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Robin criterion states that the Riemann Hypothesis is true if and only if the inequality σ (n) < e γ × n × log log n holds for all n > 5040, where σ (n) is the sum-ofdivisors function and γ ≈ 0.57721 is the Euler-Mascheroni constant. We prove that the Robin inequality is true for all n > 5040 which are not divisible by any prime number between 2 and 953. Using this result, we show there is a contradiction just assuming the possible smallest counterexample n > 5040 of the Robin inequality. In this way, we prove that the Robin inequality is true for all n > 5040 and thus, the Riemann Hypothesis is true.

Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1 2 [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF]. As usual σ (n) is the sum-of-divisors function of n [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]:

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, and log is the natural logarithm. The importance of this property is:

Theorem 1.1 Robins(n) holds for all n > 5040 if and only if the Riemann Hypothesis is true [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF].

It is known that Robins(n) holds for many classes of numbers n.

Theorem 1.2 Robins(n) holds for all n > 5040 that are not divisible by 2 [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF].

On the one hand, we prove that Robins(n) holds for all n > 5040 that are not divisible by any prime number between 3 and 953. Let q 1 = 2, q 2 = 3, . . . , q m denote the first m consecutive primes, then an integer of the form ∏ m i=1 q a i i with a 1 ≥ a 2 ≥ • • • ≥ a m ≥ 0 is called an Hardy-Ramanujan integer [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. A natural number n is called superabundant precisely when, for all m < n f (m) < f (n).

Theorem 1.3 If n is superabundant, then n is an Hardy-Ramanujan integer [START_REF] Alaoglu | On highly composite and similar numbers[END_REF].

Theorem 1. [START_REF] Edwards | Riemann's Zeta Function[END_REF] The smallest counterexample of the Robin inequality greater than 5040 must be a superabundant number [START_REF] Akbary | Superabundant numbers and the Riemann hypothesis[END_REF].

On the other hand, we prove the nonexistence of such counterexample and therefore, the Riemann Hypothesis is true.

A Central Lemma

These are known results:

Lemma 2.1 [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. For n > 1:

f (n) < ∏ q|n q q -1 . (2.1)
Lemma 2.2 [START_REF] Edwards | Riemann's Zeta Function[END_REF].

∞ ∏ k=1 1 1 -1 q 2 k = ζ (2) = π 2 6 . (2.2) 
The following is a key lemma. It gives an upper bound on f (n) that holds for all n.

The bound is too weak to prove Robins(n) directly, but is critical because it holds for all n. Further the bound only uses the primes that divide n and not how many times they divide n.

Lemma 2.3 Let n > 1 and let all its prime divisors be q 1 < • • • < q m . Then,

f (n) < π 2 6 × m ∏ i=1 q i + 1 q i .
Proof We use that lemma 2.1:

f (n) < m ∏ i=1 q i q i -1 . Now for q > 1, 1 1 -1 q 2 = q 2 q 2 -1 . So 1 1 -1 q 2 × q + 1 q = q 2 q 2 -1 × q + 1 q = q q -1 .
Then by lemma 2.2,

m ∏ i=1 1 1 -1 q 2 i < ζ (2) = π 2 6 .
Putting this together yields the proof:

f (n) < m ∏ i=1 q i q i -1 ≤ m ∏ i=1 1 1 -1 q 2 i × q i + 1 q i < π 2 6 × m ∏ i=1 q i + 1 q i .
3 About the p-adic order

In basic number theory, for a given prime number p, the p-adic order of a natural number n is the highest exponent ν p ≥ 1 such that p ν p divides n. This is a known result:

Lemma 3.1 In general, we know that Robins(n) holds for a natural number n > 5040 that satisfies either ν 2 (n) ≤ 19, ν 3 (n) ≤ 12 or ν 7 (n) ≤ 6, where ν p (n) is the p-adic order of n [START_REF] Hertlein | Robin's Inequality for New Families of Integers[END_REF].

We know the following lemmas: Lemma 3.2 [START_REF] Hertlein | Robin's Inequality for New Families of Integers[END_REF]. Let ∏ m i=1 q a i i be the representation of n as a product of primes q 1 < • • • < q m with natural numbers as exponents a 1 , . . . , a m . Then,

f (n) = m ∏ i=1 q i q i -1 × m ∏ i=1 1 - 1 
q a i +1 i .
Lemma 3.3 [START_REF] Hertlein | Robin's Inequality for New Families of Integers[END_REF]. Let n > e e 23.762143 and let all its prime divisors be q

1 < • • • < q m , then m ∏ i=1 q i q i -1 < 1771561 1771560 × e γ × log log n.
Lemma 3.4 Robins(n) holds for all 10 10 10 ≥ n > 5040 [START_REF] Hertlein | Robin's Inequality for New Families of Integers[END_REF].

Putting together all these results, then we obtain that Lemma 3.5 Robins(n) holds for n > 5040 when ν 31 (n) ≤ 3.

Proof From lemma 3.2, we note that

f (n) = m ∏ i=1 q i q i -1 × m ∏ i=1 1 - 1 
q a i +1 i ≤ m ∏ i=1 q i q i -1 × 1 - 1 31 ν 31 (n)+1
when ν 31 (n) ≤ 3. We only need to look at the case where ν 31 (n) = 3 since the weaker cases follow because

1 - 1 31 1+1 < 1 - 1 31 2+1 < 1 - 1 31 3+1 .
In this way, we obtain that

f (n) ≤ m ∏ i=1 q i q i -1 × 1 - 1 31 3+1 = 923520 923521 × m ∏ i=1 q i q i -1 when ν 31 (n) ≤ 3. With lemma 3.3, we have for n > e e 23.762143 923520 923521 × m ∏ i=1 q i q i -1 < 923520 923521 × 1771561 1771560 × e γ × log log n < e γ × log log n
since 923520 923521 × 1771561 1771560 < 1. In light of lemma 3.4 and the fact that e e 23.762143 < 10 10 10 , we then conclude that Robins(n) holds for n > 5040 when ν 31 (n) ≤ 3.

A Particular Case

We can easily prove that Robins(n) is true for certain kind of numbers: Lemma 4.1 Robins(n) holds for n > 5040 when q ≤ 7, where q is the largest prime divisor of n.

Proof Let n > 5040 and let all its prime divisors be q

1 < • • • < q m ≤ 5, then we need to prove f (n) < e γ × log log n that is true when m ∏ i=1 q i q i -1 ≤ e γ × log log n according to the lemma 2.1. For q 1 < • • • < q m ≤ 5, m ∏ i=1 q i q i -1 ≤ 2 × 3 × 5 1 × 2 × 4 = 3.
75 < e γ × log log(5040) ≈ 3.81.

However, we know for n > 5040 e γ × log log(5040) < e γ × log log n and therefore, the proof is complete when q 1 < • • • < q m ≤ 5. The remaining case is for n > 5040 when all its prime divisors are q 1 < • • • < q m ≤ 7. Robins(n) holds for n > 5040 when ν 7 (n) ≤ 6 according to the lemma 3.1 [START_REF] Hertlein | Robin's Inequality for New Families of Integers[END_REF]. Hence, it is enough to prove this for those natural numbers n > 5040 when 7 7 | n. For

q 1 < • • • < q m ≤ 7, m ∏ i=1 q i q i -1 ≤ 2 × 3 × 5 × 7 1 × 2 × 4 × 6 = 4.
375 < e γ × log log(7 7 ) ≈ 4.65.

However, for n > 5040 and 7 7 | n, we know that e γ × log log(7 7 ) ≤ e γ × log log n and as a consequence, the proof is complete when q 1 < • • • < q m ≤ 7.

A Better Bound

This is a known result:

Lemma 5.1 [START_REF] Rosser | Approximate Formulas for Some Functions of Prime Numbers[END_REF]. For x > 1:

∑ q≤x 1 q < log log x + B + 1 log 2 x (5.1)
where B = 0.2614972128 • • • denotes the (Meissel-)Mertens constant [START_REF] Rosser | Approximate Formulas for Some Functions of Prime Numbers[END_REF].

We show a better result: Lemma 5.2 For x ≥ 11, we have ∑ q≤x 1 q < log log x + γ -0.12.

Proof Let's define H = γ -B. The lemma 5.1 is the same as

∑ q≤x 1 q < log log x + γ -(H - 1 log 2 x
).

For x ≥ 11,

(H - 1 log 2 x ) > (0.31 - 1 log 2 11
) > 0.12 and thus,

∑ q≤x 1 q < log log x + γ -(H - 1 log 2 x
) < log log x + γ -0.12.

6 On a Square Free Number

We know the following results: Lemma 6.1 [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. For 0 < a < b:

log b -log a b -a = 1 (b -a) b a dt t > 1 b . (6.1)
Lemma 6.2 [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. For q > 0:

log(q + 1) -log q = q+1 q dt t < 1 q . (6.2)
We recall that an integer n is said to be square free if for every prime divisor q of n we have q 2 n [3]. Robins(n) holds for all n > 5040 that are square free [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. Lemma 6.3 For a square free number

n = q 1 × • • • × q m such that q 1 < q 2 < • • • < q m are
odd prime numbers, q m ≥ 11 and 3 n, then:

π 2 6 × 3 2 × σ (n) ≤ e γ × n × log log(2 19 × n).
Proof By induction with respect to ω(n), that is the number of distinct prime factors

of n [3]. Put ω(n) = m [3]
. We need to prove the assertion for those integers with m = 1. From a square free number n, we obtain

σ (n) = (q 1 + 1) × (q 2 + 1) × • • • × (q m + 1) (6.3) 
when n = q 1 × q 2 × • • • × q m [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. In this way, for every prime number q i ≥ 11, then we need to prove

π 2 6 × 3 2 × (1 + 1 q i ) ≤ e γ × log log(2 19 × q i ). (6.4) 
For q i = 11, we have

π 2 6 × 3 2 × (1 + 1 11 ) ≤ e γ × log log(2 19 × 11)
is actually true. For another prime number q i > 11, we have

(1 + 1 q i ) < (1 + 1 11 ) and log log(2 19 × 11) < log log(2 19 × q i )
which clearly implies that the inequality (6.4) is true for every prime number q i ≥ 11. Now, suppose it is true for m-1, with m ≥ 2 and let us consider the assertion for those square free n with ω

(n) = m [3]. So let n = q 1 × • • • × q m be
a square free number and assume that q

1 < • • • < q m for q m ≥ 11. Case 1: q m ≥ log(2 19 × q 1 × • • • × q m-1 × q m ) = log(2 19 × n).
By the induction hypothesis we have

π 2 6 × 3 2 ×(q 1 +1)ו • •×(q m-1 +1) ≤ e γ ×q 1 ו • •×q m-1 ×log log(2 19 ×q 1 ו • •×q m-1 )
and hence

π 2 6 × 3 2 × (q 1 + 1) × • • • × (q m-1 + 1) × (q m + 1) ≤ e γ × q 1 × • • • × q m-1 × (q m + 1) × log log(2 19 × q 1 × • • • × q m-1 )
when we multiply the both sides of the inequality by (q m + 1). We want to show

e γ × q 1 × • • • × q m-1 × (q m + 1) × log log(2 19 × q 1 × • • • × q m-1 ) ≤ e γ ×q 1 ו • •×q m-1 ×q m ×log log(2 19 ×q 1 ו • •×q m-1 ×q m ) = e γ ×n×log log(2 19 ×n).
Indeed the previous inequality is equivalent with

q m × log log(2 19 × q 1 × • • • × q m-1 × q m ) ≥ (q m + 1) × log log(2 19 × q 1 × • • • × q m-1 )
or alternatively

q m × (log log(2 19 × q 1 × • • • × q m-1 × q m ) -log log(2 19 × q 1 × • • • × q m-1 )) log q m ≥ log log(2 19 × q 1 × • • • × q m-1 ) log q m .
We can apply the inequality in lemma 6.

1 just using b = log(2 19 × q 1 × • • • × q m-1 × q m ) and a = log(2 19 × q 1 × • • • × q m-1 ). Certainly, we have log(2 19 × q 1 × • • • × q m-1 × q m ) -log(2 19 × q 1 × • • • × q m-1 ) = log 2 19 × q 1 × • • • × q m-1 × q m 2 19 × q 1 × • • • × q m-1 = log q m .
In this way, we obtain

q m × (log log(2 19 × q 1 × • • • × q m-1 × q m ) -log log(2 19 × q 1 × • • • × q m-1 )) log q m > q m log(2 19 × q 1 × • • • × q m )
.

Using this result we infer that the original inequality is certainly satisfied if the next inequality is satisfied

q m log(2 19 × q 1 × • • • × q m ) ≥ log log(2 19 × q 1 × • • • × q m-1 ) log q m which is trivially true for q m ≥ log(2 19 × q 1 × • • • × q m-1 × q m ) [3]. Case 2: q m < log(2 19 × q 1 × • • • × q m-1 × q m ) = log(2 19 × n).
We need to prove

π 2 6 × 3 2 × σ (n) n ≤ e γ × log log(2 19 × n).
We know 3 2 < 1.503 < 4 2.66 . Nevertheless, we could have

3 2 × σ (n) n × π 2 6 < 4 × σ (n) 3 × n × π 2 2 × 2.66
and therefore, we only need to prove

σ (3 × n) 3 × n × π 2 5.32 ≤ e γ × log log(2 19 × n)
where this is possible because of 3 n. If we apply the logarithm to the both sides of the inequality, then we obtain log( π 2 5.32

) + (log(3 + 1) -log 3) + m ∑ i=1 (log(q i + 1) -log q i ) ≤ γ + log log log(2 19 × n).
In addition, note that log( π 2 5.32 ) < 1 2 + 0.12. However, we know

γ + log log q m < γ + log log log(2 19 × n) since q m < log(2 19 × n).
We use that lemma 6.2 for each term log(q + 1)log q and thus, 0.12 + 1 2

+ 1 3 + 1 q 1 + • • • + 1 q m ≤ 0.12 + ∑ q≤q m 1 q ≤ γ + log log q m
where q m ≥ 11. Hence, it is enough to prove ∑ q≤q m 1 q ≤ γ + log log q m -0.12 but this is true according to the lemma 5.2 for q m ≥ 11. In this way, we finally show the lemma is indeed satisfied.

Robin on Divisibility

Robins(n) holds for every n > 5040 that is not divisible by 2 [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. We extend this property to other prime numbers: Proof We will check the Robin inequality is true for every natural number n = q a 1 1 × q a 2 2 × • • • × q a m m > 5040 such that q 1 , q 2 , • • • , q m are distinct prime numbers, a 1 , a 2 , • • • , a m are natural numbers and 3 n. We know this is true when the greatest prime divisor of n > 5040 is lesser than or equal to 7 according to the lemma 4.1. Therefore, the remaining case is when the greatest prime divisor of n > 5040 is greater than or equal to 11. We need to prove

f (n) < e γ × log log n that is true when π 2 6 × m ∏ i=1 q i + 1 q i ≤ e γ × log log n
according to the lemma 2.3. Using the formula (6.3) for the square free numbers, then we obtain that is equivalent to

π 2 6 × σ (n ) n ≤ e γ × log log n
where n = q 1 × • • • × q m is the square free kernel of the natural number n [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. The Robin inequality has been proved for all integers n not divisible by 2 (which are bigger than 10) [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. Hence, we only need to prove the Robin inequality is true when 2 | n . In addition, we know that Robins(n) holds for every n > 5040 when ν 2 (n) ≤ 19 according to the lemma 3.1 [START_REF] Hertlein | Robin's Inequality for New Families of Integers[END_REF]. Consequently, we only need to prove that Robins(n) holds for n > 5040 when 2 20 | n and thus,

e γ × n × log log(2 19 × n 2 ) ≤ e γ × n × log log n because of 2 19 × n 2 ≤ n where 2 20 | n and 2 | n . So, π 2 6 × σ (n ) ≤ e γ × n × log log(2 19 × n 2 ).
According to the formula (6.3) for the square free numbers and 2 | n , then,

π 2 6 × 3 × σ ( n 2 ) ≤ e γ × 2 × n 2 × log log(2 19 × n 2 )
which is the same as

π 2 6 × 3 2 × σ ( n 2 ) ≤ e γ × n 2 × log log(2 19 × n 2 )
where this is true according to the lemma 6.3 when 3 n 2 . In addition, we know that Robins(n) holds for every n > 5040 when ν 3 (n) ≤ 12 according to the lemma 3.1 [START_REF] Hertlein | Robin's Inequality for New Families of Integers[END_REF]. Hence, we only need to prove that Robins(n) holds for every n > 5040 when 2 20 | n and 3 13 | n. To sum up, the proof is complete.

Let's state the following known properties: F. Vega Lemma 7.2 σ (n) and f (n) are multiplicatives [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. Besides, for a prime number q and a positive integer a ≥ 0, we have that σ (q a ) = q a+1 -1 q-1 [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. We know that f (q a ) < q q-1 and f (q a+1 ) > f (q a ) for all primes q and all a ≥ 0. 

f (2 a × 3 b × m) < e γ × log log(2 a × 3 b × m).
We know

f (2 a × 3 b × m) = f (3 b ) × f (2 a × m)
since f is multiplicative [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. In addition, we know f (3 b ) < 3 2 for every natural number b [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. In this way, we have

f (3 b ) × f (2 a × m) < 3 2 × f (2 a × m).
However, that would be equivalent to

3 2 × f (2 a × m) = 9 8 × f (3) × f (2 a × m) = 9 8 × f (2 a × 3 × m)
where f (3) = 4 3 since f is multiplicative [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. Nevertheless, we have

9 8 × f (2 a × 3 × m) < f (5) × f (2 a × 3 × m) = f (2 a × 3 × 5 × m) and 9 8 × f (2 a × 3 × m) < f (7) × f (2 a × 3 × m) = f (2 a × 3 × 7 × m)
where 5 m or 7 m, f (5) = 6 5 and f (7) = 8 7 . We know the Robin inequality is true for 2 a × 3 × 5 × m and 2 a × 3 × 7 × m when a ≥ 20, since this is true for every natural number n > 5040 when ν 3 (n) ≤ 12 according to the lemma 3.1 [START_REF] Hertlein | Robin's Inequality for New Families of Integers[END_REF]. Hence, we would have

f (2 a × 3 × 5 × m) < e γ × log log(2 a × 3 × 5 × m) < e γ × log log(2 a × 3 b × m) and f (2 a × 3 × 7 × m) < e γ × log log(2 a × 3 × 7 × m) < e γ × log log(2 a × 3 b × m) when b ≥ 13.
Lemma 7.4 Robins(n) holds for all n > 5040 when a prime number 11 ≤ q ≤ 47 complies with q n. Proof We know that Robins(n) holds for every n > 5040 when ν 7 (n) ≤ 6 according to the lemma 3.1 [START_REF] Hertlein | Robin's Inequality for New Families of Integers[END_REF]. We need to prove f (n) < e γ × log log n when (2 20 × 3 13 × 7 7 ) | n. Suppose that n = 2 a × 3 b × 7 c × m, where a ≥ 20, b ≥ 13, c ≥ 7, 2 m, 3 m, 7 m, q m and 11 ≤ q ≤ 47. Therefore, we need to prove

f (2 a × 3 b × 7 c × m) < e γ × log log(2 a × 3 b × 7 c × m). We know f (2 a × 3 b × 7 c × m) = f (7 c ) × f (2 a × 3 b × m)
since f is multiplicative [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. In addition, we know f (7 c ) < 7 6 for every natural number c [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. In this way, we have

f (7 c ) × f (2 a × 3 b × m) < 7 6 × f (2 a × 3 b × m).
However, that would be equivalent to

7 6 × f (2 a × 3 b × m) = 49 48 × f (7) × f (2 a × 3 b × m) = 49 48 × f (2 a × 3 b × 7 × m)
where f (7) = 8 7 since f is multiplicative [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. In addition, we know 49 48

× f (2 a × 3 b × 7 × m) < f (q) × f (2 a × 3 b × 7 × m) = f (2 a × 3 b × 7 × q × m)
where q m, f (q) = q+1 q and 11 ≤ q ≤ 47. Nevertheless, we know the Robin inequality is true for 2 a × 3 b × 7 × q × m when a ≥ 20 and b ≥ 13, since this is true for every natural number n > 5040 when ν 7 (n) ≤ 6 according to the lemma 3.1 [START_REF] Hertlein | Robin's Inequality for New Families of Integers[END_REF]. Hence, we would have

f (2 a × 3 b × 7 × q × m) < e γ × log log(2 a × 3 b × 7 × q × m) < e γ × log log(2 a × 3 b × 7 c × m)
when c ≥ 7 and 11 ≤ q ≤ 47. Lemma 7.5 Robins(n) holds for all n > 5040 when a prime number 53 ≤ q ≤ 953 complies with q n. Proof We know that Robins(n) holds for every n > 5040 when ν 31 (n) ≤ 3 according to the lemma 3.5. We need to prove that

f (n) < e γ × log log n when (2 20 × 3 13 × 31 4 ) | n. Suppose that n = 2 a × 3 b × 31 c × m, where a ≥ 20, b ≥ 13, c ≥ 4, 2 m, 3 m, 31 m,
q m and 53 ≤ q ≤ 953. Therefore, we need to prove that

f (2 a × 3 b × 31 c × m) < e γ × log log(2 a × 3 b × 31 c × m). We know that f (2 a × 3 b × 31 c × m) = f (31 c ) × f (2 a × 3 b × m)
since f is multiplicative [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. In addition, we know that f (31 c ) < 31 30 for every natural number c [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. In this way, we have that

f (31 c ) × f (2 a × 3 b × m) < 31 30 × f (2 a × 3 b × m).
However, that would be equivalent to

31 30 × f (2 a × 3 b × m) = 961 960 × f (31) × f (2 a × 3 b × m) = 961 960 × f (2 a × 3 b × 31 × m)
where f (31) = 32 31 since f is multiplicative [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. In addition, we know that 961 960

× f (2 a × 3 b × 31 × m) < f (q) × f (2 a × 3 b × 31 × m) = f (2 a × 3 b × 31 × q × m)
where q m, f (q) = q+1 q and 53 ≤ q ≤ 953. Nevertheless, we know the Robin inequality is true for 2 a × 3 b × 31 × q × m when a ≥ 20 and b ≥ 13, since this is true for every natural number n > 5040 when ν 31 (n) ≤ 3 according to the lemma 3.5. Hence, we would have that

f (2 a × 3 b × 31 × q × m) < e γ × log log(2 a × 3 b × 31 × q × m) < e γ × log log(2 a × 3 b × 31 c × m)
when c ≥ 4 and 53 ≤ q ≤ 953.

Helpful Lemmas

In mathematics, the Chebyshev function θ (x) is given by θ (x) = ∑ q≤x log q where q ≤ x means all the prime numbers q that are less than or equal to x. Lemma 8.1 [START_REF] Rosser | Approximate Formulas for Some Functions of Prime Numbers[END_REF]. For x ≥ 41:

θ (x) > (1 - 1 log(x) ) × x.
Besides, we know that Lemma 8.2 [START_REF] Rosser | Approximate Formulas for Some Functions of Prime Numbers[END_REF]. For x ≥ 286:

∏ q≤x q q -1 < e γ × (log x + 1 2 × log(x)
).

For the counting prime function π(x), we know that Lemma 8.3 [START_REF] Rosser | Approximate Formulas for Some Functions of Prime Numbers[END_REF]. For x ≥ 17:

x log x < π(x) < 1.25506 × x log x .
The following lemma is crucial in our proof Lemma 8.4 [START_REF] Kozma | Useful Inequalities[END_REF]. For x > -1:

x x + 1 ≤ log(1 + x) ≤ x.
The smallest counterexample of the Robin inequality greater than 5040 complies with Lemma 8.5 If n > 5040 is the smallest counterexample of the Robin inequality, then q < log n where q denotes the largest prime factor of n [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF].

We show some tools that could help us in the final proof.

Lemma 8.6 Let q ≥ 2 be a prime and let b ≥ 0 be a positive integer. If q a n, then

f (q b × n) = f (n) × q a+b+1 -1 q a+b+1 -q b
where q a n signifies that q a divides n, but q a+1 does not divide n.

Proof We assume that q a n. Since σ (n) and f (n) are multiplicatives according to the lemma 7.2, then we would only need to study f (q a+b ) where we know from lemma 7.2 that σ (q a ) = q a+1 -1 q-1 . Then, f (q a+b ) = q a+b+1 -1 q a+b × (q -1) × q a+1 -1 q a × (q -1) × q a × (q -1) q a+1 -1 = f (q a ) × q a+b+1 -1 q a+b × (q -1) × q a × (q -1)

q a+1 -1 = f (q a ) × q a+b+1 -1 q b × 1 q a+1 -1 = f (q a ) × q a+b+1 -1 q a+b+1 -q b .
Let's see another inequalities: Lemma 8.7 If n > 5040 is the smallest counterexample of the Robin inequality, then

log log n log q < 1 + 1 2 × log 2 q
and log log log n log q < log log q log q + 1 2 × log 3 q when we assume that q ≥ 953 is the largest prime factor of n.

Proof Let ∏ m i=1 q a i i be the representation of n as a product of the first m consecutive primes q 1 < • • • < q m with natural numbers as exponents a 1 , . . . , a m . According to the theorems 1.3 and 1.4, the primes q 1 < • • • < q m must be the first m consecutive primes since n > 5040 should be an Hardy-Ramanujan integer. We assume that q m ≥ 953. For q m ≥ 953, we have that

∏ q≤q m q q -1 < e γ × (log q m + 1 2 × log(q m ) )
because of the lemma 8.2. We use that lemma 2.1 to show that

e γ × log log n ≤ f (n) < ∏ q≤q m q q -1 < e γ × (log q m + 1 2 × log(q m ) )
since we assume that n is a counterexample of the Robin inequality. In this way, we obtain that log log n < (log q m + 1 2 × log(q m ) )

which is the same as log log n log q m < (1 +

1 2 × log 2 (q m )
).

Besides, if we apply the logarithm to the both sides of the inequality, then log log log n < log log q m × (1 + 1 2 × log 2 (q m ) )

that is equivalent to log log log n < log log q m + log(1 + 1 2 × log 2 (q m ) ).

We use that lemma 8.4 to show that

log(1 + 1 2 × log 2 (q m ) ) ≤ 1 2 × log 2 (q m )
.

Therefore, we finally have that log log log n log q m < log log q m log q m + 1 2 × log 3 q m .

Let's show another inequality Lemma 8.8 For q m ≥ 953, we have that

∑ q≤q m log log q q m > 1 log q m
Proof This is the same as ∑ q≤q m log log q > q m log q m .

According to the lemma 8.3, it is enough to show that ∑ q≤q m log log q ≥ π(q m ) > q m log q m when q m ≥ 953. We know that for all primes q i > q m ≥ 953, then log log q i > 1.

Hence, it is enough to prove that ∑ q≤q m log log q ≥ ∑ q≤953 log log q ≥ π(953).

We compute that ∑ q≤953 log log q > 274.

However, we know that q 274 = 1759 > 953 and thus, 274 ≥ π(953).

Therefore, the proof is done. 9 Proof of Main Theorems Theorem 9.1 Robins(n) holds for all n > 5040 when a prime number q ≤ 953 complies with q n. Proof This is a compendium of the results from the theorem 1.2 and the lemmas 7.1, 7.3, 7.4 and 7.5.

Theorem 9.2 Let ∏ m i=1 q a i i be the representation of n as a product of the first m consecutive primes q 1 < • • • < q m with natural numbers as exponents a 1 , . . . , a m . We obtain a contradiction just assuming that n > 5040 is the smallest integer such that Robins(n) does not hold.

Proof According to the theorems 1.3 and 1.4, the primes q 1 < • • • < q m must be the first m consecutive primes since n > 5040 should be an Hardy-Ramanujan integer. From the theorem 9.1, we know that necessarily q m ≥ 953. Under our assumption, we know that f (n) ≥ e γ × log log n.

For b = 1 and the lemma 8.6, we know that

f (n) = f (q i × m) = f (m) × q a i +2 i - 1 
q a i +2 i -q i
for every prime q i that divides n where m = n q i . If we subtract f (m) to both sides of the inequality, then we obtain that

f (n) -f (m) ≥ e γ × log log n -f (m). Then, f (n) -f (m) = f (m) × q a i +2 i - 1 
q a i +2 i -q i -f (m) = f (m) × q a i +2 i - 1 
q a i +2 i -q i -1 = f (m) × ( q i -1 q a i +2 i -q i ) = f (m) × ( q i -1 q i × (q a i +1 i - 1 
)

) = f (m) × ( 1 q i × σ (q a i i ) ) = f (m ) × f (q a i -1 i ) × ( 1 q i × σ (q a i i ) ) = f (m ) × σ (q a i -1 i ) q a i -1 i × ( 1 q i × σ (q a i i ) ) < f (m ) × σ (q a i i ) q a i i × ( 1 q i × σ (q a i i ) ) = f (m ) × 1 
q a i +1
i where m = n q a i i and we know that q a i i n and σ (q

a i i ) q a i i > σ (q a i -1 i ) q a i -1 i
because of the lemma 7.2. In this way, we have that

f (m ) × 1 
q a i +1 i ≥ e γ × log log n -f (m).
We know that Robins(m ) and Robins(m) hold, since n > 5040 is the smallest integer such that Robins(n) does not hold. Consequently, we only need to prove that e γ × log log m × 1

q a i +1 i > f (m ) × 1 
q a i +1 i ≥ e γ × log log n -f (m) > e γ × log log n -e γ × log log m.
As result, we have that log log m × 1

q a i +1 i > log log(q i × m) -log log m since m = n q i . We know that log log(q i × m) -log log m = log (log q i + log m) -log log m = log log m × (1 + log q i log m ) -log log m = log log m + log(1 + log q i log m ) -log log m = log(1 + log q i log m ).
In addition, we know that log(1 + log q i log m ) ≥ log q i log n using the lemma 8.4. Certainly, we will have that log

(1 + log q i log m ) ≥ log q i log m log q i log m + 1 = log q i log q i + log m = log q i log n .
As a consequence, we would have log log m × 1

q a i +1 i > log q i log n which is equivalent to log n × log log m > q a i +1 i × log q i .
However, we know that log n × log log n > log n × log log m and thus log n × log log n > q a i +1 i × log q i .

For n > 10 10 10 , we have that log n × log log n > 1 according to the lemma 3.4. Moreover, for q i ≥ 3, then q a i +1 i × log q i > 1. In addition, for q 1 = 2, we have that q a 1 +1 1 × log q 1 > 1 since a 1 ≥ 20 due to the lemma 3.1. Since the both sides of the inequality is greater that 1 for all primes q i which divides n, then we can multiply the inequalities to obtain

(log n × log log n) π(q m ) > n × N m × m ∏ i=1 log q i
where N m = ∏ m i=1 q i is the primorial number of order m. If we apply the logarithm to the both sides of the inequality, then we would have π(q m ) × (log log n + log log log n) > log n + log N m + m ∑ i=1 log log q i F. Vega which is equivalent to π(q m ) × (log log n + log log log n) > log n + θ (q m ) + m ∑ i=1 log log q i . If we apply the lemma 8.3, then we would have 1.25506 × q m log q m × (log log n + log log log n) > log n + θ (q m ) + m ∑ i=1 log log q i .

Let's introduce the lemma 8.1 in this inequality and thus 1.25506× q m log q m ×(log log n+log log log n) > log n+(1-

1 log q m )×q m + m ∑ i=1 log log q i .
In addition, we can transform this into 1.25506 × q m log q m × (log log n + log log log n) > q m + (1 -1 log q m

) × q m + m ∑ i=1 log log q i because of the lemma 8.5. If we divide the both sides by q m , then 1.25506 × 1 log q m × (log log n + log log log n) > 1 + 1 -1 log q m + m ∑ i=1 log log q i q m .

According to the lemma 8.8, we know that

- 1 log q m + m ∑ i=1
log log q i q m = α > 0.

Consequently, we would have that 1.25506 × ( log log n log q m + log log log n log q m ) > 2 + α.

If we use the lemma 8.7, then 1.25506 × (1 + 1 2 × log 2 q m + log log q m log q m + 1 2 × log 3 q m ) > 2 + α.

We know that 1.25506 × (1 + 1 2 × log 2 q m + log log q m log q m + 1 2 × log 3 q m ) ≤ 

Lemma 7 . 1

 71 Robins(n) holds for all n > 5040 when 3 n. More precisely: every possible counterexample n > 5040 of the Robin inequality must comply with (2 20 × 3 13 ) | n.

Lemma 7 . 3

 73 Robins(n) holds for all n > 5040 when 5 n or 7 n. Proof We need to prove f (n) < e γ × log log n when (2 20 × 3 13 ) | n. Suppose that n = 2 a × 3 b × m, where a ≥ 20, b ≥ 13, 2 m, 3 m and 5 m or 7 m. Therefore, we need to prove
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Consequently, we have that

is a contradiction. To sum up, we obtain a contradiction just assuming that n > 5040 is the smallest integer such that Robins(n) does not hold.

Theorem 9.3 Robins(n) holds for all n > 5040.

Proof Due to the theorem 9.2, we can assure there is not any natural number n > 5040 such that Robins(n) does not hold.

Theorem 9.4 The Riemann Hypothesis is true.

Proof This is a direct consequence of theorems 1.1 and 9.3