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High Level Language pr4.0rct

Syntax and Semantics
Logical Foundation Document

This is one of two documents that are published together.

— The “HLL Language Definition Document” describes the syntax and semantics of the formal
modelling language HLL.

— The “HLL Logical Foundation Document” also describes these syntax and semantics, but in a
form closer to that of the previously published version 2.7, allowing to clearly see how the new
version of the language has evolved.

RATP released HLL 2.7 Logical Foundations Document (LFD) in 2018. The intention was to build a
community with a diverse and rich environment around HLL. Since then, tool providers and users have
come together to discuss the evolution of the language, and this was the beginning of the HLL Forum.

The HLL version pr4.0rc1 presented in this document is the result of a collaborative effort among the
members of the HLL Forum. It was based on the work of RATP, Prover and Systerel, who have agreed
to strive for merging their various HLL versions into one common version for the benefit of the HLL
community.

This document is published under the creative commons license CC BY-ND 4.0, which means that
you may distribute it in its wholeness, but not create derivative documents from it. If you distribute
this document, the terms and conditions are maintained. All rights not expressly granted to you are
reserved.

Should you find something in this document that you want to change for a future version, please submit
your opinion to HLL Forum or to Prover, Systerel or RATP, who maintain this document together.

This document comes “as is”, with no warranties. There is no warranty that this document will fulfill
any of your particular purposes or needs.
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1 PREAMBLE

1.1 Purpose

The purpose of the document is to provide a complete definition of the HLL language in order to be
used for the implementation of tools considering this language as a source or a target.

1.2 History

Index

D Author Chapters | Modifications

ate
Based on original LFD v2.7 by N. Breton and
J.L. Colago.
Documents the new features of the HLL-forum
version 4.0 language.

A — equality/disequality between finite do-
2021-09-10 N. Breton ALL main functions of identical domains;

— unified treatment of exceptional values
(nil);

— elementhood on scalar-types;

— integer with empty ranges;

— finite domain functions allowed in in-
put/output sections;

— empty types (instead of empty sort) for-
bidden in inputs and memories;

— ordering of all types except sorts;

— assignment of ordered domain functions
with collections;

— SELECT quantifier;

— unfolding definitions (only combinatorial
case);

— quantification on any finite scalar type;

— quantification on mapping streams;

— combinatorial definition of variable with
sized type.

1.3 Reference documents

None
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1.4 Terms and abbreviations

EBNF
HLL
LFD
MSB
LSB

Extended Backus-Naur Form

High Level Language

Logical Foundations Document
Most Significant Bit of a binary word
Least Significant Bit of a binary word

HLL_LFD_pr4.0rc1/A
Last update 2021-09-14
Page 6 /80



High Level Language pr4.0rct

Syntax and Semantics
Logical Foundation Document

2 INTRODUCTION

This document presents the syntactical and semantical aspects of the HLL" modelling language.

HLL allows to define streams (or sequences) of boolean or integer values in a declarative style; it
offers a powerful mechanism to define arrays of streams. It aims at modelling sequential behaviours
and expressing temporal properties on these behaviours.

2.1 How to read this document

The presentation of the HLL language proposed in this document is mainly dedicated to implementors,
thus it targets more the absence of ambiguity than a pedagogical presentation.

For the end-user of HLL and particularly for the beginner, we propose to read the sections in the
following order:

section 3

section 4

section 9

section 13
section 14
section 12
section 16
section 10
section 11
10. section 15

©CoOoNOO AN~

The rest of the document can be used as a reference manual only. Formalisation is here to reduce
ambiguity for implementors and it is not needed for the end-user to invest a lot in a deep understanding
to get a good representation of what HLL is.

2.2 Requirement identification

In this document, specific requirements are identified in order to provide a list of points that character-

izes HLL. The identification is done with a tag on the form (where xx is an integer value)
added in the right margin at the level of a section or subsection title. The requirement is defined by the
whole content of the (sub)-section it is attached to.

The list of requirements present in the document is recalled in Appendix A.

2.3 Overview

— Section 3 gives the syntax of HLL, as an EBNF grammar.
— Section 4 presents the section oriented nature of HLL.
— Section 5 defines the namespaces and the scoping rules of the language.

THLL stands for High Level Language
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— Section 6 presents the types and type constructors available in HLL.

— Section 7 gives the formal rules defining the language’s type system.

— Section 8 specifies additional (in the sense covered neither by the syntax nor the type system)
semantic checks.

— Section 9 presents and discusses the semantics of sorts.

— Section 10 presents and discusses the semantics of array and function definitions.

— Section 11 details how collections can be used to define composite streams.

— Section 12 presents and discusses the different quantifiers.

— Section 13 defines the semantics of HLL arithmetics.

— Section 14 gives the semantics of the core stream language.

— Section 15 specifies the notion of causal HLL models.

— Section 16 defines all the combinatorial primitives offered by HLL.
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3 SYNTAX

3.1 Notation

The syntax is given using the following subset of the EBNF notation:

a non-terminal is written <symbol>;

a symbol definition is introduced by : : = with the defined symbol as the left-hand side;
a terminal symbol is given by a string separated with quotes ("terminal_string");
the pipe, | represents the alternative;

the square brackets are the optional items ([<may-be-used>]);

— the braces represent 0 or more times repetitions ({<item>});

— the braces extended with + represent 1 or more times repetitions ({<item>}+).

For the terminals that are described with a regular expression, the right-hand side of the rule starts
with regexp:.

3.2 HLL syntax specification
yniaxsp

An HLL model is given as a text satisfying the following grammar:

<HLL> ::= {<section>}
<section> = <constants> ":" {<constant> ";"}
| <types> ":" {<type_def> ";"}
| <inputs> ":" {<input> ";"}
| <declarations> ":" {<declaration> ";"}
| <definitions> ":" {<definition> ";"}
| <outputs> ":" {<expr> ";"}
| <constraints> ":" {<constraint> ";"}
| <proof> <obligations> ":" {<expr> ";"}
| <namespaces> ":" {<id> "{" <HLL> "}"}
<constants> ::= "Constants" | "constants"
<types> ::= "Types" | "types"
<inputs> ::= "Inputs" | "inputs"
<declarations> ::= "Declarations" | "declarations"
<definitions> ::= "Definitions" | "definitions"
<constraints> ::= "Constraints" | "constraints"
<proof> ::= "Proof" | "proof"
<obligations> ::= "Obligations" | "obligations"

HLL_LFD_pr4.0rc1/A
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<outputs>
<namespaces>

<constant>

<type_def>

<name>

<name_suffix>

<type>

<integer>

<sign>

<id_or_int>

<range>
<enumerated>
<tuple>

<structure>

<sort_contrib>

<array>

<function>

"Qutputs" | "outputs"
"Namespaces" | "namespaces"
"bool" <id> ":=" <expr>

"int" <id> ":=" <expr>

<type> <name> {"," <name>}
<enumerated> <id>
"sort" [ <sort_contrib> "<" ] <id>

<id> {<name_suffix>}

"[" <expr_list> "]"
"(" <type_list> ")"

llboolll
<integer>
<tuple>
<structure>
<array>
<path_id>
<function>

n intll
"int" <sign>

"int" <range>

"signed" <id_or_int>
"unsigned" <id_or_int>

<id>
<int_literal>

"[" <expr> "," <expr> "]"
"enum" n{u <id_1iSt> n}u
"tuple" u{u <type_list> u}u

"struct" "{" <member_list> "}"

<path_id_list>
u{u <id_1iSt> u}u

<type> "~" "(" <expr_list> ")"

ll(ll <type> {ll*ll <type>} n_sn <type> ll)ll

HLL_LFD_pr4.0rc1/A
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<type_list>
<member_list>
<input>

<input_name>

<declaration>

<constraint>

<definition>

<lhs>
<unfold_lhs>
<id_or_throw>

<formal_param>

<rhs>

<collection>

<expr>

<closed_expr>

<type> {"," <type>}
<id> ":" <type> {"," <id> ":" <type>}
[<type>] <input_name> {"," <input_name>}

<name>
NI on(" <pame> ")

[<type>] <name> {"," <name>}

<expr>
IIIII n (ll <expr> II) n

<lhs> ":=" <rhs>

nyn n(u <lhs> u)u ".=" <rhs>
nyn n(u <lhs> u)u ".=" <rhs>
<lhs> ":=" <rhs> "," <rhs>
<unfold_lhs> ":=" <rhs>

<id> {<formal_param>}
<id_or_throw> { "," <id_or_throw> }
<id> | n_u

"M <id_list> "]"
n(" <id_list> ")"

<expr>
<collection>

ll{ll <I‘hS> {ll’li <rhs>} ll}ll

<closed_expr> { <accessor> }

<expr> <binop> <expr>

<expr> ":" <domain>

<unop> <expr>

"if" <expr> "then" <expr>

{"elif" <expr> "then" <expr>}

"else" <expr>

"lambda" {<name_suffix>}+ ":" {<formal_ param>}+ ":=" <expr>

<bool_literal>

<int_literal>

<path_id>

ll(ll <expr> ll)ll

llel " (ll <expr> ll) "

<fop> "(" <expr_list> ")"

"Cast" ll<|l <type> |l>l| ll(l! <eXPr> |l)ll
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<quantif_expr>

<case_item>

<pattern>

<pattern_list>

<accessor>

<quantif_var>

<domain>

<binop>

<unop>

<fop>

"(" <expr> "with" {<accessor>}+ ":=" <rhs> ")"

("pre" | "PRE") [n<|| <type> ||>u] u(u <expr> [u’u <expr>] u)u

"(" <expr_list> {<case_item>}+ ")"
<quantif_expr>

<quantifier> <quantif_var> {"," <quantif_var>}

( "(" <expr> ")" | <quantif_expr> )

"SELECT" <quantif_var> {"," <quantif_var>}

n (ll <expr> [ll s n <expr>] ll) "
"|" <pattern_list> "=>" <expr>

<expr>
<path_id> ( <id> | "_" )

<pattern> { "," <pattern> }

o o<id>

"." <int_literal>
"[" <expr_list> "]"
"(" <expr_list> ")"

<id> ":" <domain>

<range>

<path_id>

"$items" u(u <path_id> u)u
<integer>

"bool"

ll#ll | ll&ll |
|l>l| l|>=|l

UF YRl |
nen |

n_sn |
| | ng=n
| | ngsn

nyn | n_n | Myen | ||%n | nan |
| |

ll/ll l|/>|l ll/<l|

ng_sn

l|<<|l

l|$minl|
"$max"
"$abs"
|l$orll
|l$and|l
"$XOI’"
"$not"
"bin2u"
"u2bin"
"bin2s"
"s2bin"

|l>>ll
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| "population_count_eq"
| "population_count_1t"
| "population_count_gt"

<expr_list> 1:= <expr> {"," <expr>}
<id_list> ci= <id> {"," <id>}
<path_id_list> ::= <path_id> {"," <path_id>}
<path_id> ::= <relative_path> <id>

| <absolute_path> <id>
<relative_path> ii={ <id> " 3

<absolute_path>

Mot { <ig> "t}

<id> := regexp: [a-zA-Z_][a-zA-Z0-9_]*

| regexp: ’[~\n’]+’

| regexp: "[~\n"]+"
<bool_literal> ::= "true" | "TRUE" | "True"

| "false" | "FALSE" | "False"
<quantifier> ::= "SOME" | "ALL" | "SUM" | "PROD"

| "CONJ" | "DISJ" | "$min" | "$max"
<dec_int_literal> ::= regexp: [0-9]1[0-9_1*
<hex_int_literal>  ::= regexp: O0[Xx][0-9A-Fa-f][0-9A-Fa-f_]*
<bin_int_literal> ::= regexp: O[Bb][01][01_]x

<int_literal> <dec_int_literal>

| <hex_int_literal>
| <bin_int_literal>

3.3 Comments

An HLL text can contain comments in one of the following forms:

— lines containing a "//" (double slash) are ignored starting from the "//" sequence to the end of
the line (including "/*" and "*/");
— characters present between "/*" and "x/" are ignored (including "//"); comments of this kind
can be nested.
The tokens "//", "/x" and "*/" are considered in the order they appear in the file.

Here are some examples that illustrate this specification:
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int a; // this "/*" is not seen as a comment start
/* the one at the beginning of this line is
// The previous "//" on this line does not start a comment. */

int a; /* the present text is inside a comment
/* this one too */
this one also */

3.4 Pragmas

All the characters after an "e@" are interpreted as the text of a pragma until the end of the line.

Pragmas may be used by tools taking HLL as input language, the semantics of such pragmas is part
of tool specifications.

3.5 Operator precedence and associativity

The relative priority is given in increasing order by the following table where all the operators of a
given line share the same priority; the second column contains the associativity rule between these
operators:

Operator Associativity
if . then . else ., lambda ...

<-> #! left
-> right
# left
& left
>, >=, <, <=, =, ==, 1=, <> left
<<, >> left
+, - left
* [/, /<, /> % left
- right
unary operators: ~, -

Remark: the associativity for the comparison operators (<, >, <=, >=) is given only to give an
unambiguous mapping of an HLL text to a syntactic tree. In practice, any expression that involves this
associativity will not type check because a<b is a boolean while comparisons apply on integers. All
these verifications are specified by the type system.

3.6 Identifiers

The HLL syntax offers three syntactic forms for identifiers : alpha-numeric, quoted and double quoted.
In the two last forms, the quotes are part of the identifier.

For instance, A, ’A’ and "A" represent three distinct identifiers that can be used to represent three
different entities in the same namespace in a given model.

HLL_LFD_pr4.0rc1/A
Last update 2021-09-14
Page 14 /80



High Level Language pr4.0rct

Syntax and Semantics
Logical Foundation Document

4 SECTIONS IN HLL

As described in the EBNF presented in Section 3, an HLL file is organised as a sequence of sections.
These sections are of one of the following kinds:

— constant definitions (constants)

— type definitions (types)

— input declarations (inputs)

— stream declarations (declarations)

— stream definitions (definitions)

— output expressions (outputs)

— constraint expressions (constraints)
— proof obligations (proof obligations)
— namespace definitions (namespaces)

Each kind of section can appear several times in the file, for instance a model can contain two sections
of type definitions; all the types defined by one of these two sections are visible at any point in the
model. In the sections, the order of the items does not affect the meaning of the model. From a
semantical point of view, declarations and definitions are treated as an unordered pool. In other words,
the order present in the file is not relevant in the sequel of this document 2.

Constants defined in constants sections can only reference other constants; a constant cannot be
defined with a stream even if it appears that this stream has a constant value. Constants are mainly
used to parametrise a model with dimensions or boolean flags.

Inputs, declarations and type definitions contain type expressions that can need integer values for the
array dimensions. These expressions must be built from constant and literal (in the sense defined by
the syntactic entity <int_literal>) values only (no reference to a stream is allowed). This discipline
is enforced by the type system described in Section 7.

2In the implementation of a tool based on HLL this order may be relevant to fulfill a functional requirement; in such a case
the tool specification shall be explicit on this point.
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5 NAMESPACES AND SCOPING RULES

This section defines the different namespaces and scopes that exist in HLL. This is an important
notion that defines the way identifiers allow to bind a usage point in the model with a definition.

5.1 HLL namespaces

The HLL language has four namespaces :

1. one for stream identifiers, enumeration values, sort values, iterator variables, and quantified
variables;

2. one for type identifiers;

3. one for namespace identifiers;

4. one for structure field labels.

The namespace for field labels is local to a structure type expression i.e. if a type T is a structure with
a field named m, one can define anywhere else another structure type U with a field m.

The namespace for streams, iterator variables and quantifier variables offers nested scoping:

1. the top level one with all the stream and constant definitions;
2. the local one for the definition right-hand side;
3. and those introduced by the quantifiers and lambda expressions.

The scoping rule for the namespace of streams at the level of a definition is formalised by the two
definitions below.

Definition 1 (local parameters variables). We define the function IV that computes the set of variables
present in a left-hand side of a definition or in the formal parameters of a lambda. A left-hand side
(lhs) is defined by:

<lhs> ::= <id> <formal_params>
<formal_params> ::= {("[" <id_list> "]") | ("(" <id_list> ")")}

Based on this syntactical form for Ihs, the function IV is inductively defined by:

IViv) = 0 where v is an identifier
IVv f) = 1IV(f) where v is an identifier
and f a list of formal parameters
IV(f1 f2) = IV(A)UIV(f2)
IV (Ihsiy, . .., ix)) IV (lhs) U {iy, ..., ix}
IV(/hS(il,...,ik)) = IV(/hS)U{Zl,,Zk}

For a definition, we call free variables the variables that appear in its right-hand side and are not
bound. For instance, in the definition a[i][j] := i - j * x, x is a free variable while i and j are
bound in the left-hand side of the definition.®

Definition 2 (Free variables). We define the function F'V that computes the set of free variables, in
the namespace of streams, present in an expression, a type or a definition. It is defined by mutual
induction on streams, domains and types by:

3Note that this notion of free variable is local to a definition and has nothing to do with the notion of model inputs.
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On streams:

FV() =
FV(op(e1,...,en)) =

FV(pre <t > (e)
FV(cast <t > (e)
FV(f(e1,...,en)
FV(ale,...,ey]

~—
I

V(QTF il : Dl,...,in

-
3
Q@
~—

I

FV(SELECT iy : Dy, ..., iy
FV(SELECT il : Dl, N 7i7,

FV([@:“ e

FV((tl, .
Sm if1--
em|p1=>ceq] - -
FV((ewithay.

s €n]
) tﬂ

FV(lambda sq ...
FV((el, ey

)
)
)
)
)

)
=€
Ipn >cen)
e’)

0 where l is a literal

Uiept..n FV (€i)

where op is any n-ary operator (n > 1)
and e; are expressions

FV(t)U FV(e)

FV(t)U FV(e)

FV(f) U (Uie[l..n] FV(e,J)
FV(a)U(Uiep.n FV (i)

FV(e)

where e is a stream expression

and m a structure label

{v} where v is a stream identifier
(Urerm FVDR) U EV()\ {ir, ... in})
where QTF is an HLL quantifier other than SELECT

Uker. FV(DR)) U EV() \ {ir,- - in})
(Uke[l..n] FV(Dy)) U
((EV(e) U EV(d)\ {i, .- ,in})

Uie[l..n] FV(e:)

Uiep..n FV ()

(FV(e) \ Uke[1..n]{fk}) U (Uke[l..m] FV(sk))
(Uie[l‘,n](FV(Cek)\ Vpat (Pk)))

FV(e) UFV() U (Uicp..n FV (@)

On domains (note that a domain can also be a type):

FV(int[ey,eq])

On types:
FV(T)
FV([e1, e2])
FV(bool)
FV(int)
FV(int signed n)
FV(int unsigned n)
FV(enum...)
FV(sort...)
FV(named )
FV(t"(e)))
FV (struct(lp : to,...,ln : tn))
FV (tuple(to, ... ,tn))
FV({to,.. ytn})
FV(tl X - t)

n
s Xty —

And finally, on definitions:

FV(lhs:=¢) =
vy, := Bleq,. ..

FV(Ul,...,

= FV(el)UFV(eQ)

where T is a type identifier
V(el) U FV(€2)

o

V(e)\ IV (lhs)

s€n)) = Uie[l..n]FV(ei)
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where V,.+() is a function that takes a pattern and returns the set of variables it introduces:

Vpat(U) = @
pat( ) =10
Vpatr(Sv) = {v}
pat (Pl»PQ) = V. at(pl) ) Vpat (pZ)

Based on these functions we can define the linking rule for a definition “lhs := e;” the free variables of
this definition (F'V (lhs := e)) are bound to the top level streams (inputs, outputs, local streams) while
the other are bound locally in the iterator variables.

Another restriction for iterator variables: for a given array definition, all the iterator variables must
be different. This point will be checked by the type checking rules. For instance ali,jl1[j]:=...is
incorrect since the iterator variable j appears twice on the left-hand side of the definition.

5.2 User namespaces

An HLL model can be organised as a hierarchy of named namespaces that allows to introduce new
types or streams without any risk of name conflicts with another part of the model.

Such namespaces are introduced in a specific namespaces section; and may contain any kind of HLL
sections including namespaces in this new scope (see syntax in section 3).

An identifier declared in a namespace can be referenced with the path to the namespace that declares
it; this path can be either relative, e.g.:

localBox: :drawer24: :x,

or absolute, e.g.:
::topBox: :drawer42: :x.

The top level namespace is the one defined by the HLL file. In a given namespace, all the entities
declared locally to this namespace must have different identifiers (except for the user namespaces
that can be opened several times) and can hide any identifier introduced by an upper one.

A namespace can be defined in several parts, for example:

namespaces:
a_namespace {

}

another_namespace {

}

namespaces:
a_namespace { // the namespace is re-opened

}
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Since HLL supports implicit declaration of scalar variables, the scoping rules for namespaces must
consider this specificity. In the rules, we distinguish simple identifier and path, each involving different
resolution mechanisms. These rules are:

1.

2.

in a given namespace, a simple identifier refers to the closest entity (stream or type), in the
sense of the namespace hierarchy, declared or defined locally or in an upper level;

in a given namespace, a relative path identifier is first looked up locally by searching from the
level it occurs in, if it is not found, the path is then looked up from the root of the model;

a local (to a namespace) definition of a type or contribution to a sort hides the definition of a
type with the same identifier in any level above;

a local (to a namespace) declaration or definition of a stream, including the values of the locally
defined enumerations or sorts, hides the declaration of a stream with the same identifier in any
level above;

if a simple stream identifier is not declared, defined or used in any visible namespace but used
in an expression, it is implicitly declared in the namespace where it is used, and visible in the
namespaces below;

a declared stream can only be defined in the namespace that declares it, if it is not defined, it
will be considered as an implicit input.
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6 HLL TYPES SEMANTICS

This section defines the type language of HLL.

6.1 Basic types

HLL provides a boolean type bool defined by the set of values {TRUE, FALSE}. The values true and
True (resp. false and False) are synonyms for TRUE (resp. FALSE). The set of boolean types contains
a unique item: 7., = {bool}.

The type int contains all the positive and negative integer values (Z); in practice, for a given model
this set is bounded (see Section 13). In HLL the integer literals can be given either in base 10, such
as 543, in base 2, such as 0b1101, or in base 16, such as 0x34AF5. These literals are specified by the
terminal grammar symbols <dec_int_literal>, <bin_int_literal>, and <hex_int_literal>. In
these literals, underscores (_) are just used for readability and shall be discarded, 0x183_1AE5_23A5
is equivalent to 0x1831AE523A5

An integer type in HLL may be constrained by a range or an implementation:

— ranges are specified by a pair of constant values [a, b]*,
— implementations specify a size in bits and whether negative values are representable. In terms
of the set of representable integers, we have:

int signed n = ([-2"7',2"7'—1]) withn >0
int unsigned n = ([0,2" —1]) withn >0

The set 7; of the integer types is defined by:
T = {int} U U {int([a,b])} U U {int(signed n)} U U {int(unsigned n)}

a<b n>0 n>0

In the sequel, we will denote by int an unconstrained integer type, int(R) an integer type constrained
by a range and int(7I) an integer constrained by an implementation.

Note: Implementation and range information is used to bound the arithmetics of the model. At the
type checking level, the information on ranges is mostly irrelevant; two integer types are equivalent
regardless of the specified range or representation (see Definitions 9, 13, and 14).

6.2 Enumerated types

The enumerated types are defined by:
Tom = {enum(T;ly,...,01,) [ n>0A(Vie l.n], e L)ANVi,j€[l.n], i#] = ; #1;)}

where L is the set of possible labels for enumerated values and T is the name of the enumerated type.
Note that each label shall only be used in the definition of one enumerated type or sort.

4if a > b the type is said to be empty (see Definition 8).
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6.3 Sorts

A sort type represents a set of values as an enumerated type does. The difference is in the way the
list of values is built; in the case of sorts this list is specified by giving both the values it introduces and
the set of subsorts. For a given sort the corresponding set of values contains the values introduced for
this sort and all the values of the subsorts. We first introduce 72, that represents the set of sort types
as they appear in the source:

79, = {s0rt(S; L; Sub) |L C Ls A (VS € Sub, sort(S';...) € T2)}

where L is the set of possible labels for sort values. Intuitively, sort(S; L; Sub) means sort S contains
all the labels in L and all the labels of the sorts present in Sub; it gathers all the contributions to S
that are present in the considered HLL model. This definition is well founded because cyclic type
definitions are forbidden (see restriction in 8.5). Note that each label shall only be used in the definition
of one sort or enumerated type.

Let C* be the smallest partial order on 7, such that:

sort

VS’ € Sub, sort(S’; L'; Sub’) C° sort(S; L; Sub)

Let (Ten, U%, %) be the smallest upper semilattice containing 7.0

sort”

7;ort = 7;1?[‘ U {7—1 u® T2 |T1 S 7;011 A Ty € 7;or1}

The following properties hold:

Vo,0' € Toqno C8 0! & o =o W% o’

6.4 Tuples and structures

The tuple types are defined by:
Tope = {tuple(ro, ..., )| n >0AVi € [0..n], ; €T}

Where 7. is the set of all HLL types, as defined in 6.9.

The structure types are defined by:

- {struct(lo S0y ey ln i Th) R >0 AVi€[0.n), L € LAT; €T,) }

where L is the set of possible field names and 7, is the set of all HLL types, as defined in 6.9.

Note about tuples and structures: Tuples and structures are very similar (though incompatible); they
only differ in the way one accesses the fields. In the case of a tuple, this access is positional (starting
at index 0) and in the case of a structure, the access is through the name of the field. In both cases,
the order of the fields matters.

6.5 Arrays

Arrays are mappings that associate a stream to each tuple of integer values in the definition domain.
The array types are defined by:

Tory ={77(d1,...,dp) | T €T An>0AVi € [l.n] d; >0}
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Where 7, is the set of all HLL types, as defined in 6.9.

In the array type 7°(d4, ..., d,), 7 is the type of the array elements, and the array has n dimensions
such that dimension i has size d; in the sense that the possible indices at that dimension is restricted
by d;.

The array indices start at 0. Thus if a is an array of type 7" (d1, ..., d,), it can be accessed by a tuple
of indices [i1, ..., i,] such that Vk € [1..n], ix, € [0..d) — 1].

6.6 Function types

Functions are mappings that associate a stream to each tuple of scalar values in the definition
domains.

The function types are defined by:
Tw={nx - x1 =>7|In>0AT€T, ANVic[l.n]1, €T}

Where ; x --- x 1, — 7 is the type of a function that takes n arguments of type 7; ... 7, and produces
a value of type 7. 7. is the set of all HLL types, as defined in 6.9.

6.7 Named types

A type can be named by associating a type name with a type expression in the types section.

The named types are defined by:
Trames = {named(l,7)|7 € T, Al € L}

where L is the set of all possible names and 7, is the set of all HLL types, as defined in 6.9.

A name acts as an alias except when it designates a sort; in that case, the name introduces a new
type. This new type cannot be used as a sort type to receive new contributions.

6.8 Collection types

Collection types are used to represent the type information of a definition’s right-hand side. A special
type and a special assignability relation must be defined since the same right-hand side can be used
to define either a tuple, a structure or an array depending on the declared type of the left-hand side.

To define this overloading, we introduce a special collection type:

7:0\Iection = {collection(’rg, e 7Tn) ‘ n 2 O /\ VZ € [Oa ’Il] T € 7;ollec1ion U 7;}

6.9 HLL types

The set of all HLL types is defined by:
7; = 7; U 7t-uple U 7;ruct U 7;rray U 7:amed U 71-un
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Where 7, is the set of scalar types defined by:
7; = 7;ool U 7|-U 7;num U 7;0"

6.10 Definitions on types

We introduce here some definitions on types that we need to specify the type checking rules.

Definition 3 (Sized types). A type is sized if all the integer components appearing in its final base type
(see Definition 10) are specified with a range or size. The predicate Sized defined below formalises
this definition:

Sized(bool) =T
Sized(int) = L see note below
Sized(int(R)) =T
Sized(int(I)) =T
Sized(enum _) =T
Sized(sort _) =T
Sized(named(_, 7)) = Sized(T)
Sized(T"(_)) = Sized(r)
Sized (struct(ly : 7o, .., ln : Tn)) = Vi € [0..n], Sized(7;)
Sized (tuple(To, . . . ,7'”)) = Vi € [0..n], Sized(7;)
Sized(collection(To, . .., T,)) = Vi € [0..n], Sized(7;)
(T

Sized(T1 X +++ X T, = T) = Sized

)

where T (resp. L) represents the logical value true (resp. false) that the predicate takes.

Note about tool behaviour regarding sized types: The previous definition basically says that this pred-
icate is true when applied to a type that has a specified size for all the integers it contains (given as a
bit representation or as a range of values). It is possible for a tool that takes HLL as an input language
to provide a way (option or pragma) to specify a default integer size to be used each time such a size
is needed and not present in the model. When such a feature is used the predicate Sized is true for
every type. However, the setting of this default integer size shall not apply to plain integer function
domains which shall remain unsized.

Definition 4 (Finite domain types). A type is of finite domain if all the integer components appearing
in its domains are specified with a range or size. The predicate FiniteDom defined below formalises
this definition:

FiniteDom(bool

FiniteDom(int
FiniteDom(int(R)
FiniteDom(int(I)
FiniteDom(enum _
FiniteDom(sort
FiniteDom(named(_, T)
szteDom( ( )
FiniteDom(struct(lo : 1o, - . - i Th)
FimteDom(tuple(To, ceyTh)
Fz'm'teDom(collectz’on(To, ceyTh)
FiniteDom(my X -+ X Ty = T

I
e

where T (resp. 1) represents the logical value true (resp. false) that the predicate takes.
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In the last line, the definition for functions, the parameters of the function is asked to be Sized. As
previously noted above the definition, a tool shall not attempt to constrain the size of these parameters
using some kind of default integer size.

Definition 5 (Types with an ordered domain). We define a predicate over types that is true if an order
can be defined on the domain of these types.

It is defined recursively by:

HasOrderedDomain(bool
HasOrderedDomain(int
HasOrderedDomain(int(R)
HasOrderedDomain(int(I)
HasOrderedDomain(enum
HasOrderedDomain(sort
HasOrderedDomain(named(_, T)
HasOrderedDomam( ( )
HasOrderedDomain(struct(ly : 1o, ..., ln : Tn)
HasOrderedDomain(tuple(to, . . . ,Tn)
HasOrdeTedDomain(collection(707 ey Th
HasOrderedDomain(ty, . . =T

TR
==

HasOrderedDomain(T)

I
4

..n], HasOrderedDomain(7;

0 (
0..n], HasOrderedDomain(T;
0 (
0

..n], HasOrderedDomain(t;
,n], HasOrderedDomain(t;

Il
IS
mMmmm

7
7
7
2

)
)
)
)
)
)
)
)
)
)
)
)

)
)
)
)
where T (resp. 1) represents the logical value true (resp. false) that the predicate takes.

In the current version of HLL, all types satisfy the HasOrderedDomain predicate except sorts. The
actual order for each type is described in section 6.11.

Definition 6 (Scalar types). We define a predicate over types that is true (T ) when the type is scalar.
It is defined recursively by:

Scalar(bool) =T
Scalar(int) =T
Scalar(enum _) =T
Scalar(sort _) =T

Secalar(named(_, 7)) = Scalar()
Scalar(_A(_)) =1
Scalar(struct(lo : 70, ..., 1y 1)) = L
Scalar(tuple(ro, ..., m)) = L
Scalar(collection(ro, ..., T,)) = L
Scalar(my X« X1, = 7) =1

Definition 7 (Type cardinal). For a sized scalar type r, we define the cardinal of the type, that is, the
number of possible values of that type. The predicate Card defined below formalises this definition:

Card(bool) = 2
Card(int([a, b] (1+b—a)
Card(int(signed =2n

) =

)

Card(int(unsigned n)) =

Card(enum(_;ly,...,1ln)) =n

Card(sort(_;ly,...,ly; Suby, ..., Suby,)) =n+ 21 1 Card(Sub;)
7)

Card(named(_,
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Definition 8 (Non empty type). We define a predicate over types that is true (T ) when the type does
not contain an empty type. It is defined recursively by:

noEmpty Type(bool
noEmpty Type(int(I)
)
t

noEmpty Type(int (R
noEmptyType(in

_|_
R # 0 (which happens in [a,b] whena > b)
T
T

) =

)

)

)
noEmptyType(enum _)
noEmpty Type(sort(S; L; Sub))
noEmptyType(named( ,7)3
)

)

)

)

L #0v3S € Sub, noEmptyType(S’)

noEmpty Type(T)

noEmptyType(T) Vv Ji € [1..n],d; =0

n [1..n], =noEmpty Type(T;)

noEmpty Type (T (dl, ooy dy)
noEmptyType(ry X « -+ X 'rn — T
noEmpty Type(struct(lo : 7o, ..., ln : Tn)
noEmptyType(tuple(To, cesTh)
noEmpty Type(collection(to, .. ., Tn)

oEmptyType(T)V Ji € [1.n
Vi € [0..n], noEmpty Type(;)
Vi € [0..n], noEmpty Type(;)
Vi € [0..n], noEmpty Type(7;)

This predicate characterises the presence of an empty type in a given HLL type, it is used to restrict
the inputs/memories of a model that must all be of an inhabited type.

In the case of functions and arrays, this predicate characterizes the fact that the return value is non
empty, since calling a function or dereferencing an array returning a value of an empty type would
have no meaning. However if one of the dimension of the array is 0, or if one of the parameter of the
function is an empty type (i.e. the domain is empty), it is then only impossible to use the function or
array. When both the domain and co-domain are empty, we do not care about the emptyness of the
co-domain because the function or array cannot be used. In this case we rather artificially consider
the type to be non empty.

Definition 9 (Compatibility). The compatibility between two types T and 7/, denoted = 7/, is the
equivalence relation (reflexive, transitive and symmetric) inductively defined by:

int = int(R) VR
int = int(I) VI
tuple(7o, ..., Tn) = tuple(7y, ..., 7)) iffVie[0.n] 7, =7/
struct(lo : 7oy« -y ln 2 Tn) = struct(lo : 7y .y ln 1 7)) iffYi€[0.n] 7, =7]
T (d1y .y dn) =77 (dy, . dy) iffr =1
TLX s X Ty > T=T] X XT) =T iffvie[l.n] =1, ANT7=7
collection(tg, ..., Tp) = collection(Té, ey TH) iffvi e [0.n] 7, =7]
enum( _) = enum(T’;_) iff T=T
sort(S;_;_) = sort(S’, i)
named(l T) =

Note that the last case distinguishes enumerations and sorts from other named types; two enumerated
type expressions are compatible if they refer to the same enumeration name and two sorts are always
compatible (the type compatibility relation does need to look inside enumeration or sort definitions).

Definition 10 (Final base type of a type). The base type of a type, in its usual mathematical definition,
is the type itself, or the return type of a mapping type. The final base type is the result of applying the
base type definition until reaching a fixed point.
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FinalBase Type(bool) = bool
FinalBaseType(int) = int

FinalBaseType(int(R)) = int(R)
FinalBaseType(int(I)) = int(I)
FinalBaseType(enum(E)) = enum(E)

FinalBase Type(sort(S)) = so ( )

FinalBase Type(named(_, 7)) = FinalBase Type(T)
FinalBase Type( ( )) = FinalBase Type(T)
FinalBaseType(struct(lo : 7oy ..y ln : Tn)) = struct(lo : Toy .-y ln : Tn)
FmalBaseType(tuple(To, ceeyTn)) = tuple(To, ..., Tn)
FinalBase Type(collection(ro, ..oy Tn)) = collection(tg, ..., Tn)

FinalBase Type(y X -+ X 7, = 7) = FinalBase Type(T)

Definition 11 (Union). The union on sorts extends to types as specified by the following definition:

TS T =T
oo’ = defined by definition of T,
tuple(To, ey Tn) LS tuple(Ty, . .. ,Tfl) = tuple(mo U* 74, ..., 7o LS 7))
struct(lo : 7oy« -« yln + Tn) U struct(lo : 74,y ln : 7)) = struct(lo : 7o U 74,y I T LU 7))
collection (o, . . . ,Tn) I_IS collectzon(TO, ey Th) = collection(to U 74, ..., 7 U 7))
T (dy,y ey dy) WS T (dy, . dy) = (T 7)) (di,...,dyn)
(71 X -+ X Ty = 7T) S(7'1><~~~><7'n—>7") =T X X1, > (TUST)

Where o and o’ are sorts.
All the cases that do not match one of the cases given in this list are undefined.

Definition 12 (Subsorting). The subsorting relation ¢ is the partial order (reflexive, transitive, anti-
symmetric) of the upper semilattice (T, L, C°) defined in 6.3.

Definition 13 (Subtyping). The subtyping relation between two types + and 7', denoted + < 7/, is the
partial order (reflexive, transitive and anti-symmetric) inductively defined by:

oc=<o iffo C8 o’
named(l,7) < 7' iffr <7/
7 < named(l, ") iffr <7
int(R) < int
int(/) < int
int([a,b]) < int([d/,V']) iff [a,b] C [a, V]
int([a,b]) < int unsigned n iff [a, b] C [0,2™ — 1]
int([a,b]) < int signed n iffla,b] C [-27~1 2771 — 1]
int unsigned n < int([a, b)) iff[0,2™ — 1] C [a, b]
int signed n < int([a, b)) iff[—2n=t 2n=1 — 1] C [a, b]
int signed n < int signed n’ iffn <n'
int unsigned n < int unsigned n’ iffn <n'
tuple(7o, ..., o) =X tuple(7,..., 7)) iffvVi e [0.n] 7, <7/
collection (7o, . .., Tn) =X collection(74, ..., 7)) iffVie[0.n] 7, <7/
struct(lo : 7oy - -« yln + Tn) = struct(lo : 70, ln : 7)) iff¥i€[0.n] 7, X7/
T(dy, .. dy) 2T (dy, e dy) iffr <7/
- / !
TLX X Ty =T 3T X XTh =7 iff /V\ZTEj[lT'}n]n STATET
U X7 iffry T AT =T
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where o and ¢’ represent sorts.

The informal understanding of this relation is that, if - < 7/, then any value of type T can be used
where a value of type 7' is required (substitutability ).

The following assignability relation defines the type correctness for an HLL definition where the first
type represents the declared left-hand side type and the second the right-hand side one.

Definition 14 (Assignability). The assignability relation between two types T and v/, denoted T <1 7/
(pronounce 7' is assignable to 7) is the pre-order (reflexive and transitive) inductively defined by:

a7 ifr'" <tV (reT AT €T)
, , , Tt A
TIX X Ty =T <ITy X oo XT) =T If{ Vie[ln] (=<t AT =<7)
T(d) < 7" (d) iffrar’
tuple(7o, . .., ) < collection(7{, ..., 7)) iffvi 7, <7}
struct(ly : 7o, -« ln : T) <0 collection (74, ..., 7)) iffvi 7, <7}
Sized (1)
T — 7' < collection(To, ..., Teara(ry—1)  Iff § Vi€ [0..Card(T) — 1]
AT
Sized (1) A
(T1 X+« X T = T)m>1) < collection(rg, . .. ,T’(/Vm\d(ﬁ)_l) iff { Vi€ [0..Card(m) — 1]
To X oo X Ty = T<T]
7°(d) < collection(ro, ..., Ta—1) iffvie[0.d—1] 77
77 (d1, .-, dn)(n>1) < collection(To, ..., Tq, —1) iffVi € [0..dy — 1] 7°(da,...,dn) <47

There is in fact one rule in the typechecking in which integer domain (implementation or range) is
relevant, it is in the assignability of functions containing integer domains, but this is treated as a
specific additional check in section 8.4.

6.11 Order on types

All scalar types in HLL (as defined by the Scalar() predicate) are ordered except sorts.

6.11.1 Booleans

The order on booleans is defined by the relation FALSE < TRUE.

6.11.2 Integers

The order on all integer types, constrained or not, is the natural order on relative numbers.

6.11.3 Enumerated types

The order on enumerated types is defined by the order of their declaration. For instance, considering
the following model:
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Types:
enum { FIRST, SECOND, THIRD } TEnum;

the order on the enumerated type TEnum is defined by FIRST < SECOND < THIRD. There is no order
defined between different enumerated types.

6.11.4 Sorts

Sorts are not ordered.

6.12 Order on composite domains

Composite domains are also ordered in HLL, as specified in definition 5.

6.12.1 Tuples

The domain of a tuple type tuple(m, ..., 7,) is the set of natural numbers in the range [0, n]. The order
over that domain is the natural order over integers.

6.12.2 Structures

The domain of a structure type struct(ly : 70,. .., : 7,) is the list of its fields ly,...,1,,. The order
over that domain is defined by the relation ¥(4, j) € [0,n],l; < l; i < j.

6.12.3 Arrays and Functions

We define for the scope of this paragraph a lexicographical order relation <;.,. on tuples of scalar
types inductively by

i1 <1 J1 ifn=1
(il,...,in) <lex (]1,,]n)<:> ('Ll <1 ]1)\/ ‘ ‘ ‘ ‘ > 1
(i1 = 41) A ((i, -+ -y in) <tex (J2,---50n)))
where <4, ..., <, are the orders over the types of the members of the tuple as defined in section 6.11.

The domain of an array type 7°(ds, . ..,d,) is a tuple of types (int([0,d; — 1]),..., int([0,d,, — 1])),
and the domain of a function type 7, x --- x 7, — 7 is a tuple of scalar types (7i,...,7,). Both are
ordered by the relation <., defined above.
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6.12.4 Nested composites

HLL allows nesting composites, it is for example possible to declare a type that is a tuple of structures.
The lexicographical ordering on nested domains is defined by iterating on each domain in a depth first

manner.

For instance, the two HLL models below are semantically equivalent:

Constants:
bool T := true; bool F := false;
Types:
tuple {bool, bool} TupleType;
struct {
x: int,
y: TupleType
} StructType;
StructType~ (2, 2) ArrayType;
(bool*bool->TupleType) FuncTypel;
(bool->(bool->TupleType)) FuncType2;

Inputs:
ArrayType a;
FuncTypel £f1;
FuncType2 £2;

Outputs:
a;

f1;

£2;

Constants:
bool T := true; bool F := false;
Types:
tuple {bool, bool} TupleType;
struct {
x: int,
y: TupleType
} StructType;
StructType~ (2, 2) ArrayType;
(bool*bool->TupleType) FuncTypel;
(bool->(bool->TupleType)) FuncType2;

Inputs:
ArrayType a;
FuncTypel £f1;
FuncType2 £2;

Outputs:
al0,0].x; a[0,0].y.0; a[0,0].y.1;
al0,1].x; al[0,1].y.0; a[0,1].y.1;
al1,0].x; al[1,0].y.0; a[1,0].y.1;
al1,1].x; a[1,1].y.0; al[1,1].y.1;
£1(F, F).0; £1(F, F).1;
f1(F, T).0; f1(F, T).1;
£f1(T, F).0; f1(T, F).1;
£f1(T, T).0; f1(T, T).1;
£f2(F) (F).0; f2(F)(F).1;
f2(F)(T).0; f2(F)(T).1;
£f2(T) (F).0; £2(T)(F).1;
£f2(T)(T).0; £2(T)(T).1;
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7 TYPE CHECKING RULES

This section defines the type checking rules of HLL. An HLL model is considered as correct only if it
follows the typing discipline described in this section.

Before presenting the rules, we introduce some preliminary notions used in the type system specifica-
tion.

7.1 Preliminary definitions

A static flag qualifies a stream expression, it distinguishes expressions that can be computed statically
by considering constant definitions only, from those that can be computed statically by considering
both constants and stream definitions and those that are not static at all. In HLL, where any expression
represents a stream, some are used in a context that requires the ability to evaluate them once and
for all. These additional constraints are then specified using static flags® in the corresponding typing
rule. The definition below introduces a notation for these flags.

Definition 15 (static flag). A static flag b can take three possible values (b € {0, 1,2}) that indicates
if an expression is static (1), if it is a pure constant and literaf values combination (2) and if it is not
static (0). by M by combines two static flags in the following way:

b1 | by || b1 110
— 10 0
0/ _ 0
11 1
1] 2 1
2 |1 1
2|2 2

Static flags are ordered by the relation C such that: 0 C 1 C 2.

Note about the separation of static and constants: Intuitively a constant flag (2) represents a notion
that is stronger than static since it means “composed of streams defined in constants sections only”.
We distinguish between static and constant expressions in order to allow the type system to detect
incorrectly sized arrays. In order to keep the definition of the type system simple, sizes of arrays must
be specified using constants. Static expressions are however allowed in other constructs, such as
population counts.

Definition 16 (Typing environments). A typing environment H is a partial mapping that associates
pairs (type, static flag) to identifiers; Dom(H) represents the domain of H, i.e. the set of identifiers
mapped by H; when x € Dom(H), H(x) represents the type and flags associated to x in H if any and

bool otherwise: f )
T,bif(x:7,b) e H
H(z) = { bool, 0 otherwise.

An environment can be given by extension as the set of pairs that defines the mapping (e.g. {z :
bool, 0, y : int, 2}); the empty environment is denoted {}.

5in a typing rule without explicit constraints on static flags, the involved expressions represent any stream of the specified

type.
6a literal is a syntactical entity belonging either to <int_literal> or <bool_literal>.
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Definition 17 (Environment merging). Given two environments H, and H, the merging H, & Ha,

defined if Dom(H,) N Dom(Hsy) = 0, represents an environment such that:
Dom(H, @ Hy) = Dom(Hy) U Dom(Hs)

| Hi(z) ifx € Dom(Hy)

¥z € Dom(Hy © Hy), (H1 © Hy)(z) = { Hy(x) ifx € Dom(Hs)

Definition 18 (Environment hiding). Given two environments H, and H» we can build an environment

Hy; Ho, defined by:
Dom(Hy; Hy) = Dom(Hy) U Dom(Hz)
. ] [ Hi(z) ifx € Dom(H,)
Vo € Dom(Hy; Hs), (Hy; Ho)(z) = { Hy(x) otherwise

Definition 19 (Judgements). To express the type checking rules of an HLL system, the following
judgements are introduced.
dcl
1. H  decl: H' states that the declaration list decl is well typed in the typing environment H and
defines the typing environment H';

exp

2. H v+ expr: (1,b) states that the expression expr has type T and static flag b when typed in the
environment H ;

lhs
3. H + Ihs: (r,b, H') states that the left-hand side Ihs is well typed in the environment H, has
type 7, static flag b and defines the environment H' that contains the iterator variables type
declarations (IV (Ihs));

cst

4. H  cst: H' states that the constant declaration list cst is well typed in the environment H and
defines the environment H' ;

def
5. D,H + def: H' states that the definition def is well typed and defines the environment H' in
the typing environment H and the set of declared variables D;

typ
6. H - tstates that the type tis legal in the typing environment H (e.g. array bounds are static,

structures do not have name conflicts in the names of their fields, etc. .. );
tdef
7. H  typedef: H', D states that the type definition typedef is well defined in the environment

H and defines the typing environment H' (i.e. introduction in the typing environment of the

enumeration and sort values); D maps type identifiers with the corresponding type expressions;

type equivalence must be understood modulo this mapping;

pat
8. H + pattern: (r, H') states that the switch case pattern is well typed in the typing environment
H, that it matches values of type T and defines the typing environment H';

D
9. H+ D : (r,b) states that the domain D is well typed in the typing environment H, that the values
it covers has type T and the set of values it contains has static flag b;
10. H Zﬁ inpt : H' states that inpt is a correct input and defines the typing environment H';
out

11. H b out states that out is a correct output;
po
12. H + po states that po is a correct proof obligation.

7.2 Typing rules

An HLL model is considered as correct with respect to the typing discipline if there exists a proof tree
whose root is the model itself, using the type rules defined in this section.
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7.2.1 Typing expressions

H(z) = (7.b)

H v+ z:(r,b)

(context)

exp

H + e:(1,b) T=7
exp
HF e: (7))

This subsumption rule specifies that an expression of type = can always safely be considered as an
expression of type 7/ provided that 7 is a subtype of ' (7 < 7).

(type subsumption)

HFoe:(rb V'ED
e:(7,b) — _ (static subsumption)

exrp
H+ oe: ()
This subsumption rule specifies that a static expression can, if needed, be considered as a non-static

expression or that a constant expression can be considered either as static or non-static. Same goes
for domains:

D
HED:(r,b) / . . .
o (static domain subsumption)
HED:(r,b)

exTp (bool literal 1)
H + TRUE: (bool,2)

(bool literal 2)

exp

H + FALSE: (bool,2)

(int literal)

exp

H F lipt : (int,2)
where [, represents an integer literal (token <int_literal> in the EBNF).

exrp ETP
H + e: (bool,bd) H + ¢ :(bool, b)) .
czp (bool binop)

H F eoe :(bool,bMN)

where o € {#, &, #!, ->, <>}

exrp exrp
H F e:(int,b) H F € :(int,b) . .
exp (int binop)

H F eoe :(int,bM¥)
whereo € {+, -, %, % =, /, /> /<}

exp exrp

H F e:(int,b) H F € :(int,¥) 1C¥

exp (Int Shlft)
H F eoe :(int,bN¥)
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where o € { >>, << }

exp exp
H F e:(int,b H € :(int,V
‘ (1:;17, ) ¢ : (int, ) (int bitwise)
H + op(e,e): (int,bMN¥d)
where op € { $and, $or, $xor}
exp exp
H + e:(1,b) HF ée:(1,b) FiniteDom(T) . . .
ozp (equality relational binop)
H F eoe :(bool,bM¥)
where o € { =, ==, !=, <>}
exp exp
H + e: (int,b) H + ¢ :(int, V)

(order relational binop)

exp

H F eoe :(bool,bMY)
where o € { >, >=,<, <=}

exp
H F e: (bool,b)

czp (bool negation)

H F ~e: (bool,b)

exp
H F e:(int,b)

ozp (int bitwise negation)
H + $not(e) : (int,b)

exp
H + e: (int,b)
exp

H + —e: (int,b)

(int negation)

exp exrp

H + e:(int,d) H + ¢ : (int, V)

(min-max)

exp

H + op(e,e): (int,bMd)
where op € { $min, $max}

exp
H + e:(int,d)
erp

H + $abs(e) : (int,b)

(abs)

exp

HtF oe:(r, )

e X(e): (r,0)

(next)

exp
HF e:(r,)

ozp (pre 1)
H F pre(e): (1,0)
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exp

H*F e:(1e_) Te T
typ
H&Fr Sized(T) noEmpty Type ()
— (pre 2)
H + pre<Tt>(e):(7,0)
§ n
e: (T;;12 () (pre 3)
H F pre(e,i): (1,0)
exp exp typ
HF e:(r,_) H & i (r,_) HErT
T, =T =T Sized(T) noEmpty Type ()

ezp (pre 4)
H F pre<t>(ei):(7,0)

exp

HL: e:(r,) (initial)
H + I(e):(r,0)

Note that this rule is only used to type check constraints for which the initial modifier may be added.

exp typ
H F e:(int,_) HGET T =int
exrp (cast)
H F cast <7 > (e): (int,0)
exrp exrp
H F e:(bool”(n),_) _ H F p:(int,2) p<n (bin2)
H F op(e,p): (int,0)
where op € { bin2s, bin2u }
BT T 2
: (int : (int
c (jfp ) (082 opiny

H F op(e,n): (bool”(n),0)
where op € { s2bin, u2bin }

exp
HE e (tuple(ro, ..., ), e 0.
¢+ (tup e(TO’mp 7)) i€ [0.n] (tuple access)
H F ei:(1,0)
HT e: (struct(l l [0
e : (struct(lp : TO;,;;;" niTn)s_) i € [0..n] (struct access)
H + e.li : (Ti,O)
exp exp
HE e:(r7(d,...,dn),_) Vie[l.n],H F e;:(int,_)

— (array access)

exp

H F ele;...en]: (1,0)
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exp exp

H l_ e:(Tlx...xTn%T’_) \V/ZE[ITLLH }_ 87;:(7—7;7_)
HFE eleg...en): (1,0)

(function application)

exrp exrp ETp
H F c: (bool,b,) H b e:(r,b) H&Ee:(nb)
ezp (if-then-else)
H + if cthen eelse ¢ : (1,b.MbMY)

Vi€ [l.m] e} 7
exp
Vie[ln],(Hl®...®0 H™);H & ¢;: (1i,_)

pat . . .
Vi€ [l.n],j € 1.m],H = p]: (7], H)
Vie[l.n],je[l.m], 7] <7

(case)
(e1,--5en
exp |p%7-'~7p71L => 6/1
H '_ |p%7 A 7p$], => 612 : (T/70)
|-
IpT"s ..o => ey,)

Note that this rule requires to have 77 < 7, while the compatibility (see Definition 9) is enough
and in presence of the subsumption rule, it is sometimes possible to satisfy this relation using type
subsumption rule in order to weaken the types of the e;. However the subtyping relation implies the

compatibility and each time it is violated, it corresponds to trivially dead cases that can be captured
during type checking.

exp

H+F v:(r2 Scal
v (T 7pa)t calar (7) (pattern value)
H '+ v:(r{})
typ
HEFT Scalar(T)
e (pattern any)
HE _:(rA})
typ
HET T = sort..

pat " (pattern sort)
HF Tx:(T,{zx:T,0})

eTp exrp EeETP
HEFe:(r,) H&F eay...apn:(7",_) HE () "

- = T (with)
H F (ewithay...a,:=¢):(7,0)

exrp exrp

Vie[l.n],H F e;: (bool, ) H + N:(int,1) .

czp (population count)
H F population_count_{eq,lt,gt}(ey,...,e,, N): (bool,0)

exp

D
HtF e:(r, ) H+D:(r,_) T=sort--- V T=1in
exp
H + e:D: (bool,0)

t
(elementhood)
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Note elementhood rule rejects the case where the type is an enumeration because in this case, the
type system does the check and this predicate is statically true.

D exp
Vi€ [l.n],HtF D;: (1;,1) {vi:mi,1|i€[l.n]}; H F e: (bool, )

Vi,j € [ln],i#j = vi# v (bool quantifier)

exp
H F QTFv1:Dy,...,v,:Dy e (bool,0)
where QTF € {SUME, ALL, CONJ, DISJ}

D exp
Vie[l.n],HF D;: (1;,1) {vi:m,1|i€[l.n]}; H F e: (int, )
Vi,j € [l.n],i# j= v #v;

exrp

H v+ QTFvi:Dyq,...,v,:D, e: (int,0)

(int quantifier)

where QTF € {SUM, PROD, $min, $max}

D exp
H+D:(r1) {v:7,1};H F e: (bool,_ )

exp (select-quantifier-1)
H + SELECTw:D e: (7,0)

D exp
Vi€ [l.n],HtF D;: (1,1) {vi:1;,1]i€[l.n]}; H F e: (bool,_)
Vi,j € [l.n],i #j= v #v;
n>1

exp (select-quantifier-2)

H b SELECTw;:Ds,...,vn:Dy e (tuple(ri, ..., 7,),0)

D exp
HED: (1) {v:7,1};H F e: (bool,_)
exrp typ
H & d:(7"_) HE T <7 ™ <LT .
czp (select-quantifier-default-1)
H + SELECTw:D e,d: (7,0)
D
Vie [l.n],HtF D;: (1],1)
exrp
{vi:7/,1]i€[l.n]};H F e: (bool, )
exp

Vi,j € [l.n],i#j = v #v; Vie[l.n],H F d;:(7/,_)

typ

Vie[l.n],H b 7 Vie[l.n], 7] AT/ 27

n>1

exp (select-quantifier-default-2)
H b SELECTw1:Di,...,vn:Dyp e,{d1,da,...,dn} : (tuple(ri,...,7,),0)

typ Apar
m>n Viel.m],H F s; Vie[l.n],H b fi:s:H;
erp
Hi®.. . ®HyH F oe:(r,_) 37, () (s1om) = () loren)

(lambda)

exp

H ®..®H,;H F lambdasi...s,, : fl...fn::e:((7')(81"'3"),0)
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Where the operation (r)!**~*") is inductively defined by:

(T)([el7~~-757L]s2~--3n):(T)(SQ---SH) “(e1,...,en)
(T)((tl ..... tn)sz...sn):tl N tn N (T)(SQ...Sn)
(r)0=r
RN Vi, je[lnlij
(b1, tn) hjellnlifj=v#vy (lambda par function)

Apar

H F (vi,...,00): (1,0 utn) s i € [Lon] |v; s 8,1}

typ

H + ..., €n L, g € 11..n], 4 ' i j
: le1, .- en] Vi,j € [L.n],i#j = vi #v; (lambda par array)
par

H F [v1,...,0] : [e1,...,en] s {i €[1..n] | v; int, 1}

exrp exp

H + ey :(int,by) H + ey : (int,by)

5 (domain range)
HE [61,62} : (int,b1 [ bQ)

typ

HET lar(T zed(T
S;a ar(T) Sized(T) (domain scalar)
HFET:(T2)
exp
' B , I .
H & F:(T,)) T —D_ —-T'vVT=T") FiniteDom(T) (domain map)
HF $items(F): (17,1)
e, 1 T
- i€ 1., ¢i: (7i,) (collection)
H b {e1,...,en} : (collection(ry,...,7,),0)
7.2.2 Typing definitions
H =
lhs(x) 7b (Ihs-var)
HtE z:(1,b{})
lhs
H&a: (’TA(dla s adn)v_aHa)
Vi j € [Lonlii #j = vi# v vi € [L.n],vi ¢ Dom(Ha)

s (Ihs-iterator)

H F afvr,...,vp): (7, _,{v; :int, 1| i € [1.n]} @ H,)

lhs
HE f:(nx--x7—71,_,Hy)

Vi,j € [l.n],i#j= v #v; Vi € [1..n],v; ¢ Dom(Hy)

lhs
H b f(or,...,00): (1, {vi: 7,1 ]i€[l.n]} & Hy)

(Ihs-parameters)
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lhs exp
HF v:(r,b H,) H,;H - e:(7,b) R
def
D.HF vi=e:{}

(c-definition)

exp
veg D H F e:(1,b) Scalar(T)
def
D, HF vi=e:{v:7,1Mb}

(c-definition-decl)

exp

HFe: ()

def B
D, HF _:=e:{}

(throw-away-definition)

The type-checking of an unfolding definition is performed after its flattening as described in section 8.3.

The three rules below are about memory definitions and all require the declared type of a memory to
be sized and to not contain an empty type.

lhs exp
HbFov:(r,_H,) HyH F e:(7,_) Tart
Sized Empty T,
e (736 - noBmptyType(r) (i-definition)
D.HF I(v):=e¢:{}
lhs exrp
Htv: v:(r,_,H,)) Hy;H F e: (7)) T
Sized(T) noEmpty Type(T) o
i (x-definition)
D, HF Xw):=e:{}
lhs exp exp
H&F v:(r,_,Hy) H & e :(m,_) H & ey: (1, )
T4 T < Ty Sized(T) noEmpty Type(T)

QT (I-definition)

D,H F v:i=ej,es:{}

exp

H & e:(r,2)

= (constant)
HFEr1ci=e :{c:7,2}
def def
D,H & def,: Hy D,H F defy: Hy

aor (definitions)
D,H v def, def,: H & H,
Note that in this rule, def, and def, represent several definitions. The rule states that a group of

definitions type check correctly if it can be cut in two sub-groups (def, and def,) that type check
correctly in the same environment.
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7.2.3 Typing declarations

typ

HEFT

< (simple declaration)
HEF7tv:{v:7,b}

bC 1 T .
7a (implicit simple declaration)
H + v:{v:bool,b}

typ del
HEFT Vie[l.n],H b 7v;: H; )
del (declaration)

HFT1v,...;0,: HH®...®H,

dcl
Viel[l.n|,H F v; : H; . . .
dclz € (L.}, Y (implicit declaration)

H + Ul,...,UniHl@...@Hn

This rule specifies the declaration of a stream. The constraint on the static flag implies that a

stream cannot participate (directly or not) to an expression that would be considered as a constant
combination. This is why 2 is not a possible value.

In the following rules, <param_dim> represents a list of formal parameter types or array dimensions
as allowed by the non-terminal symbol <name> in the grammar.

del

H + " e < dim> : . / 0
dclT (e1,: -+ en) a<param_dim>:{a: 7,0} (array declaration)
H b 7 a<param_dim>[e,...,e,]: {a: 7,0}
X X Ty — < dim> : {f : 7/, . .
(dTil T 7) J <param dim>:{f: 7,0} (function declaration)

H b 7 f<param_dim>(ej,...,e,): {f: 7,0}

del del
H v decly : Hy H + decly : Ho ]
del (declarations)

H F decly decly : Hi @ Hy

7.2.4 Typing types

typ
Vie0.n),H F = |
v (tuple)
H + tuple{ro,..., ™}

typ
el , Vijellnlitj=l £l
Vie[l.n),H F 7, i,j€[l.n],i #j=1#I, (structure)

typ
H + struct{lo : To,...,ln : Tn}
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typ typ

HEr H & [e1,...,en)

typ
HE 7 (e1,...,en)

(array)

exp
Vie[l.n],H F e;: (int,2)
typ

HF [e1,...,en]

(dimensions)

typ typ

HFEFT HE (r,...,7)

typ
HEFEn X X1 =7

(function)

t
Vi€ L], (H - 7 A Scalar(ry))

typ

HE (m7,...,7)

(parameters)

o (bool)

H F bool

o (int)
H F int

exp ETP
H F e :(int,2) H F ey:(int,2)

typ
H + int[€1,€2]

(int range)

exp
H + e:(int,2)

typ
H F intsignede

0
> (int signed)

exrp
H F e:(int,2 >0 .
¢ tyim ) €= (int unsigned)

H I intunsignede

7.2.5 Typing type definitions

tdef (enum definition)

H F enum{ly,....ln}t:{l1:t,2,..., 0, : t,2}, {t = enum(t;lq,...,1,)}

Vie[l.n],(l, e L ANVje[ln]i#j=1#1)

tdef (sort contribution 1)

H F sort{ly,...;ln} < t:{l1:t,2,...,0:t,2},{t — sort(t; L;...)}

Vi€ [1.n],S; = sort... A S; € Sub

rde (sort contribution 2)

H + sort S1,...,S, < t:{}{t— sort(t;...;Sub)}
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typ

HEFT

tde (non-enum definition)

f
HEF 7t1,...t,: {1 {t1—7.. . tp— 71}

dcl

HtE 77 (e1,...,e,) t<param_dim> : {}{t — 7'}
tdef

H + 7 t<param_dim>[e,...,e,]: {},{t = 7'}

(array-type definition)

dcl
H bty X+ Xt, = 7 t<param_dim> : {}{t — 7'}

tdef
H + 7it<param_dim>(t1,...,t,) : {}, {t = 7'}

(function-type definition)

tdef tdef
H F tdef,: Hi,D: H F tdefy: Hy, Dy
tde

f
H + tdef, tdefy: Hy ® Hay, Dy & Do

(type definitions)

7.2.6 Typing the entire model

dcl
H b inpt:{r,_}
Sized(T) FiniteDom(T)
HasOrderedDomain(T) noEmptyType(T))

p” (input)
H tinpt : {7,_}

exp
H + out: (1, )
FiniteDom () HasOrderedDomain ()

(output)

out

H + out

erp
HF po:(r,_)
FinalBaseType(T) = bool
FiniteDom () HasOrderedDomain (7))

PO (proof obligation)
HF po
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cst
Vest € Constants(M), Hconstants F cst © Hest
tdef
Videf € Types(]\/[), Heconstants F tdef : theva
in
Vinpt € Inputs(M), Hconstants E inpt : Hinpt
dcl
Vdel € Declarations(M), Hconstants F del @ Hae
def
Vdef € Definitions(M), D,H + def : Hgey
exp
Vestr € Constraints(M), H & cstr : (bool,_)
po
Vpo € Proof _obligations(M), H + po
out
Yout € Outputs(M), H F out
where Hconstants = @cste Constants(M) Heg
and H = HConstants @ (Gatdefe Types(M) th@f) ® (®inpt61nputs(M) Hinpt)
EB(@dcleDeclm‘ations(M) HdCl)
EB(®Ulef€Deﬁnitions(M) Hdef)

and D = Dom((eacste Constants(M) HCSt) ® (®i71,ptelnputs(M) Hinpt)
EB(GadcleDeclarations(]V[) HdCl))

model M is well typed (system)
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8 ADDITIONAL STATIC CHECKS

This section specifies checks that are neither covered by the grammar nor by the type checking.

Definition 20 (Definition forms). An item of the definitions section can have one of the following
forms:

name syntactic form contribution to the
stream definition
combinatorial | a := <rhs> initial and next
unfolding al,...,an := <rhs> | initial and next (see section 8.3)
initial I (a) := <rhs> initial
next X (a) := <rhs> next
memory a := <rhs>, <rhs> | initial and next

A stream that is used in an expression but never appears on the left-hand side of a definition (neither
initial nor next) is considered as an input.

8.1 Partial stream definition

Restriction 1 (partial definition). A stream that has an initial definition or that is declared as initial in
the inputs section must have a next definition.

Note that a stream that has a next definition may lack an initial one.

8.2 Unicity of stream definitions
HLL-10
Restriction 2 (unicity of the definition). A stream can have, at most, one initial definition and one next
definition. i.e. a stream can neither have two definitions contributing to its initial value specification nor
two definitions contributing to its next value specification.

Restriction 3 (declared inputs). A stream declared in an inputs section cannot appear on the left-
hand side of a definition, except when it is declared as initial in an inputs section, in which case it
must have a next definition but no initial definition.

8.3 Unfolding stream definitions
Unfolding definitions, in which multiple identifiers (potentially including “throw-aways”) are on the
left-hand-side of the assignment are equivalent to the flattened version with multiple individual
combinatorial definitions. For example:

a,b,_,c := <expr>;

with <expr> a 4 element array, is equivalent to the flattened version:

__tmp := <expr>;
a := __tmp[0];
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o
i

__tmp[1];
__tmp[2]; // this is a throw-away, doing nothing
__tmp[3];

1]

(¢]
1]

Such definitions can be applied to any composite right-hand-side expression provided that this
expression has exactly the same number of top-level elements as the number of items on the left-
hand-side (including throw-aways), and that its type has an ordered domain (i.e. not functions on
sorts). The order in which the composite is unfolded relies on the definition given in section 6.12.
Standard type-checking applies on the individual combinatorial definitions.

8.4 Function Assignability

Restriction 4. When assigning a function to another function, corresponding parameter types shall
resolve to the same basic scalar types. For boolean, enumerateds, and sorts, this is already captured
by the subtyping relation (see Definition 13). However, the same is also required for integer parameters.
Their types shall resolve to identical integer ranges.

8.5 Named type references and definitions

Restriction 5. All the referenced named types must be defined in the model. A named type definition
cannot reference itself, directly or indirectly, in the type expression (non-terminal <type> in the EBNF)
that defines it.

8.6 Scoping rules (or namespaces)

Restriction 6 (conflicts in the stream namespace). In the top level namespace of streams (see
Section 5) a given identifier represents a unique stream. As a consequence:

an identifier v can be declared only once;

an enumeration or sort value v can only appear in one enumerated type or one sort contribution;
an identifier v used as an enumeration or sort value cannot be declared in any stream declaration
section nor defined in any definition section;

an identifier used as an iterator variable in an array definition or as a formal parameter in a
function definition must be unique within the definition, for instance it is not allowed to write

ali, i] := ... or f(x, x) :=...;
— an identifier used as a quantification variable must be unique among the variables introduced by
the quantifier, for instance ALL i:[1,2] i:[4,2] ... is notallowed.

Restriction 7 (unicity of named types). A named type can be defined only once.

8.7 Well-definedness of constants

Restriction 8. All values for which typing rules require a static flag 2 (constants) must be well defined
according to the rules described in section 16. It is for example not allowed to use 3/0 as the number
of bits of an integer type or as an array dimension, as euclidian division is not defined if the divisor is 0.
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This restriction does not apply to constants that are used exclusively in other contexts, for example as

stream values.
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9 SORTS: A HIERARCHY OF ENUMERATIONS

Sorts are a particular kind of user defined types that can be seen as hierarchized (in the sense of set
inclusion) finite sets of enumerated values. These sets can be understood as sets of object instances
and the subset relation as the inheritance relation (class A inherits class B also means that the set of
all the object instances of class B contains all the object instances of class A).

9.1 Specifying a sort hierarchy

Sorts are defined in the types sections. A sort definition is composed of several partial definitions
called contributions. All the contributions of a sort appear in the same namespace and these
contributions can be spread all over the model’.

Contributions are of one of the two following forms:
1. those that give the inclusion relation with other defined sorts ® :
sort hotColor, coldColor < color;
An equivalent formulation is:

sort coldColor < color;
sort hotColor < color;

2. those that specify values introduced by the sort:
sort {red, yellow} < hotColor;

Several disjoint sets of values can be specified for a unique sort, for instance a different still
equivalent form to specify the hotColor values is:

sort {yellow} < hotColor;
sort {red} < hotColor;

3. and those that only introduce a sort:
sort color;
As an example, here is a sort based description of a playing card deck where the values are all the

cards of the deck:

types:
sort Reds, Blacks < Deck;
sort Spades, Clubs < Blacks;
sort Hearts, Diamonds < Reds;

sort {S_A, S_2, S_3, S_4, S_5, S_6, S_7, S_8, S_9, S_10, S_J, S_Q, S_K} < Spades;
sort {C_A, C_2, C_3, C_4, C_5, C_6, C_7, C_8, C_9, C_10, C_J, C_Q, C_K} < Clubs;
sort {H_A, H_2, H_3, H_4, H_. 5, H_ 6, H_7, H_8, H_9, H_10, H_J, H_Q, H_K} < Hearts;
sort {D_A, D_2, D_3, D_4, D_5, D_6, D_7, D_8, D_9, D_10, D_J, D_Q, D_K} < Diamonds;

"Note this is a consequence of the syntax that does not allow to specify a path in a type definition and of the scoping rule 3
of section 5.2.
8To be understood as: the set of color contains both the hotColor and the coldColor.
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Using the type notation introduced in 6, the defined sorts are:

sort(Blacks;; Clubs, Spades)
sort(Reds; ;Hearts, Diamonds)
sort(Spades;S_A,...,S_K;)
sort(Clubs;C_A, ..., C_K;)
sort(Hearts;H_A, ... H_K;
sort(Diamonds;D_A,...,D

)
K;)

9.2 Sorts and the switch-case expression

HLL provides a generalised switch case construct that allows to:

— specify a case based on a tuple of inspected expressions and
— capture several cases in a single line pattern using one or more wildcards in the pattern tuple
and the sort hierarchy.

The specified cases may overlap. They are inspected sequentially in the order they appear. The
selected branch is the first pattern that matches the inspected value.

To illustrate the usage of wildcards and tuples based selection the example below gives the truth table
of the implication:

a_implies_b := ( a, b
| false, _ => true
| true, true => true
|

true, false => false);

This formulation of the truth table is not sensitive to branch order because they are all disjoint, thus it
makes no use of the sequential evaluation of the switch-case.

Here is a second form where branches overlap and their relative position matters:

a_implies_b := ( a, b
| false, _ => true
I, true => true

| _, B => false);

The last line matches any couple of values, but its position makes it a global default. The second
line must be understood as follows: in the case the first line does not match the value the second
component’s value is sufficient to define the result.

The hierarchy of the example below illustrates patterns specification with sorts. The first pattern does
not capture the matched value (wildcard _) while the second one captures it in variable c:

types:
sort hotColor, coldColor < color;
sort {red, yellow, brown} < hotColor;

sort {blue, green, white, black} < coldColor;

inputs:

HLL_LFD_pr4.0rc1/A
Last update 2021-09-14
Page 47 / 80



High Level Language pr4.0rct

Syntax and Semantics
Logical Foundation Document

color aColor;

definitions:
is_dark :=
(aColor
| black => true
| coldColor _ => false /* for all the hotColor but black */
| hotColor ¢ => /* c is a local identifier that captures the value of
aColor but with the more precise type: hotColor. */
(c
| red => true
| yellow => false
| brown => false) /* this case is known to be exhaustive

because ¢ has type hotColor. */
)3

outputs:
is_dark;

Restriction 9 (case exhaustivity). In a correct HLL model, all the cases are exhaustive.

Note: Tools implementing HLL have to provide a way to check the exhaustivity of the list of patterns
i.e. check that all the possible values taken by the inspected expressions are covered.
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10 MAPPING SEMANTICS

Mapping is the general concept behind arrays and functions. Both arrays and functions share the
same semantics in HLL /.e. they are both mappings from a finite domain to HLL streams. They mainly
differ in the way they are declared:

— an array type is defined by the type of its elements and the sizes of its dimensions (bool A[5,1]);
— a function type is defined by the types of its parameters and the type of the streams it defines.

They also differ in the syntax of the mapping application:

— an access to a stream defined by an array is called a projection and made using square brackets
as follows: A[21,42];

— an access to a stream defined by a function is called an application and made using parentheses
as follows: £ (25,a).

There is also a difference in the typing of the accessor that must be an integer for an array while it is
only required to be scalar for a function.

The reason for the presence of these two close concepts in HLL is that HLL aims at providing
constructs that are not only high level but also close to the end user’s intention.

10.1 Arrays

HLL provides a way of defining a multidimensional array of items as a (possibly recursive) function
over integer indices. For instance the definition a[i] := i defines the content of the array a by the
assignment of i to the i*" array cell:

a :={ ’a[0]’, ’al1]’, ’al[2]’, ... };
with

’al0]’ := 0;

‘al1]? := 1;

‘al2]? := 2;

The dimension (let say n) of a is given in its declaration, so this definition in intension can be finitely
unfolded (since the dimension is finite) to obtain the equivalent definition in extension,; i.e. the previous
definitions can be continued:

‘;a[n—2]’ :
‘aln-1]° :

s

n-2;
n-1

An array access out of the bounds is not defined, it takes the exceptional undefined value nil (see
section 14.11).

Another example, let odd be an array of size n such that odd[i] contains value TRUE if i is odd and
FALSE otherwise. This array can be defined by:
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odd[i] := i%2=1;
It can also be defined by the recursive definition:

odd[i] := if i 0 then FALSE
elif i 1 then TRUE
else odd[i - 2];

These definitions are correct and both define the same array content. The second one is recursive
in the sense that the definition of the i*" element is based on the (i — 2)*" one. It can be finitely
unfolded considering a lazy interpretation of the if-then-else expression, i.e. if one can prove that
the condition is always true or always false, the unfolding can ignore the unselected branch (see 10.3
for the list of lazy operators). This allows to introduce base cases (0 and 1 in this example) in order to
build a well founded recursive definition.

The conjunction & and the disjunction # can also be used to introduce these base cases. This means
that in this unfolding operation, & (resp. #) is interpreted as a sequential and then (resp. or else)
operator. For instance, the previous example can be rewritten as:

odd[i] (=i =1#1i >= 2 & odd[i - 2];

Last, the implication -> is also interpreted lazily in the unfolding process. For instance, odd can be
rewritten as:

odd[i] := "1 <> 0 -> (4 >= 1 -> odd[i - 1]1));

An array can also have a memory definition, this is thus an array of memories. An example mixing
recursive definition and array of memories is the one of a sliding window on a stream. A sliding window
of size N on an input a is an array SW containing previous values of a (the one at index 0 is the value of
a at the previous step). It is defined by:

constants:
int N := 10;

inputs:
bool a;

declarations:
bool SW[N];

definitions:
SW[i] := false,
if i = 0 then a else SW[i-1];

outputs:
SW;

Note that SW memories contain false value as long as it refers to a previous cycle that did not exists
yet.
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In order to have a powerful language for such recursive definitions, HLL semantics on streams does
not consider arrays; it is defined on scalars and array definitions are considered lazily (on demand),
when a particular array item is needed for some outputs, constraints or proof obligations.

Array declarations can be of one of the two equivalent forms:

— bool A[10, 20]; or
— bool~(10,20) A;

10.2 Function

The notion of arrays indexed by integers is extended to the one of functions taking as parameters any
scalar values (values of type bool, int, enumerated types, and sorts). A function £ is characterized
by the property: for each cycle, a = b = f£(a) = £(b) regardless of the history (past or future values)
ofa andb.

In this sense, £ can be understood as a stream of combinatorial functions. Another way to understand
functions in HLL is to see them as generalized truth table (not only for the boolean case), as a
table indexed by the values of its parameters (remember the domains are finite); then the function
corresponds to a stream of truth table.

A function is defined, like an array, by a combinatorial definition or a memory definition. A function
returns a single stream i.e. all the functions have a type: t £(t1, t2, ..., tn) where tis any HLL
type and all the ti are scalar types.

A function access out of the domains of its parameters is not defined, it takes the exceptional undefined
value nil (see section 14.11).

Example of a function definition:

declarations:
int Fibonacci(int);

definitions:
Fibonacci (i) := if i <= 2 then 1 else Fibonacci (i - 1) + Fibonacci (i - 2);

A function declaration can be of one of the two equivalent forms:

— bool f(T1, int); or
— (T1 * int -> bool) A;

A consequence of the fact a function cannot access the past or future of the streams it applies to is
the impossibility to write, for instance, a rising edge detection using a function. One could be tempted
by this formulation:

declarations:
bool bad_rising_edge(bool);

definitions:
bad_rising edge(a) := "a != “X(a);

The formal parameter a in the expression-body of the function is considered static (see typing rule
(Ins-parameters), the static flag of the i, is 1 which means static). Thus X(a) is the same stream as a
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and bad_rising_edge(a) is always false and cannot detect rising edges. This function looks like a
stream operator one could want to implement, but it's not a good use of functions.

10.3 Making recursive definitions terminate

We have seen that arrays and functions can be defined by recursion i.e. the stream they represent
for a given effective value v (projection index or parameter value) may depend on the stream they
represent at another point. To effectively define a stream, such a recursive definition must terminate
i.e. admit a finite unfolding for any finite effective parameter.

In a declarative language such as HLL, this unfolding can terminate only if there exist some operators
that can provide a value without the need to have all their parameters values (so-called lazy operators).

We provide here a table containing the HLL operators allowing to cut definitions with a tag e on the
parameters which value is always needed (strict tag) and a tag o for those that may not be known

(lazy tag):

| operator name | e strict/ o lazy tag profile |
logical and efo
logical or otto
logical implication e->o0
if-then-else if e then o elseo
(o
. | @ =>0
switch-case
| @ =>0
.2)

10.4 Note about causality in the presence of mappings

This split between the arrays and the scalar streams avoid defining causality on the full HLL language
(see Section 15). Such a definition would have been impossible on the full language without introducing
raw restrictions on the accepted array definition schemes making modelling with HLL harder. There
is a drawback in the fact that the capacity to implement lazy strategies is tool dependent, thus any
model containing array definitions must be interpreted as: there exists an expansion of the array
definitions present in the model such that we can build a logically equivalent unfolded one (thus on
scalar streams). This existential quantification is resolved in practice by a preprocessing of the model
(that we call array expansion) that may fail to produce the scalar model, but the global approach to
make proofs is still safe since a tool cannot deduce erroneous facts on a model that it fails to expand.
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11 DEFINING COMPOSITES USING COLLECTIONS

Collections can be used to define composites, following the assignability rules defined in section 6.10.
Tuples, structures, arrays and functions for which all parameters have a sized and ordered type can
be defined using collections.

The rules defined below apply recursively when definining composites of composites using collections
of collections.

11.1 Tuples

A tuple is an ordered collection of n streams sg, s1,...,s,—1. The order of the fields in a tuple is
the order in which the elements are parsed. Such a tuple is defined by a collection of n streams
{co,c1,. .. cn_1} With s; :=¢; (0 <14 < n).

11.2 Structures

A struct is an ordered collection of n fields fy, f1,..., fn_1- The order of the fields in a structure is
the order in which the fields are parsed. Such a structure is defined by a collection of n streams
{CQ,Cl, e ,Cnfl} with fz = (0 <1< 'fL)

11.3 Arrays

The assignment semantics for arrays are defined in an inductive way on the number of dimensions.

If Ais a one dimensional array of size n, A is defined by a collection of n streams {cp,¢1,...,¢cn-1}
with A[i] :==¢; (0 < i < n).

If Ais an array with N finite dimensions of sizes dy,d;,...,dy_1 and N > 1, A is defined by a
collection of dy arrays {Ao, 41,...,A44,-1}, Where each A; (0 < i < dy) is an (N — 1)-dimensional
array of dimensions dy, da, . ..,dy—_1, With the relation Alig,i1,...,in—1] = Ai,[i1,92,...,in-1]. The
A; "sub arrays" can themselves be defined by collections following the same rule.

11.4 Functions

The assignment semantics for functions are defined in an inductive way on the number of parameters.

Functions that can be defined by collections have parameter types which are scalar, bounded and
ordered. The ordering rules for the various types of HLL are described in section 6.11. We can
for each parameter type define a ranking function. If T' is a bounded and ordered type, ranky is its
ranking function, that is, rankr is a bijection between T and the integer range [0, Card(T) — 1] such
thatV(i,j) €e T x T,i < j & rankr(i) < rankr(j).

If fis a function of one parameter p of type T, f is defined by a collection of Card(T) streams
{co,c1, ..., ccaracry—1} by the relation f(p) = crankr (p)-
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If fis a function of N parameters pg,p1,...,pn_1 Of types Ty, T4, ..., Tny_1 With N > 1, f is defined
by a collection of Card(To) functions { fo, f1,..., fcara(ry)—1}, Where each f; is a function of N —1
parameters, with the relation f(po, p1,...,pn-1) = f,.ankTO(po)(pl,pQ, ...,DN—1). The f; "sub functions”
can themselves be defined by collections following the same rule.

11.5 Example
The following example illustrates using collections for defining various kinds of composites.

Types:
tuple {bool, int} TupleType;
tuple {TupleType, TupleType} NestedTupleType;
struct {a: bool, b: int} StructType;
int~(2) ArrayilD;
int~(2, 2) Array2D;
(bool -> int) Funcil;
(bool * bool -> int) Func2;

Declarations:
TupleType t;
NestedTupleType nt;
StructType s;
ArraylD arrid;
Array2D arr2d;
ArraylD nested_arrild[2];
Funcl £f1;
Func2 £2;
Funcl £3(bool);

Definitions:
t := {false, 3};
nt := {{true, 5}, t};
s := {true, 7};
arrid := {1, 2};
arr2d := {arrid, {3, 43}};
nested_arrid := {arrid, {5, 6}};

f1 := {0, 1};
2 := {f1, {2, 3}};
£3 := {f1, {2, 3}};
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12 LOCAL BINDERS

HLL allows to specify the quantification of a variable over finite domains, providing a compact way to
write a formula. Syntactically a quantification is a local binder that introduces an index identifier, a
domain specifying the values the index can take, a sub-expression and an operation. The domain can
be given by a mapping stream, as described in 12.4.

HLL provides three kinds of quantifiers:

— boolean quantifiers;
— integer quantifiers;
— the selection operator.

In boolean and integer quantifiers, the operator combines the value the sub-expression takes on each
point of the domain. The selection operator, instead of returning a boolean or integer value, returns a
value in the domain of the indexes.

In this document, quantification will designate the usual boolean quantification as well as the other
kinds of quantification.

12.1 Quantifying over scalar types (built-in and user-defined)

It is possible to quantify over any scalar type (built-in or user-defined) provided that it is finite. The
quantification ranges over every value of the given type.

In the case of a finite integer type, this quantification is equivalent to a quantification over the range of
this type, for instance:

Types:

int [0,9] my_int_0_9;
Outputs:

SUM i:int signed 8 (1i);
SUM i:int [0,9] (i);
SUM i:my_int_0_9 (i);

is equivalent to:

Outputs:

SUM i:[-128,127] (i)
SUM i:[0,9] (i)

SUM i:[0,9] (i)

Semantic of the quantification over integer ranges is described in section 12.2.

In the case of a named enumeration or sort, this quantification is equivalent to a quantification on the
actual enumeration or sort, described in section 12.3.

In all other cases, the quantification ranges over every value of the given type (necessarily finite).
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12.2 Quantifying over integer ranges

This section gives, using examples, the principles of quantification in HLL. As a first example, let us
define the boolean expression that is true if the array A of size 10 contains an even integer can be
written in the following way :

contains_even := SOME i:[0,9] (A[i]l % 2 = 0);

this corresponds to an existential quantification. This equation could be rewritten without quantifier:

contains_even :

(A[0O] % 2 =0) # (A[1]1 % 2 =0) # (A[2] % 2 =0) # (A[3] %, 2=0) #
(A[4] % 2 =0) # (A[B] % 2 =0) # (A[6] % 2 =0) # (A[7] % 2=0) #
(A[B] % 2 =0) # (A[9] % 2 =0);

Another example is the boolean that is true if all the even indices of A contains an even integer value:
evens_contain_even := ALL i1:[0,9] (i % 2 = 0 -> A[i] % 2 = 0);

That is equivalent to:

evens_contain_even =

(A[O] % 2 =0) & (A[2] % 2 =0) & (A[4] %42 =0) &
(A[6] % 2 =0) & (A[8] % 2 = 0);

The examples illustrate the two quantifiers SOME (3) and ALL (V), that are standard in logic. They
correspond, as we can see in the example, to an iteration of the boolean or (#) for the first and and (&)
for the second. HLL provides synonyms that help capturing user intentions in formulas : CONJ for ALL
and DISJ for SOME.

In the case when the quantification domain is empty, the result is the neutral element of the iterated
boolean operator, i.e. true for ALL and CONJ and false for SOME and DISJ.

12.3 Quantifying over enumerations

In the previous examples, the quantified variable iterates over an integer range, it is also possible to
make it iterate over the values of an enumeration or a sort. For instance checking that all the values of
an enumeration are present in an array can be expressed in the following way:

types:
enum {green, yellow, red} cool_color;

inputs:
cool_color A[10];

definitions:
has_all_color := ALL c:cool_color SOME i:[0,9] (A[i] = c);

outputs:
has_all_color;
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It is also allowed to use a sort identifier as a quantifier domain specification, in this case, the values to
consider are all the values defined for this sort and all its subsorts.

Here is an example with a hierarchy of sorts. If picture is a square matrix of colors (or pixels), we
specify here a property of this matrix that expresses the fact below the first diagonal all the pixels are
black, white or grey and above all the bright colors appear at least once:

types:

sort {green, blue, red} cool_color;

<
sort {black, grey, white} < bw_color;
sort {yellow, cyan} < light_color;
sort bw_color, bright_color < color;

<

sort light_color, cool_color bright_color;
inputs:
color picture[10, 10];

definitions:
picture_property :=
ALL i:[0,9] (ALL j:[0,i] SOME c:bw_color (pictureli, j]l = c))
&
ALL c:bright_color (SOME i:[0,9] SOME j:[i+1,9] (picturel[i, j] = <));

outputs:
picture_property;

12.4 Quantifying over mapping streams

It is possible to quantify on a named mapping stream (i.e. an array or a function) provided that it has a
finite number of components. This condition is always valid for an array, and for functions it is true
if and only if each of its parameters ranges over a finite domain. The quantification ranges over the
arguments of the mapping stream.

For instance, with the declaration bool A[10] , the expression: ALL i:[0,9] (A[i]); is equivalent
to ALL a:$items(A) (a);

Same goes with finite domain functions: with the declaration bool F(OBJECT1,0BJECT2) , the expres-
sion: ALL 01:0BJECT1, 02:0BJECT2 (F(ol,02)) is equivalent to ALL f:$items(F) (f)

12.5 Arithmetic extensions

There are standard binders that apply on arithmetic expressions in a way similar to boolean quantifica-
tion. HLL provides the following operators: SUM, PROD, $min and $max. SUM (resp. PROD) admits the
neutral element 0 (resp. 1) and thus can be used even when the quantification domain is empty.

Operators $max and $min don’t have such neutral values; as a consequence they cannot be applied
when the quantification domain is empty. The quantification domain is either a type name (sort or
enum) or a static range, checking whether the domain is empty or not is a static property.
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For instance, given a two-dimensional array V of sizes N and M, computing the sum of the max of
each column (with the convention that the second dimension is the column) is quite easy:

sum_of _max_col := SUM j:[0,M-1] ($max i:[0,N-1]1 (V[i, j1));

12.6 Selection operator

The selection operator is a quantifier evaluating to a tuple formed by the iteration domain elements for
which a given predicate is true.

When several such tuples exist, the result is undefined (see below for a specificity of selection over
mapping streams).

If none of the iterated tuples satisfies the given predicate the result is undefined unless a default value
has been provided to the select operator, in which case the result is this default value. The default
value shall be a tuple of compatible type.

In both cases where the result is undefined, the select takes the exceptional undefined value nil (see
section 14.11).

In the special case where the iteration is done on a single variable, the type of the result (and of the
default value if any) is directly that of the domain (instead of a singleton tuple).

Apart from the various checks, when correctly defined the selection operator is semantically equivalent
to a nested if-then-else over the elements of the iterated domain(s), as illustrated below.

//unrolled SELECT
SELECT i:[0,4] (P(i)) == if P(0) then
elif P(1) then
elif P(2) then
elif P(3) then
else

B W N = O

//unrolled SELECT with default
SELECT i:[0,4] (P(i),d) == if P(0) then
elif P(1) then
elif P(2) then
elif P(3) then
elif P(4) then
else

QP> W NP O

Note on mapping streams: The SELECT quantifier over a mapping stream can be understood as a
SELECT over the arguments of the mapping stream, meaning that if several mapped values satisfy the
SELECT condition, the unicity constraint will be violated. For this reason, in the following model, both
the s1 selection and the s2 selection are incorrect.

Declarations:
int A[3];
Definitions:

A = {1,1,2}
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sl :
s2 :

A[SELECT i:[0,2] (A[il==1)];
SELECT a:A (a==1);

12.7 Summary of quantifier semantics

Apart from the SELECT quantifier which has a specific semantic described in section 12.6, the semantics
of the quantifiers is summed up in this table:

Quantifier Corresponding Value
associative/commutative for
HLL binary operator empty domain
ALL & true
CONJ & true
SOME # false
DISJ # false
SUM + 0
PROD * 1
$max $max undefined
$min $min undefined

12.8 Anonymous function and array definition (1ambda)

Another kind of local binder is the anonymous definition of an array or function in HLL. Section 10
introduces arrays and function definition, with the need to explicitly declare and name the mapping
and then define it.

declarations:
int A[10];
definitions:

Ali] := 2 * i3

defines an array A of size 10 such that its i** component contains the value 2 * i. The array value
represented by expression A in this context can be specified by:

lambda [10]:[i] := 2 * i
without the need of any preliminary declaration nor definition. The definition of A can also be rewritten:

definitions:
A := lambda [10]:[i] := 2 * 1i;

The same kind of expression is allowed for functions; lambda (int): (i) := 2 * 1iis equivalentto
the function twice defined by:

declarations:

(int -> int) twice;
definitions:

twice(i) := 2 * i,
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A lambda expression can introduce several dimension arrays, multi-parameters functions and mix
array and function as one can do with an HLL definition. For instance:

lambda (bool)[8,8]:(b)[i,j] := if b
then (i + j) %2 =0
else (1 + j) % 2 = 1;

This expression is an anonymous function that, maps a boolean value to a chessboard (using a
convention that associates boolean values with black and white); changing the boolean parameter
makes the square colors alternate.

A semantically equivalent formulation is given here:
lambda (bool):(b) := if b

then lambda [8,8]:[i,j]
else lambda [8,8]:[i,j]

G+ %2=0
G+ 3) %2

I
[

This form highlights the fact that the value b selects one or the other chessboard definition.

There are below some examples with array expressions corresponding to simple operations on arrays
that can be expressed with an anonymous definition, thus without the need to name the constructed
arrays:

constants:
int N := 3;
int M := 7;
int k1 :=
int k2 :

s

1
2;

inputs:
bool A[N];
bool B[M];
bool e;

outputs:
// creates an array with all the components equal
lambda [N]:[i] := e;

// array slice A[k1..k2]
lambda [k2 - k1 + 1]:[i] := A[i + k1];

// concatenation of arrays A and B
lambda [M + N]:[i] := if i1 < N then A[i] else B[i-N];

// A in a reverse order
lambda [N]:[i] := A[N - i - 1];
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12.9 The pigeon-hole example

This example corresponds to the HLL formalisation of the pigeon hole problem that we can formulate
by: it is not possible to put N pigeons in (N-1) holes with, at most one pigeon per hole.

constants:
int NOF_PIGEONS := 10;
int NOF_HOLES := NOF_PIGEONS - 1;

inputs:
bool P[NOF_PIGEONS, NOF_HOLES];

definitions:
/* For each hole there is just one pigeon */
a := ALL i:[0, NOF_HOLES-1], j:[0, NOF_PIGEONS-1] ALL k:[j+1, NOF_PIGEONS-1]
(Plj, i1 -> "P[k, il);

/* For each pigeon there is at least one hole */
b := ALL i:[0, NOF_PIGEONS-1] SOME j:[0, NOF_HOLES-1] (P[i,j1);

proof obligations:
~“(a & b);

12.10 The sudoku example

We provide here an example that, while addressing a quite popular problem, illustrates the power-
fulness of HLL quantification. The goal is to define in HLL the criterion that a sudoku grid must be
satisfied when entirely filled. Based on this expression, it's easy to use a proof engine for HLL in order
to complete a given partially filled grid, provided it can be done at all:

inputs:
int [1,9] grid [9,9];

definitions:
satisfy :=
ALL value:[1,9] (
ALL line:[0,8] SOME col:[0,8] (grid[line, col]=value)
& ALL col:[0,8] SOME line:[0,8] (grid[line, col]=value)
& ALL subregion_line:[0,2], subregion_col:[0,2]
SOME s_line:[0,2], s_col:[0,2]
(grid[subregion_line * 3 + s_line, subregion_col * 3 + s_col]l=value));
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13 ARITHMETICS IN HLL

Arithmetics in HLL is both bounded and exact. This is possible thanks to the fact that all the inputs
and memories must be explicitly bounded in the model. The definitions contain only a finite number of
operations. So any integer value in the model is a finite combination of bounded values, thus it is itself
a bounded value.

In this context, all the arithmetic operators must be understood with their mathematical definition.
Values are explicitly cast with the cast operator or (less explicitly) cast when used to define a named
stream declared with a sized type (provided that the value to store in the stream fits in its declared
type, see sections 14.3 and 14.9).
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14 STREAM SEMANTICS

HLL is a language for the definition of streams. A stream s denotes an infinite sequence of values
that we will represent by the following table:

| HLL stream expression | sequence of values |

’S ‘ S0 81 82 83 S4 ... ‘

Using this notation we specify the semantics of the HLL temporal primitives.

In this section we provide the semantics of the streams defined by a causal (see Section 15) HLL
model.

Note: This causality notion is important because it gives a sufficient condition to ensure that at any
step of a stream, the value it takes does not depend on itself (s, is not defined as a solution to a
fixpoint equation on the form s,, = f(s,)).

14.1 Input streams

Input streams can be declared either in an inputs section or in a declarations section. In this
second case, a stream is considered as an input if it has no definition at all (neither combinatorial nor
initial nor next nor memory). If a declared stream is only defined for the next values, it’s initial value is
considered as an initial input.

An input stream represents any sequence of values in its declared type.

14.2 Throw-away definition

The definition _ := e is a “throw-away” definition, it can be safely ignored.

14.3 Combinatorial definition

The definition v := e means that v represents the same sequence as e:

el e €1 €2 €3 €4 ...
Viey €1 €2 €3 €4 ...

HLL is declarative and thus has a substitution principle that holds at the level of the combinatorial
definition. This principle can be expressed as : if a stream variable v has a combinatorial definition
(v := e), any occurrence of v can be substituted with the expression that defines it (e) without affecting
the semantics of the HLL model.

The integer case: HLL requires all the inputs and memories to have a sized type. This is a key
point for the arithmetics (see Section 13). However nothing is required for the variables defined by a
combinatorial definition. If such a variable is declared with a plain integer, the variable will be large
enough to accommodate for the values to be stored. On the other hand if the variable is declared with
a sized type (in particular with a sized integer), and it is defined with a value that doesn't fit into that
type, the variable will take the exceptional undefined value nil and the substitution principle is broken
(see section 14.11).
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14.4 Memory definition

The definition v := e, f means that v takes its first value from stream e then from stream £ shifted
one step to the right:

e|e €1 ez e3 e4
flfo fi fo f3 fa
vieo fo fi fo f3

14.5 Initial and next definitions

A memory definition can be split into its two components that are:

1. its initial value defined by I(v) := e meaning that v takes its first value from stream e;
2. its next value is defined by X(v) := f.

The resulting stream is :

e | € €1 €y €3 €4
fO fl f2 fS f4
eo _fo [i fo f3

< +h

14.6 Next definition only

The definition X(v) := e means that v represents the same sequence as e shifted one step to the
right. The value of v at the first instant is considered as an implicit input (stream I(v)), unless I(v) is
explicitly used in an input section, as specified in 14.1.

e €p €1 €9 €3 €4
I(v) | tvg v vy VU3 Ug
v Wy €y €1 €y €3

14.7 Next expression : X(e)

The expression X(e) (pronounce next of e) represents the same stream as e, shifted one step to the
left:

e €p €1 €2 €3 €4 ...
X(e) |e1 e e3 e4 €5 ...

14.8 Unit delay expression : pre(e)

The expression pre(e) represents the same stream as e, shifted one step to the right:

e €o €1 €2 €3 €4 ...
pre(e) nil ey e1 e es ...
i io 41 dp i3 Qg4 ...
pre(e, 1) | i9 ey e ez e3 ...
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Where nil represents an undefined exceptional value (see section 14.11).

When the delayed stream takes values in a type that contain integers, a type can be specified in the
operator in order to give these integers a size. The syntactic forms of this case are: pre <T>(e) or
pre <T>(e, i) where T is a type.

Note that the semantics of pre can also be given by its translation in terms of a memory. The stream
represented by pre <T>(e, i) isthe same as the one represented by the memory m of type T defined
by:m := i, e;

14.9 Definition of a data memory

Sections 14.4, 14.5, 14.6 and 14.8 describe the principle of the definition of a memory state. Because
memories allow definitions of a stream as a function of its previous values, the definition of an integer
memory may be diverging in the sense that the values it can take cannot be statically bounded. For
this reason the type system requires that any memory (a stream variable defined by a memory or a
next definition) must have a sized type (see Definition 3) and the expression that defines a memory
must fit in the declared type of the memory. Below we define the semantics of an integer memory
definition of type T (where T is a constrained integer type).

declarations:
T v;

definitions:

v := e, f;

If eq fits in type T (in the range if it specifies a range or in the specified finite representation otherwise)
and Vi € N, f; fits in T, the stream v is defined by:

e| e €1 €2 €3 €4
fo fi fo fs [a
eo fo f1 fo f3

<4 s

When either ¢g, or any of the f; for i € N do not fit into the type T, the memory takes the exceptional
undefined value nil at that depth (see section 14.11).

14.10 Array definitions

Definitions of the form v[i] := e follow the same semantics pointwisely by replacing each index i by
its value taken in the range of legal indices for array v given by its declaration.

14.11 Determinism, sanity, and ni/ values in HLL

In the present section we have seen that a number of HLL constructs may introduce unspecified values
in a stream: the so called nil. It is not, in general, a problem to have a stream carrying nil values
as long as it is not a stream we are observing (i.e. those that appear in outputs, constraints or
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proof obligations sections). A nil value in an observed stream leads to different issues, depending
on the section it appears in:

— in a proof obligations section, the concerned proof obligation cannot be proved because nil
is not true;

— in an outputs section, the HLL model becomes globally non deterministic, it is not even
equivalent to itself (the comparison of two instances of nil is also a nil);

— in a constraints section, having a possible nil corresponds to an unsatisfiable constraint.

Accepting the non-determinism introduced by the nil in the presence of the uninitialized pre in the
language would invalidate the substitution principle given in 14.3. This principle holds again if the
model is proved to be deterministic in the sense discussed above.

For all these reasons, a semantic tool implementing HLL has to reject non-deterministic models.
Different strategies and proof capabilities can be used to reach this goal (rejecting more or less correct
models); they are not part of the language specification and must be defined in the tool specifications.
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15 CAUSALITY

This section defines the causality in an HLL model and what a causal (correct regarding causality)
model is. The semantics of streams presented in Section 14 is defined only for causal models. This
section considers scalar streams only for the reasons discussed in Section 10. A model containing
array definitions should first be expanded and then the question of causality is considered on the
scalar definitions as described below.

Restriction 10 (model causality). A correct HLL model shall be causal i.e. all the streams it defines
and that contribute to the production of an output, a proof obligation or a constraint shall be causal in
the sense defined below.

15.1 Temporal dependencies between scalar streams

To be well founded, a stream definition must be causal (in other words non-cyclic). Here is a first
intuitive and informal definition of this notion: a stream definition is causal if:

— each value of the stream is defined by an expression that does not depend (directly or through
other streams) on itself and

— for inductive definitions if the inductive case (next definition or second member of a memory
definition) does not depend directly or indirectly on values that are after in the stream.

To formalise this relation, we will distinguish the dependencies on the first instant from the other ones;
a represents any value of stream a, I(a) its initial value and X (a) any value but the initial one. The
dependency relation is defined between terms of the following grammar:

depterm = streamexpr
| I(streamezpr)
streamexpr = identifier
|  op(streamexpr, ..., streamezpr)
| X (streamexpr)

where streamexpr represents a stream expression, as defined in the concrete syntax by <expr>.

Definition 21 (dependency relation). The dependency relation denoted a :— b (a depends on b) is
defined by:

v :—a for a definitionv := a;

I(v) :— I(a) for an initial definition I(v) := a;

X (v) :— a for a next definition X (v) := a;

I(v) :— I(b) and X (v) :— ¢ for a memory definitionv := b,c;
pre <t > (a,b) :—b;

Vi € [1..n], op(as,...,an) i—a;;

transitivity: a :—bAb:—¢c = a:—¢;

monotony of X(): a:—b = X(a) :(— X (b);

monotony of I(): a:—b = I(a) :—I(b);

10. X(X(a)) :— X (a).

where op designates any n-ary (n > 0) combinatorial function and a; are dependency terms (depterm,).

©CONDOAWND=

The rules 1 to 9 define the dependency relation. After application of these 9 rules, a system is said to
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be causal if the relation does not contain any pairs of the form:

X(X(...(X()...)) = X(X(...(X(a))...)

n next, with n>1 p next, with p>n

nor
I(a) :— I(a)

Which means that a system is causal if none of the streams it defines depends, for its next definition,
on itself or on its next values.

Rule 10 is added to transform any of these pairs into a cycle in the dependency relation and make the
causality criterion easier to implement by reducing it to a cycle search in a graph.

15.2 Composite types, mappings and causality

The causality relation for HLL is defined in 15.1 for a scalar model and thus does not cover the overall
language. When a stream is composite, causality is defined component by component which allows
to have one array element depending on another element of the same array. Taking this point of view,
all the streams are scalar and arrays are arrays of streams, tuples are tuples of streams etc. ..
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16 PREDEFINED COMBINATORIAL OPERATOR SEMANTICS

A combinatorial operator on streams is built from an operator on the values carried by the streams by
pointwise application. For instance if (z,,) and (y,) represent two streams given by their sequence of
values, the sum of these streams (x,,) + (v.,) is the stream of the sum (z,,) defined by Vn, z, = @, + yn.

This pointwise extension can be defined for any operator op of arity £ > 1 by :
vp, (0p((x3); -+ () = 0p(24, ., 2p)

We can write it using the tabular notation we introduced before:

[ HLL | sequence
z! z} T x}
z? z3 z3 x3
z® zk ok zh
op(zt, ... 2%) | op(xd,....xk) op(z},....2%) op(zl,... k)

Thus to define combinatorial functions on streams from their original operation on values (boolean,
integers, structures, arrays), it suffices to define them on values (instead of streams) to capture the
whole semantics of the extension to streams.

16.1 Logical operators

These operators apply on boolean values, they are defined below by their truth tables:
a ‘ b ‘ adch
FALSE | FALSE | FALSE
conjunction : FALSE | TRUE | FALSE
TRUE | FALSE | FALSE
TRUE | TRUE | TRUE

a ‘ b ‘ a#tb
FALSE | FALSE | FALSE
disjunction : FALSE | TRUE TRUE
TRUE | FALSE | TRUE
TRUE TRUE TRUE

a b a<->b

FALSE | FALSE | TRUE
equivalence : FALSE | TRUE | FALSE
TRUE | FALSE | FALSE

TRUE TRUE TRUE

a b a#'b

FALSE | FALSE | FALSE

exclusive or : FALSE | TRUE | TRUE
TRUE | FALSE | TRUE

TRUE TRUE | FALSE
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a ‘ b ‘ a->b

FALSE | FALSE | TRUE

implication : FALSE | TRUE TRUE
TRUE | FALSE | FALSE

TRUE TRUE TRUE

a ‘ ~ a
negation : FALSE | TRUE
TRUE | FALSE

16.2 Population count

HLL provides various n-ary operators taking a variable number of boolean streams and a static integer
value to easily express complex conditions about the number of streams taking the value true at a
given step. Let’s define the combinatorial function population that applies on a finite list of boolean
values and returns the number of true values among these booleans:

n

population(bg, by, ..., by) = Z(if by then 1 else 0)
k=0

In particular when the list of boolean streams is empty, this function is the constant 0 ( population() =
0).

With this function, given a static (see the type system in Section 7 for a definition of static) integer
value N we define the population count operators by:

population_count_eq(bg, b1, .., by, N)= population(by, by, ..., b,) = N
population_count_1t(bg, b1, ..., by, N)= population(by, b1, ..., b,) < N
population_count_gt(bg, b1, ..., by, N)= population(by, b1, ..., b,) > N

16.3 Polymorphic comparison operators =, ==, !=, <>

The polymorphic comparison operators apply on any type (provided that the type has a finite domain
(see definition 4) when they share the same structure (same dimensions with same sizes, as specified
by the type system).

— both = and == represent the equality operator;
— both !'=and <> represent the inequality operator.

The following equivalences hold: a <> b="(a = b) =a != b= "(a == b)

The definition of equality on scalars is standard and extends to structured types in the following way:
two structured values are equal if all their corresponding elements are pairwise equal.

The equality and disequality over finite domain function follows the extension of these operators on
structured types: two functional values are equal if all their corresponding elements are pairwise equal.
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16.4 Shift operators «, »

The shift operators are defined on both signed and unsigned representation of integer values.
If a represents an integer and n a static positive value (n > 0), then:

— a <« n is an n bit shift to the left. From an arithmetical point of view, it corresponds to a
multiplication by 2™. If a is encoded in binary with an N-bit word, a « n requires an (N + n) bits
representation.

— a » nis an n bit shift to the right. This operation corresponds to the floor division a /> 2" If a is
encoded in binary with an N bits word, a » n requires min(N — n, 1) bits representation.

The shifts are not defined if the second parameter is a negative value.

16.5 Arithmetic operators +, -, * and unary minus -

Exact implementation of arithmetics, see Section 13 for a discussion about exact bounded arithmetics.

16.6 Integer comparison operators >, >=, <, <=

These operators represent predicates corresponding to the standard order relation on integers. They
produce a boolean value true when the relation holds and false otherwise.

16.7 Maximum $max

Returns the maximum of its two arguments:

aifa>b
$max(a,b) = { b otherwise.

16.8 Minimum $min

Returns the minimum of its two arguments:

bifa>0b
a otherwise.

$min(a,b) = {

16.9 Absolute value $abs

This operator takes one integer parameter and produces its absolute value, it is defined by:

vifo>0
$abs(v) = { —v otherwise.
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16.10 Euclidian division /

If « and b are two positive integers, a/b is the result of the Euclidian division and is such that:
a = bx* (a/b) + r where r is an integer such that 0 < r < b.

This operation is not defined when b = 0, in which case the result takes the exceptional undefined
value nil (see section 14.11).

if a or b is negative, the absolute value of the result is given by the application of the positive (see
before) case to the absolute values of « and b and the sign is given by the standard rules:

Ha/b
>0 >01( >0
<0|>0| <0
>0|<0| <0
<0|<0| >0

16.11 Remainder %

If « and b are positive integers, then a%b represents the remainder r of the Euclidian division (see
Section 16.10). This operation is not defined when b = 0, in which case the result takes the exceptional
undefined value nil (see section 14.11)

if a or b is negative, the absolute value of the result is given by the application of the positive (see
before) case to the absolute values of ¢ and b and the sign is the sign of a.

16.12 Floor division />

This operator implements the floor of the exact division; i.e. a/>b represents the biggest integer
smaller than or equal to the rational a/b.

This operation is not defined when b = 0, in which case the result takes the exceptional undefined
value nil (see section 14.11).

It can be expressed using the division operator by:

b — a/b if sign(a) = sign(b) or a%b =0
@’ = (a/b) — 1 otherwise.

where sign(.) is the sign function on integers defined by:

gn(z) = lifz >0
SMT) =1 —1 otherwise.

16.13 Ceiling division /<

This operator implements the ceiling of the exact division; i.e. a/<b represents the smallest integer
bigger than or equal to the rational a/b. More formally, if « and b are two integers, a/>b is such that:

a = bx (a/<b) + r where r is an integer such that —|b| < r <0.
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|b| represents the absolute value of b. This operation is not defined when b = 0, in which case the
result takes the exceptional undefined value nil (see section 14.11).

It can be expressed using the division operator by:

(a/b) + 1if sign(a) = sign(b) and a%b # 0
a/<b= .
a/b otherwise.

16.14 Bitwise logical operators: $not, $and, $or, $xor

All the bitwise operators are defined on signed integers, meaning that applying them on an unsigned
value introduces an implicit conversion from unsigned to signed.

At a bit representation level, a signed value can be seen as an infinite boolean word:

.88...8bpby_1...bg Where s is the sign bit
N—_———

oo

The bitwise operations are the pointwise extension of the logical operators on these infinite words.

16.15 Power (")

If @ and b are two integers then a’b is equal to:

—axax---xaifb>0;
—_——

b times
1/(axax---xa)ifb<0anda # 0;
—————
|| times
1if b is equal to zero (in particular we take the convention that 0° = 1);
undefined when b < 0 and a = 0, in which case the result takes the exceptional undefined value
nil (see section 14.11).

16.16 Cast

The cast (cast<t>(e)) allows to interpret an integer expression (here e) as a value of a specified
implementation type (t) by considering its binary representation and the binary implementation of t.
The binary representation is based on two’s complement for signed values and standard binary for
unsigned ones.

The following table specifies the result of this cast depending on the representation of e and t.

Let b, ... baby be a binary representation of the value taken by e.
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representation of e | representation of t | size condition || cast expression value
in binary
int unsigned nl | int unsigned n2 when fill with zeros
or int signed n2 ny < ng 0...0bp, ...b2bs
| S ——
int signed ni int unsigned n2 when fill with the MSB
Or signed int n2 ny < No bn1 e bnlbnl—l ... baby
int unsigned nil | int unsigned n2 when ignore extra bits
or int signed nl | oOr int signed n2 ny > No bpy - .- baby
——

Then this binary value is interpreted following a representation of t (unsigned: positive integer value
represented in base 2; signed: two’s complement).

16.17 bin2u

If w is an array of boolean values and n a constant expression, bin2u(w,n) is the integer whose
unsigned binary representation is given by the first n bits (w[n — 1] ...w[0]) of w (where w[0] is the
Least Significant Bit). n must be statically less than or equal to the size of w.

16.18 bin2s

If w is an array of boolean values and n a constant expression, bin2s(w,n) is the integer which
signed binary representation is given by the first n bits (w[n — 1] ... w[0]) of w (where w[0] is the Least
Significant Bif). n must be statically less than or equal to the size of w.

16.19 u2bin

If v is a positive integer value and n a constant expression, u2bin(v, n) is the boolean array containing
the bit values of the n bits unsigned binary representation of the integer value v. If the representation
does not fit within n bits, the array will contain the n first bits of this representation. The resulting array
is such that the item at index 0 contains the Least Significant Bit of this representation.

For the case where v is negative. It is defined by:

u2bin(v,n) = u2bin(cast < int unsigned n > (v),n)

16.20 s2bin

If v is an integer value and n a constant expression, s2bin(v,n) is the boolean array containing the bit
values of the n bits signed binary representation of the integer value v. If the representation does not
fit within n bits, the array will contain the n first bits of this representation. The resulting array is such
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that the item at index 0 contains the Least Significant Bit of this representation and the item at index
n — 1 contains the sign bit (provided than n is large enough).

Note:

the primitives s2bin and u2bin give the same boolean array for any given integer stream. HLL
provides two primitives for convenience only.

16.21 If-then-else

a := if c then el else e2;

Selects the value of the expression present in the then branch (e1) or in the else branch (e2,
depending on the boolean value taken by c.

HLL offers a shortcut for a cascade of if-then-else:

a := if c1
then el
elif c2
then e2
elif c3
then en
else e

This syntactic form is equivalent to :

a := if c1
then el
else if c2
then e2
else if c3

then en
else e

16.22 Array projection

The array projection A[x] returns the value contained in the array at position x if x is within the declared
bounds of A. A model such that the definition of one of its outputs, proof obligations or constraints
requires the access out of an array bounds is incorrect.

A projection involves a structured stream and an index, as said in 10 and in 15.1, the stream semantics
is given on scalar. The definition of an array projection can be explained on scalars using the following
expression equivalent to stream A[x]:
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0 => A[0]
1 => A[1]
2

(x
|
I
I => A[2]

i'ﬁ -1 => AN - 11)

where N is the size of array A and A[0], A[1], ... are streams that can be projected statically. Based
on this equivalent form, it is possible to transform an HLL model with arrays and projection into a
model involving scalars only.

16.23 Function application

The function application £ (x) returns the value of function £ at point x. if x is in the declared domain
of £. A model such that the definition of one of its outputs, proof obligations or constraints requires the
value of a function out of its declared domain is incorrect.

As for array projection, the function application f (x), if £ has type bool -> int is equivalent to:
if x then f(true) else f(false)

In the case the domain of £ is not finite, int -> int for instance, it is possible to build a finite
expression of this kind, based on the fact inputs and memories can take a finite set of values, the
domain of a function application at its application point can always be restricted to the possible values
its argument can take. If a model has bounded inputs and memories and contains function, it is always
possible to translate it into a finite model without functions.

16.24 (... with ... 1= ...)

Example:
b := (a with .m[1].5 := e);

b is componentwisely equal to a except for the component specified by the path .m[1].5 in the
structure that is equal to e; the following invariant holds: b.m[1] .5 = e.

16.25 Elementhood : a:D

The operator a : Dis a predefined predicate that, given a stream expression a and a domain produces
true when the expression takes a value that is an element of the specified domain.

A domain can be either:

— a sort, in this case the predicate expresses the elementhood of the value to the set of the
possible values for the specified sorts (those defined for this sort and all its subsorts);
— arangee.g.a : [-8, 7] (equivalent to the expressiona >= -8 & a <= 7).
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— afinite scalar type e.g. a : int signed 4 (equivalent to the expression a >= -8 & a <= 7),
or c:bool (which is always true).

Remark: even-though the grammar allows for the elementhood construct a: $item(b), this is not a
valid expression.
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APPENDIX A: LIST OF REQUIREMENTS

Here is the list of requirements attached to the present document. A tool that intends to implement the
HLL language shall cover these requirements.

HLL-1

HLL-2

HLL-3

HLL-4

HLL-5

HLL-6

HLL-30
HLL-7

HLL-8

HLL-10
HLL-32
HLL-11
HLL-12
HLL-32
HLL-28
HLL-29
HLL-31
HLL-13
HLL-26
HLL-14
HLL-15
HLL-16
HLL-18
HLL-19
HLL-17
HLL-20
HLL-25
HLL-21
HLL-22
HLL-27
HLL-23

APPENDIX B: LIST OF RESERVED KEYWORDS

Below is a list of reserved HLL words that cannot be used as identifiers.

ALL
bin2s
bin2u
Blocks
blocks
bool
cast
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CONJ
constants
Constants
constraints
Constraints
declarations
Declarations
definitions
Definitions
DISJ

elif

else

enum

false

False

FALSE

I

if

inputs
Inputs

int

lambda
namespaces
Namespaces
obligations
Obligations
outputs
Outputs

population_count_eq
population_count_gt
population_count_1t

pre
PRE
PROD
proof
Proof
s2bin
SELECT
signed
SOME
sort
struct
SUM
then
true
True
TRUE
tuple
types
Types
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u2bin
unsigned
with

X

END OF DOCUMENT
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