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Abstract
This work presents a novel conservative La-

grangian immersed boundary method (CLIB) to solve
incompressible viscous fluid flow problems around
solid geometries. Classical immersed boundary meth-
ods (IBM) are known to face mass and momentum
conservation issues at the frontier between solid and
fluid. This original method couples the penalty IBM
with a Lagrangian volume of solid (VOS) formulation
introducing some extra source terms in the governing
equations. These terms serve to represent the existence
of a solid body inside the fluid domain and give rise to
a fully conservative system of equations. Solid mass
conservation is guaranteed thanks to a Lagrangian rep-
resentation of the solid volume fraction field and is
proven effectively independent of the grid resolution.
The accuracy of the present method is demonstrated
by the good agreement of aerodynamic quantities for
two-dimensional flows around stationary and mobile
(rotating, oscillating) rigid solid bodies with the val-
ues found in literature.

1 Introduction
Renewable energy production units, such as wind

turbines, involve geometrically complex bodies (rigid
or flexible) in motion and in contact with fluids. The
study of wind turbine wakes involves high Reynolds
number flows around mobile complex geometries and
a wide range of temporal and spatial scales. This
makes body-fitted computations unaffordable. State-
of-the-art computations in wind energy are based on
Large-Eddy simulations (LES) coupled with actuator
line methods (ALM) where no re-meshing is required
(Porté-Agel et al. (2019)). This framework requires
the characteristics of the airfoil and its aerodynamic
coefficients to model its influence onto the fluid via a
momentum source term. An attractive alternative for
simulating fluid-structure interaction (FSI) problems
involving complex geometries and arbitrarily large
movements is the use of immersed boundary methods
(IBM). These methods do not need body-fitted meshes
due to the ability to allocate grid points within the solid
region. The main challenge is the proper modelling of
the presence of the immersed solid into the fluid via
forcing terms in the governing equations.

The original method was developed by Peskin
(1972) to simulate cardiac mechanics and associated
blood flow. Since then, the IB methods have been
extended to various applications in scientific and en-
gineering fields. Numerous modifications and refine-
ments have been proposed and a number of variants
of this approach now exist focusing on the definition
of the forcing term (extensive review can be found in
Sotiropoulos and Yang (2014)). The forcing term can
be represented in a discrete or a continuous manner.
The general advantage of continuous forcing is that the
formulation is almost independent of the discretization
scheme, which makes its integration easier. Hence, the
present work focuses on the continuous IBM of penal-
ization with a sharp representation of the solid-fluid in-
terface. Furthermore, the coupling of this method with
a Lagrangian volume of solid (VOS) approach results
in a fully conservative set of governing equations by
introducing extra source terms in the aforementioned
equations. This method will be referenced as conser-
vative Lagrangian immersed boundaries (CLIB).

This paper is organized in the following manner.
In Section 2 the governing equations and the main nu-
merical tools of this study are presented. The method-
ology is applied on three validation cases in Section 3:
flow past a stationary, a rotating and an oscillating
cylinder. Lastly, in Section 4 concluding remarks
about the method will be given.

2 Numerical framework

Governing equations
To start, the coupling of the volume of fluid (pro-

posed by Hirt and Nichols (1981)) and the penalty
IBM yields the following continuity and momentum
equations for the fluid:

∂

∂t
(φf ) +∇ · (φfuf ) = 0 , (1)

∂

∂t
(φfuf ) +∇ · (φfufuf ) =− 1

ρ
∇P +

1

ρ
∇ · (φfτ )

+ F s→f .
(2)

where uf is the fluid velocity, φf the fluid fraction,

P is the pressure, τ = µ
(
∇uf +∇uTf

)
the viscous



stress tensor, F s→f the solid-fluid interaction and ρ
the fluid density.

A unified mean velocity field u is introduced,
given by:

u = φfuf + φsus , (3)

where us is the solid velocity and φs = (1 − φf )
the solid fraction. A similar expression is used by Liu
et al. (2021) but as a correction to the predicted in-
termediate velocity to compute the forcing term in a
direct forcing IB approach.

In the method presented here, this unified velocity
is inserted directly to both the mass and momentum
conservation equations (1,2) giving rise to a unique
system of equations capable of describing both the
fluid and the solid phases. Finally, the governing equa-
tions for incompressible flows using the CLIB method
read:

∇ · u =
∂

∂t
(φs) +∇ · (φsus) , (4)

∂u

∂t
+∇ · (uu) =− 1

ρ
∇P +

1

ρ
∇ · (φfτ ) + F s→f

+
∂

∂t
(φsus) +∇ · (φsusus) .

(5)
This final set of equations is very similar to the

pure fluid equations except for the additional trans-
port terms on the right-hand side (RHS). The volume
source term in the RHS of the continuity equation is
associated with the solid movement and/or its defor-
mation/dilatation and will be noted as Qs. The source
term in the RHS of the momentum conservation equa-
tion is related to volume force applied by the solid on
the fluid and will be noted as Ps. This system of equa-
tions is fully conservative.

The volume forcing term F s→f is represented
sharply via a penalty term as described in Angot et
al. (1999) which constrains the velocity u to be equal
to the solid velocity inside the solid region. This is
achieved through the use of a masking term χs, acti-
vated only for φs > 0, and a penalization time param-
eter η, representing the time needed for the mean ve-
locity to reach the target solid velocity. A conventional
technique is to set the mask equal to 0 or 1 for fluid and
solid nodes respectively, but we wanted to guarantee a
continuous application of the force while amplifying
the effect at the nodes with small solid fraction values.
The penalty term is expressed as follows:

F s→f =
χs
η

(us − u) , (6)

χs ≡
√
φs, η ≡ ∆t . (7)

Lagrangian solid fraction field
A strong point of this method lies in the use of a

Lagrangian framework. Using Lagrangian particles in
IBM for the force calculation has already been exam-
ined, as in Uhlmann (2005). Here, they are used to

Figure 1: Solid volume fraction field projected onto the Eu-
lerian mesh from the Lagrangian particles (in red).

define a Lagrangian field of the solid fraction ensuring
solid mass conservation.

The procedure of the solid fraction computation
consists of two stages. First comes a pre-processing
stage where an unstructured mesh representing the
solid is generated. Inside each cell of this mesh, we
place Lagrangian particles containing information on
the solid volume. During the computation stage, be-
fore the advection of the velocity at each iteration, the
particles are relocated on the Eulerian mesh (depend-
ing on the motion of the solid) and then the volume
carried by the particles is projected onto the Eulerian
mesh resulting in the computation of the local quan-
tity of solid volume, and by extension, the local solid
fraction φs, as illustrated by Fig. 1.

The solid volume Vs,i at grid node i is given by:

Vs,i =
∑

p|xp∈Ei

VpWi,p . (8)

The subscript p denotes the properties of the pth

particle, Ei is the set of elements adjacent to the grid
node i, and Wi,p is the weight of the linear interpola-
tion. Its expression reads:

Wi,p =
|xp − xfi| · Sfi∑

i′∈N (Ep) |xp − xfi′ | · Sfi′
, (9)

where Ep is the element containing particle p, and
N (E) is the set of nodes i′ of the element E and Sfi′
the vector area of the face fi′ opposite to the node i.
The solid fraction may then be written as:

φs,i =
Vs,i
Vi

. (10)

This solid volume fraction is not necessarily equal
to one inside the solid because of local errors. φs is
therefore slightly filtered with a conservative diffusive
filter where diffusion is non-zero only in the solid, i.e.
diffusivity is a constant multiplied by φs.

Numerical schemes and CLIB implementation
Equations (4) and (5) are solved using the YALES2

flow solver. YALES2 is a massively-parallel finite-
volume solver, presented in Moureau et al. (2011). It



is specifically tailored for Large-Eddy Simulation, and
relies on a central 4th-order numerical scheme for spa-
tial discretization, and a 4th-order Runge-Kutta like
method for the time integration on unstructured grid.
The CLIB method is implemented via the following
steps at each fluid iteration:

1. Advancement of solid volume fraction field
The Lagrangian solid particles are advanced from
time-step n+1/2 to n+3/2 according to the mo-
tion prescribed to the solid and the solid volume
fraction φn+3/2

s is computed as described in the
previous paragraph. Then, at time-step n+ 1:

φn+1
s =

1

2

[
φn+1/2
s + φn+3/2

s

]
. (11)

2. Computation of CLIB source terms
To allow rapid convergence of the predicted ve-
locity to the target us at the solid, the CLIB
source terms are expressed implicitly as:

Qn+1
s =

[
φ
n+3/2
s − φn+1/2

s

∆t

]
+∇ ·

(
φn+1
s un+1

s

)
,

(12)

Pn+1
s =

[
φ
n+3/2
s un+1

s − φn+1/2
s uns

∆t

]
+∇ ·

(
φn+1
s un+1

s un+1
s

)
.

(13)

3. Prediction & Correction of the velocity field
In YALES2, to advance the solution of the
Navier-Stokes equations in time, a modified pro-
jection method is used based on the Helmholtz-
Hodge decomposition presented by Chorin
(1968). Keeping the old pressure term in the cal-
culation of the intermediate velocity u∗ prevents
the introduction of a larger error term making the
correction step less computationally demanding
(Klainerman and Majda (1982)). The prediction
of the intermediate velocity is done as follows:

u∗ − un
∆t

= −∇ · (u∗un) + Pn+1
s

− 1

ρ
∇Pn−1/2 +

1

ρ
∇ · (φfτn)

+
χs
η

(
un+1
s − u∗

)
.

(14)

By subtracting the old pressure gradient from u∗,
the irrotational part can be written now as:

un+1 − u∗
∆t

= −1

ρ
∇Pn+1/2 . (15)

Taking the divergence of the irrotational part and
inserting the continuity constraint of Eq. (4), re-
sults in the pressure Poisson equation:

∇2Pn+1/2 =
ρ

∆t
(∇ · u∗ −Qn+1

s ) . (16)

To solve this elliptic equation the deflated pre-
conditioned conjugate gradient (DPCG) solver is
used as proposed in Malandain et al. (2013).

Force calculation acting on a solid body in CLIB
Usually with IBM the calculation of the forces act-

ing on the body requires the reconstruction of the solid
surface and the integration of the pressure and vis-
cous forces over this surface. The reconstruction of
the body surface may prove computationally expen-
sive for complex mobile geometries. In the case of
CLIB, the use of the solid volume fraction and the fact
that the momentum sources are present inside the solid
body and not only at its surface, make the calculation
of the total force F trivial. As shown in Lee et al.
(2011) the force can be computed by integrating the
Navier-Stokes equations over an arbitrary control vol-
ume around the solid (which includes the solid):

F =

∫
Vs

−f dV +

∫
Vs

(
∂u

∂t
+∇ · (uu)

)
dV ,

(17)
with f representing all the extra momentum

sources in Navier-Stokes equations. We can thus avoid
reconstructing the solid surface by simply integrating
over a volume. By identification, from Eq. (5), we see
that f ≡ P + F s→f . We can thus express the force
as the volume integral of the pressure gradient and the
divergence of the deviatoric stress inside the solid:

F =

∫
Ω

φs

(
−1

ρ
∇P +

1

ρ
∇ · (φfτ )

)
dV , (18)

where Ω is the computational domain.

3 Validation studies
In this section, several benchmark flow problems

are solved using the CLIB method to demonstrate the
ability of the method to obtain accurate results for dif-
ferent configurations. We examine three cases of flows
around a cylinder of diameter D. The main compari-
son tools between the numerical results with the ref-
erence data are the drag and lift coefficients (CD and
CL) defined as:

CD =
2Fx
ρSU2

∞
, CL =

2Fy
ρSU2

∞
. (19)

Fx and Fy are the stream-wise and cross-flow total
forces, respectively. U∞ is the free-stream velocity
and S the cross-sectional area of the body.

Flow past a stationary cylinder
The 2D laminar flow past a stationary cylinder

is examined first. The aerodynamic coefficients of
a two-dimensional cylinder are examined for vary-
ing Reynolds numbers (Re = U∞D/ν). The inlet
velocity is kept constant while the Reynolds number
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Figure 2: Aerodynamic coefficients and Stouhal number
versus Reynolds number: • CLIB, × Qu et al.
(2013).

changes according to the values of the varying kine-
matic viscosity ν. The size of the computational do-
main is: Ω = [−15D, 50D] × [−15D, 15D] contain-
ing 1.3 million cells. The solid is placed in a refined
region of dimension [−2D, 10D] × [−2.5D, 2.5D]
where the grid spacing is ∆s = 0.01D. The time-step
for all the simulations is determined by a CFL condi-
tion set to CFL = 0.9. The simulations are carried out
for 2000 non-dimensional periods (t∗ = tU∞/D).

Figure 2 shows the lift coefficient mean fluctuation
(CrmsL ) in excellent agreement with the numerical re-
sults of Qu et al. (2013) for all Reynolds number val-
ues. It increases rapidly with increasing Re in lami-
nar shedding regimes due to stronger alternate periodic
vortex shedding. The Strouhal number St = fsD/U∞
(fs being the vortex shedding frequency) is also in
good agreement, although slightly overestimated, fol-
lowing a similar trend with increasing Re.

The mean drag is underestimated for these
Reynolds number values. This is directly related to
the penalization forcing term since the forcing term
Ps is zero in a stationary solid. Specifically, this
underestimation comes from the relatively high val-
ues of the penalization time parameter η. Angot et
al. (1999) have shown analytically that as η → 0
the solution of the penalized equation converges to the
solution of the Navier-Stokes equations with the cor-
rect boundary conditions at the solid. In our simula-
tions to promote fast solutions and numerical stability,
this parameter is equal to the time-step, which gives
η = [3.7 · 10−5− 3.2 · 10−5] for Re = [50− 200]. As
a result the force in the direction of the flow is under-
evaluated and some fluid streamlines can penetrate in-
side the solid region (Fig. 3).

The mean drag relative error (εD) between CLIB
and the reference falls from 14% to 8% as η drops.
A two-dimensional simulation for Re = 1000 is also
carried out and compared to 2D DNS simulations of

Figure 3: Streamlines for Re = 200 and vorticity field
ω∗ = (∇× u)D/U∞ = [−6, 6].

2D Sim. CrmsL CD εD St

CLIB 1.065 1.513 - 0.234
Jiang and Cheng 1.042 1.521 0.55% 0.239

Henderson N/A 1.505 0.51% 0.237

Table 1: R.m.s. lift coefficient, time averaged drag coeffi-
cient, relative error in mean drag and Strouhal num-
ber for Re = 1000.

Jiang and Cheng (2017) and Henderson (1997). In this
case, η = 2.5 · 10−5. All the aerodynamic quantities
are in perfect agreement with the reference cases.

Flow past a rotating cylinder
Flow past a rotating cylinder with impulsive start

is examined next. The computational domain remains
as previously presented. The Reynolds number based
on the cylinder diameter and the free-flow velocity is
Re = 200 and the spin ratio (α = ωD/2U∞) ranges
between 0 and 5.

The mean lift coefficient is in good agreement with
the 2D results of Mittal and Kumar (2003) for lower
values of spin ratio. As α increases, the lift mag-
nitude is slightly underestimated. This may be due
to the solid velocity into the forcing term Ps which
is weighted by the solid fraction φs. This leads to
an under-predicted fluid velocity at the solid surface
(0 < φs < 1), hence the effective local spin ratio will
be lower. This effect could probably be minimized by
increasing the grid resolution near the solid.

The mean drag coefficient is also in good agree-
ment with the reference except for the highest value
of spin ratio. As the spin velocity increases, the wake
flow deviates from the streamwise direction. For α =
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Figure 4: Mean aerodynamic coefficients versus spin ratio:
• CLIB, ×Mittal and Kumar (2003).



5, the wake is steady but extremely deviated towards
the upper and lower boundaries of the domain. In our
simulations, these boundaries are located 15 diame-
ters away from the cylinder. Mittal and Kumar (2003)
have shown that boundary effects are negligible for
distances greater than 75 diameters. Furthermore, the
deviation is so extreme that the near wake goes out of
the refined-mesh region very quickly, hence influenc-
ing the accurate prediction of the wake dynamics.

Cylinder in forced cross-flow oscillation
Numerical simulations of flow past a cylinder

forced to oscillate in the cross-flow direction is pre-
sented here for a fixed Reynolds number of 500. The
computational domain remains unchanged. A sinu-
soidal motion is prescribed to the solid with an ampli-
tude of oscillation normalized by the cylinder diameter
A = ymax/D and an excitation frequency f0 = 1/T0.
The non-dimensional solid motion is described by:

γ(t) = A sin(2πf0t) . (20)

The fluid flow can be affected by the cylinder mo-
tion producing different regimes depending on the fre-
quency ratio F = f0/fs. In our case the values of F
are based on the shedding frequency fs = 22.15 Hz
found in a simulation with a stationary cylinder at
Re = 500. The simulation was carried out for 2000
non-dimensional periods.

The reference case used is a 2D LES simulation of
Blackburn and Henderson (1999) where the following
configurations are examined: (A;F ) = (0.25; [0.75−
1.05]). This range of frequency ratios is particularly
interesting since many complex physical phenomena
take place around F = 1. One such phenomenon
is the lock-in regime where the vortex shedding fre-
quency and cross-flow oscillation frequency coalesce.
In the forced oscillation case, the vortex shedding fre-
quency changes to match the cylinder’s oscillation. In-
side the lock-in regime, depending on F , there is a no-
table change in the timing of the vortex shedding with
respect to the cylinder motion. This effect is related
to a sign change in the non-dimensional mechanical
energy transferred between the fluid and the solid per
motion cycle which can be expressed as:

E =

∫ T0

0

CL · γ̇ dt . (21)

This quantity takes negative values when energy
is transferred from the solid to the fluid and positive
when energy is transferred to the solid. As discussed
in Blackburn and Henderson (1999) previous experi-
mental studies show that the sign switch happens be-
tween two limit values of F that depend on both the
Reynolds number and the amplitude of oscillation. For
their simulation at Re = 500 and A = 0.25 the switch
takes place at around F = 0.85 and ends at F = 0.95.
The evolution of the energy E with F predicted using
the CLIB method is shown in Fig. 5. We see a slight
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Figure 5: Energy transfer between solid and fluid versus fre-
quency ratios: • CLIB, × Blackburn and Hender-
son (1999).
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Figure 6: Limit cycles of CL versus γ below the phase
switch (F = 0.875) and above (F = 0.975).

underestimation of the energy at lower oscillation fre-
quencies. This can be attributed once again to pene-
trating fluid streamlines in the direction of motion, and
thus the underestimation of the lift coefficient.

The switch in energy sign is accompanied by a
change in the phase difference φL−γ between lift and
displacement. Starting from a phase difference of
180°, it approaches rapidly to 90° near F = 0.9. Then
at F = 0.95 the phase difference jumps to 0° where
the lift follows perfectly the displacement. We suc-
cessfully observe the phase switch from the lift cycles
computed with the CLIB method. Figure 6 shows two
cases where φL−γ ≈ 180° and 0° for F = 0.875 and
0.975, respectively. In the region of F = [0.91−0.95]
the flow presents a weakly chaotic regime where some
rapid changes in energy sign are observed. The aver-
age value however per cycle showed the biggest en-
ergy transfer from the fluid to the solid.

Lagrangian solid and mass conservation
For the previous simulations fine meshes were

used, but for higher Reynolds number values compro-
mises on the grid resolution will have to be made. To
demonstrate that the Lagrangian particles conserve the
solid mass independently of the fluid mesh resolution



and the movement of the solid, we solved the flow
past a 2D cylinder of diameter D and volume Vcyl,
oscillating with amplitude ymax = D. Since the den-
sity of the solid is constant, the relative error between
the computed volume

(
Vs(t) =

∫
Ω
φs(t) dV

)
and the-

oretical volume Vcyl is examined for two coarse grids
where ∆s = D/5 and D/10. The mean relative error
is 0.16 ± 2.11 · 10−14 % and 0.16 ± 1.38 · 10−14 %,
respectively. Hence, the influence of the grid resolu-
tion is essentially negligible on the solid mass conser-
vation. The conservative nature of the solid volume
fraction in turn guaranties the conservation of the fluid
mass as well inside a given computational domain. Fu-
ture studies will focus on the limits of CLIB to predict
accurate aerodynamic parameters on coarser grids.

4 Conclusions
A conservative Lagrangian immersed boundary

method coupling a VOS approach with the penalty
method has been proposed for solving incompress-
ible viscous flow problems around stationary or mo-
bile solid geometries. Three 2D validation cases have
been performed: flow past a stationary, a rotating and
an oscillating cylinder. The Lagrangian representation
of the solid volume fraction field makes the conser-
vation of the solid and fluid mass independent of the
grid resolution. Concerning the prediction of the aero-
dynamic quantities, a good agreement with literature
has been observed despite a slight underestimation in
some cases. Two main factors have been identified.
The force at the body surface may be underestimated
because the solid velocity is weighted by the non-unity
solid fraction at solid interface in the momentum equa-
tion. Another aspect is the parameter η of the penalty
term which is essentially the value of the time-step ∆t.
All the simulations were driven by a high CFL value
constraint which gave large time-steps in the valida-
tion cases. With smaller time-steps, the penalty forc-
ing term will decrease, solving the penetrating stream-
lines issue. Future work will seek to improve the esti-
mation of the forces. It will also include the imple-
mentation of the method in three-dimensional flows
for wind energy applications. Furthermore, the com-
putational performances of the method will be tested
and compared against the costly and computationally
demanding body-fitted arbitrary Lagrangian-Eulerian
(ALE) method coupled with dynamic mesh adaptation
for complex solid geometries in motion.
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