ψ of (G, σ1) to (K3,3,M) as follows:

ψ(u) =

{
xi, if u ∈ A and ϕ(u) = i

yi, if u ∈ B and ϕ(u) = i.

It remains to show that ψ is an edge-sign preserving mapping of (G, σ1) to (K3,3,M). For any positive
edge uv of (G, σ1), without loss of generality, we may assume that u ∈ A, v ∈ B and that ϕ(u) = i,
ϕ(v) = j. Noting that uv is also an edge of G′, as ϕ is a proper 3-coloring, we have that i 6= j. Thus
ψ(u)ψ(v) = xixj is a positive edge in (K3,3,M). For any negative edge uv of (G, σ1), without loss of
generality, assume u ∈ A, v ∈ B. As uv ∈ E1 is contracted to a vertex to obtain G′, ϕ(u) = ϕ(v) = i.
So ψ(u)ψ(v) = xiyi is a negative edge. Hence, ψ is an edge-sign preserving homomorphism of (G, σ1)
to (K3,3,M ).
This complete the proof of the upper bound. For the lower bound, the best is to give an example.
An example of a simple planar graph (G, σ) satisfying χc(G, σ) = 14

3 is given in [23]. Then it follows
from Lemma 2.11 that χc(T

∗
2 (G, σ)) = 14

5 . It is easily observed that, since (G, σ) is a signed simple
planar graph, T ∗2 (G, σ) has (negative) girth at least 6 and obviously it is a signed bipartite graph. �

3.2 Bounds based on girth

We will denote the class of all signed planar graphs with P, where we will allow loops and multi-edges.
The subclass of P where the shortest cycle of each member is at least k will be denoted by Pk. Thus,
in particular, P2 is the class of all loop-free signed planar graphs and P3 is the class of all signed
planar simple graphs.
We note that P∗k is not a subclass of Pk as signed graphs in P∗k may have positive even cycles of
any length. However, it is expected that the circular chromatic number of P∗k is determined by the
subclass P∗k ∩ Pk.
The questions of determining χc(P∗k) is closely related to some of the most well known theorems
and conjectures in the theory of graph coloring, such the 4-Color theorem, Grötzsch’s theorem and
Jaeger-Zhang conjecture. This also leads to the importance of the question of determining χc(Pk). In
the table below we summarize the best known results for these questions for some value of k.
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Circular chromatic number of P∗k and Pk
k Bounds on χc(P∗

k ) Reference Bounds on χc(Pk) Reference

2 χc(P∗
2 ) = 4 [Bipartite] χc(P2) = 8 [4CT]

3 χc(P∗
3 ) = 4 [4CT] χc(P3) ≤ 6 [23]

4 χc(P∗
4 ) ∼= 4 [12] χc(P4) ≤ 4 [17]

5 χc(P∗
5 ) = 3 [8], [27] ∗

6 χc(P∗
6 ) ≤ 3 [this paper] ∗

7 ∗ χc(P7) ≤ 3 [18]

8 χc(P∗
8 ) ∼= 8

3 [19] ∗
11 χc(P∗

11) ≤ 5
2 [7], [5] ∗

14 χc(P∗
14) ≤ 12

5 [15] ∗
17 χc(P∗

17) ≤ 7
3 [5], [25] ∗

· · · · · · · · · · · ·
6p− 2 χc(P∗

6p−2) ≤ 4p
2p−1 [13] χc(P6p−2) ≤ 8p−2

4p−3 [13]

6p− 1 χc(P∗
6p−1) ≤ 4p

2p−1 [16] χc(P6p−1) ≤ 4p
2p−1 [13]

6p ∗ χc(P6p) < 4p
2p−1 [13]

6p+ 1 χc(P∗
6p+1) ≤ 2p+1

p [14] χc(P6p+1) ≤ 8p+2
4p−1 [13]

6p+ 2 ∗ χc(P6p+2) ≤ 2p+1
p [13]

6p+ 3 χc(P∗
6p+3) < 2p+1

p [16] χc(P6p+3) < 2p+1
p [13]

In this table, when we write χc(C) = r, it means that χc(Ĝ) ≤ r for each member Ĝ of the class C and
that the equality is known to hold for at least one member of the class. When we write χc(C) ∼= r,
we mean that there is a sequence of signed graphs of C whose limit of the circular chromatic number
is r. In such cases, sometimes it is verified that the r is never reached by a single member of C. For
example, this is indeed the case for P∗4 as shown in [12]. In other cases, it is not known if the equality
holds for some members or the inequality is always strict. In particular, for P∗8 the sequence that
gives the limit of 8

3 is {T ∗2 (Γi)} where Γi is the sequence reaching the limit of 4 for P∗4 . It remains an
open problem whether the equality can be reached in this case.
There are some trivial inclusion among the classes considered here: P∗k+2 ⊆ P∗k and Pk+1 ⊆ Pk. In
such cases, any upper bound for the larger class works also on the smaller one and any lower bound
for the smaller one works on the larger one as well. In the entries of the table where we write ∗ the
best known bounds come from the other entries of the table based on these inclusion.
To tight the gap in the bounds or, more ambitiously, to determine the exact values, is the subject of
some of main work in the theory of coloring planar graphs. A notable conjecture is that of Jaeger-
Zhang which can be restated as:

Conjecture 3.6. [Jaeger-Zhang Conjecture] Given a positive integer p, we have χc(P∗4p+1) ≤
2p+1
p .

A bipartite analogue of this conjecture was first proposed in [21], but considering the result of [19], it
is modified to the following.

Conjecture 3.7. [Bipartite analogue of Jaeger-Zhang Conjecture] Given a positive integer p, we have
χc(P∗4p) ≤

4p
2p−1 .

The bound of Conjecture 3.7 seems to what one may expect for χc(P∗4p−1) and that of Conjecture 3.6
seems to be what one may expect for χc(P∗4p+2) as well.

4 Conclusions and further questions

In this paper, verifying the importance of the study of circular chromatic number of signed bipartite
graphs we have presented the signed bipartite circular cliques. Then, using the 4-Color Theorem,
we have shown an upper bound of 3 for the circular chromatic number of signed bipartite planar
graphs of negative girth at least 6. We have provided a table summarizing the best known results
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on the circular chromatic number of signed planar graphs with a girth condition. Beside all the open
questions that are summarized in the table, there are two questions of interest to mention.
The first is about the use the 4-Color Theorem in our proof of the upper bound of 3 for the circular
chromatic number of the subclass χc(P∗2 ). Could one find a relatively short proof of this without
using the 4-Color Theorem? Or can one show that, on the contrary, this result implies the 4-Color
Theorem? We recall that, in Section 2, reformulations of the 4-Color Theorem using special classes
of planar graphs of high girth are given. So this would not be a surprise.
The second question is to potentially strengthen our result to include the Grötzsch theorem as a
special case. One possibility is observed by reformulating the Grötzsch theorem itself as follows.

Theorem 4.1. [Grötzsch’s theorem restated] If G is a planar graph satisfying that K3 6→ G, then
G→ K3.

We recall that if K3 6→ G, then S(K3) 6→ S(G) and that if G → K3 then S(G) → S(K3). Thus a
potential strengthening of our result, which would include the Grötzsch theorem, is as follows.

Conjecture 4.2. If (G, σ) is a signed bipartite planar graph with the property that S(K3) 6→ (G, σ),
then χc(G, σ) ≤ 3, i.e., (G, σ)→ (K3,3,M).

We note that, as shown in [18], for a signed bipartite graph (G, σ) to have “(G, σ) → (K3,3,M)”
is equivalent to have “(G, σ) → (K6,M)” where (K6,M) is the signed graph on K6 with a perfect
matching forming the set of negative edges.
Finally we would like to mention potential importance of the Table we have provided for the values
of P∗k . This table, together with the recent development of the notion of circular chromatic number
of signed graphs, helps to fill gaps in conjectures such as Jaeger-Zhang conjecture. When state alone
there is gap of 4 on the girth conditions between two consecutive statements (from 4p+ 1 to 4p+ 5).
The refinement introduced here would help with easier inductive approach based on k. In such an
approach, given an element (G, σ) of P∗k+1, one would seek for an equivalent signature σ′ such that
after contracting all negative edges of σ′, the resulting graph could be viewed as an element of P∗k .
Then using a circular coloring, obtained by an inductive assumption on k, one may produce a required
circular coloring of (G, σ). This was indeed our approach to prove the upper bound of 3 for the circular
chromatic number of the class P∗6 .
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