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1. INTRODUCTION

Ircam's Spatialisateur [1, 2], frequently dubbed
spat—, is a suite of audio tools dedicated to real-
time sound spatialization, artificial reverberation,
and sound diffusion. It has been developed at Ircam
since the early 1990s, and it primarily operates in the
Max [3] environment. It is packaged as a compre-
hensive toolbox! of audio processors, control
objects, and graphical user interfaces. Typical fields
of application include concerts, mixing, post-
production, virtual reality (VR), sonic installations,
sound design, etc. The software suite is developed
through Agile methods [4], and it continuously
integrates state-of-the-art technologies, research
outcomes from the Acoustics and Cognition Team
(formerly Room Acoustics Team), and feedback
from users — sonic artists and sound engineers. As
the application is built as a long-term project, its
development roadmap tackles multiple concerns:
improvement of existing features, implementation
of new functionalities, maintenance (adaptive,
corrective, and preventive), optimization, architec-
ture refactoring (in order to improve maintainability
and extensibility of the code base), etc.

This paper offers an overview of the toolkit, with
an emphasis on the current version, spat~35,
released in 2018. First, we present the framework
and underlying space-time-frequency model of
spat~(Section 2). This framework has been
established since the inception of the tool, and has
been perpetuated over the releases. Next, we detail
the primary features of the toolbox (Section 3), with
a highlight on Ambisonics technology as this has
received significant attention in recent years. Sec-
tion 4 briefly enumerates a number of handy tools,
also part of the spat~ package, that form a com-
plementary apparatus for the production of spa-
tialized media.

1 The library features more than 250 external objects, along with example
and tutorial patchers.

2 https://www.spatrevolution.com

3 https://www.mathworks.com

4 https://https://puredata.info

5 https://cycling74.com

The foundation of spat~ is a powerful C++ libra-
ry that is mostly host- and platform- independent.
This software library is indeed embedded into seve-
ral environments such as Open Music [5], o7 [6],
Flux:: Spat Revolution?, Matlab3, or PureData®.

Section 5 outlines some specifics of its inte-
gration within Cycling'74 Max® host framework.

This article is an extended and updated version
of the work previously published in[7, 8].

2. CORE FRAMEWORK: A SIMPLE
SPACE-TIME-FREQUENCY MODEL

At the core of the spat~ library is the spat5.
spat~external objecté It is an all-encompassing
audio engine that handles the necessary operations
for creating spatialization effects. Its processing
architecture is depicted in Figure 1.

(1) The input signal, assumed devoid of rever-
beration, first goes through a pre-processing modu-
le that can simulate air absorption and Doppler
effect.
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Figure 1: Signal processing architecture
of the spat5.spat~ object.

6 In order to avoid confusion or conflicts with other toolboxes, all entities
of the spat~ library are named with the “spat5.” prefix. This explains
the seemingly redundant naming of the spat5.spat~ object.



(2) Then, the room module produces an artificial
reverberation effect. This is implemented with a
scalable, multichannel, reverberation unit using
feedback delay networks (FDN) [9]. The unit is
designed to produce a natural-sounding reverb
effect, following a simplified model of a room
impulse response (IR) (see upper part in Figure 2).
The reverberation engine delivers independent
signals for direct sound, early reflections (discrete
echoes, typically spanning approximately 20 msec),
late reflections (a denser pattern of discrete
reflections, also referred to as “cluster” in the spat ~
dialect), and the late, exponentially-decaying,
reverberation tail. These four temporal segments
-respectively depicted in red, blue, green and grey
in Figure 1 and Figure 2—- constitute an object-based
model of the room effect that is independent of the
reproduction system (loudspeaker layout or head-
phones).

When multiple sources have to be rendered
simultaneously, it is possible to share the late
sections (“cluster” and tail), in order to save compu-
tational resources.

(3) The streams are later filtered with a three-
band filter bank (low/medium/high frequency
range), and sent to the panning module that distri-
butes the signals in space (lower part in Figure 2); by
default, direct sound and early reflections are
precisely localized, while the late reflections and late
tail are spatially diffuse (decorrelated sound field
with isotropic energy distribution). The panning mo-
dule can render various spatialization algorithms,
later discussed in section 3.2.

(4) Finally, an optional module can decode/trans-
code signals for specific use cases such as Ambi-
sonics playback.
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Figure 2: Simplified space-time model used in spat~.
Top: temporal profile of the impulse response. Bottom:
schematic space-time distribution of reflections.

Thanks to this architecture and to the underlying
space-time-frequency model, the desired temporal
and directional effects can be specified irrespective
of the reproduction setup: a sound scene can be
rendered for arbitrary loudspeaker layouts, and only
the panning and decoding modules have to be
configured appropriately.

The spat5.spat~ processor can be parame-
terized by a high-level control interface’, which
allows to specify and modulate the acoustical quali-
ty of the synthesized room effect according to per-
ceptually relevant criteria [10, 11]. With four tem-
poral segments controlled over three frequency
bands, the time-frequency model of spat~ essen-
tially offers twelve degrees of freedom; the high-
level control interface provides an intuitive way to
navigate into this parameter space, and allows to
seamlessly interpolate between different acoustic
qualities.

In addition to the all-in-one spat5.spat~ object,
the toolbox also features separate externals for
each module of the framework (e.g. spat5.room-~,
spat5.pan~, spat5.decoder~, etc.), allowing for
modularity, flexibility, and granularity. Therefore,
users are not tied to the proposed space-time-
frequency model, as they can combine the low-level
components to their needs.

3. PRIMARY FEATURES

This section, without purporting to do so exhaus-
tively, will consider the principal characteristics of
the spat~ toolset.

3.1 Artificial reverberation

As mentioned in the previous section, one fun-
damental element of spat~ is its reverberation
engine. It consists of an efficient and scalable FDN
unit: the number of internal feedback channels is
adjustable, typically ranging from 8 to 16, but higher
values can also be used when high modal density or
long reverberation times are desired. For natural-
sounding effects, the FDN embeds lowpass filters
simulating air absorption. Control of the decay rate
(i.e. reverberation time) is achieved by proportional
parametric multi-band equalizers [12], usually
operating in three frequency bands, although finer
spectral resolution is also possible.

Besides algorithmic reverberation, it is also
possible to use convolution-based techniques, as
they have become widespread during the last
decades, thanks to the increase in available proce-
ssing power. spat5.conv~ is an efficient multi-
channel convolution engine based on overlap saved

7 This so-called “perceptual operator” is implemented in the
spat5.oper object.
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block-partitioned FFT algorithms [13]. The compu-
tation of the high latency blocks is handled in a
background thread in order to take advantage of
modern multi-core processors. Users can adjust the
minimum block size which offers a tradeoff between
audio latency (which can be as low as zero) and com-
putational load. spat5.converb~ is another con-
volution processor based on similar DSP algorithms.
spat5.converb~ extends spat5.conv~ by further
slicing the impulse response in four temporal seg-
ments (with adjustable lengths) according to the
spat~ paradigm (Figure 2); parametric filters are
additionally applied to each segment of the IR. One
can control the four filters either at the low-level
(gains and cutoff frequencies) or by means of the
spat5.oper high-level perceptual approach pre-
sented in section 2.

Convolution-based reverberators relie on IR ob-
tained through acoustical measurements; the
spat~ library provides a toolkit to do so, and this is
later described in section 4.1.

3.2 Panning

Panning is performed by the spat5.pan~ exter-
nal, a polymorphic object that supports a wide ran-
ge of spatialization algorithms such as:

® Traditional stereo techniques, emulating the
properties of AB, XY, or MS microphones.

®Binaural synthesis, including simulation of
nearfield effects (see section 4.2 in [8] for details).
Custom sets of HRTF can be loaded, as spat~
implements the “Spatially Oriented Format for
Acoustics” (SOFA) standard[14].
It is also possible to transcode binaural streams to
two-channel loudspeaker system with cross-talk
cancellation (CTC). Various CTC implementations
are available (see also [15] and section 4.3 in [8]),
offering a tradeoff between localization accuracy
and spectral coloration.

® Amplitude panning techniques, such as vector
base amplitude or intensity panning (VBAP, VBIP)
[16, 17] in 2- or 3D, distance-based amplitude
panning (DBAP) [18], layer based amplitude
panning (LBAP) [19], Ambisonics equivalent
panning (AEP) [20], speaker-placement correction
amplitude panning (SPCAP)[21], etc.
We have also developed a K-nearest neighbors
amplitude panner, which, similarly to DBAP is a
distance-based approach. However, it offers more
flexibility in choosing the number of contributing
loudspeakers. This number can either be set by the
user, or adjusted on the basis of a maximal dis-
tance (with the respect to the position of the virtual
source) criterion.

For triangulation of 3D layouts — as required e.g.
for VBAP — spat~ uses robust implementation from
the ghull library [22], and it is further possible to
introduce imaginary loudspeaker(s) (see for instan-
ce chapter 3in[23]).

Additionally, users can control the spread (per-
ceived width) of the virtual sources. This is achieved
through multiple-direction amplitude panning
(MDAP) [24] wherein several virtual sources are dis-
tributed around the main panning direction.

® Wave-field synthesis (WFS) [25], currently restri-
cted to linear loudspeaker arrays.

® Higher-order Ambisonics (HOA) [23, 26], which
is further detailed in the next paragraph 3.3.

Note also that arbitrary loudspeaker layouts can
be monitored over headphones, by using
spat5.virtual speakers~ which relies on a virtual
speakers paradigm to “down-mix” any multicha-
nnel stream into a binaural stereo track preserving
the spatial image of the original sound scene.

3.3 Higher-Order Ambisonics

Ambisonics technologies have recently gained
great interest from both the academic world and
the media industry. We have consequently inte-
grated in spat~ state-of-the-art tools to leverage
the HOA production workflow. Besides classical
Ambisonics encoder (spat5.hoa.enco-der~), this
notably includes:

e Tools for converting between HOA conventions,
such as spat5.hoa.sorting~ and spat5.hoa.con-
verter~. In particular, the various normalization
schemes in used for HOA (FuMa, MaxN, SN3D,
N3D, etc.) are a frequent source of confusion for
the users, and they may lead to compatibility
issues between rendering tools. A formalization
effort has been proposed [27], and the spat~
documentation has been significantly improved
in order to clarify the impact of normalization
schemesin the Ambisonics production workflow,
and to ease interoperability.

e State-of-the-art HOA decoders, supporting sam-
pling decoder (SAD), mode-matching (MMAD)
[26], energy-preserving (EPAD) [28], All-Round
Ambisonic Decoding (All- Rad) [29], Constant
Angular Spread (CSAD) [30], AIIRAD+ [31], most
VBAP-like Ambisonic decoder (MVLAD) [31], etc.
spat5.hoa.decoder~ can further perform phase-
matched dual-band decoding [32], with adjus-
table crossover frequency, and in-phase or max-re
optimizations can be applied in each sub-band.



e A-to-B format encoders that transcode micro-
phone signals into the Ambisonics domain. First
order microphones (such as Sennheiser Ambeo,
Soundfield, Tetramic, etc.) as well as higher-order
compact spherical arrays (e.g. MH Acoustics EM-
32 or ZyliaZM1) are supported.

e A number of frequency-independent Ambisonic
effects (FX) that can globally transform the sound
field in a linear or non-linear way. This encompa-
sses: spat5.hoa.rotate~, performing 3D rotations
(yaw, pitch, roll) of the sound field; spat5.hoa.
mirror ~, re-mapping the sound scene with re-
gard to planes of symmetry; spat5.hoa.blur~ is a
tool for manipulating the “spatial resolution” of
an encoded HOA field. It allows to continuously
vary the order of the HOA stream (i.e. simulating
fractional orders), while preserving the overall
energy [33]. It can be used to adapt the order of
existing content, or as a creative FX (typically by
varying the “blur” factor dynamically); spat5.hoa.-
focus~ is another effect operating in the HOA
domain. Inspired from [34], it allows to synthesize
virtual directivity patterns and apply them to a
HOA stream. Orientation and selectivity of the
pattern(s) can be edited in an intuitive graphical
user interface (Figure 3). The tool is most useful
during post-production stage, i.e. when applied
to recorded HOA materials, as it allows to direc-
tionally “zoom” into the sound scene; spat5.-
hoa.warp ~ which distorts the spatial image with
respect to a given direction, e.g. squeezing or
stretching the content towards or away from the
horizon. The warping processor somehow ex-
tends first order dominance effect[35]to HOA.

e Anumber of other tools operating in the HOA do-
main: spat5.hoa.beam~ applies beamforming
with adjustable beampattern and steer direc-
tion(s) in order to extract mono signals from the
sound scene; spat5.hoa.scope~ is a metering
interface, displaying in 2D or 3D the RMS or peak
value of the HOA stream sampled on a t-design
grid [34]; spat5.hoa.intensity ~computes the
sound inten-sity vector [36], from which is derived
a realtime estimate of the direction-of-arrival
(DOA) and diffuseness of the sound field.
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Figure 3: spat5.hoa.focus interface for synthesizing
virtual patterns in the HOA domain.

4. OTHER FEATURES

4.1 Acoustical measurements and calibration

Spat5.smk~ is a tool for measuring the impulse
response of linear time-invariant systems, such as
concert halls, using the swept-sine technique [37].
After configuration of the sweep signal (duration,
waveform, frequency range, etc.), the object per-
forms the measurement of the system (which can be
multichannel), deconvolves the raw signals, and sa-
ves the data as well as relevant metadata to disk.
After each measurement, the object estimates in
real-time various criteria (signal-to-noise ratio, har-
monic distortion ratio, reverberation time, etc.) for
controlling the quality of the measure. In addition to
that, spat5.smk~ can be linked to other acoustical
tools such as spat5.edc which computes and dis-
plays the energy decay curve of the IR, or spat5.ir.-
analysis which calculates a number of standard
acoustical criteria (clarity, central time, early decay
time, etc.).

The spat~ toolbox also proposes tools for cali-
brating a reproduction system, a crucial step when
dealing with panning and spatialization on irregular
loudspeaker layouts. spat5.align~ performs delay
and level alignment of an arbitrary set of loud-spea-
kers, according to their geometrical coordinates.
Similarly, spat5.calibrate.delay~ and spat5.-
calibrate.gain~ can be used to quickly and auto-
matically calibrate a loudspeaker setup and adjust
the respective gain and delay of each channel. Un-
like spat5.align~, these objects rely on in-situ
acoustical measurements.

4.2 Geometrical operations

The production of spatialized media most often
involves the manipulation of geometrical data, be it
for the configuration of the reproduction system or
for more creative purposes. In particular, multi-
channel composition frequently uses the paradigm
of spatial trajectories, wherein motions of sound
sources are apprehended as paths, curves, geome-
trical patterns, etc. Therefore, the spat~ library
comes with a large set of utility tools to generate,
transform, and manipulate geometrical data e.g. 2D
or 3D coordinates. These externals facilitate stan-
dard operations such as translation, rotation, sca-
ling, mirroring, distance normalization, calculation
of nearest neighbors, barycenter, convex hull, De-
launay triangulation, etc.

In addition to that, spat5.grids can generate a
wide range of static distribution of points in space,
according to various mathematical constraints.
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In contrast, spat5.trajectories produces dynamic
(in motion) trajectories, based on parametric equa-
tions of curves (e.g. ellipse, cycloid, Moebius pa-
tterns, etc.). A large set of predefined equations is
available, of which the user can change speed and
the properties. Finally, spat5.simone is a creative
software tool that metaphorically uses the concept
of vector field in order to produce fluid, lifelike, mo-
tions of autonomous agents. A vector field is gene-
rated as a grid of arrows, each with a given length
and direction (see Figure 4). When objects or “parti-
cles” are thrown into this field, they become anima-
ted, and they navigate through the domain, under
the influence of the vector field (which can also

dynamically vary). See [38] for additional details and
examples.
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Figure 4: Graphical user interface of spat5.simone. In
this example, the vector field has a vortex-like shape.
The “strength” of each arrow is color-coded, and it is
mapped to the speed/acceleration of the particles. In
this example, three trajectories are generated, and
depicted by the red, blue, and black dots.

4.3 Quaternions

With the democratization of VR devices, spat~ is

more and more used for rendering audio scenes in
immersive multimedia applications, typically
presented with binaural over headphones. These
virtual environments require the manipulation of 3D
geometrical data. In particular, controlling the
orientation of entities (either audio objects or the
listener in the scene) is a frequent source of con-
fusion for the users, as various conventions are
being used (and they are not intercompatible). To
alleviate this problem, we have developed a library

of externals for the manipulation of quaternions,
Euler angles, and 3D rotation matrices. These tools
allows for converting between the different repre-
sentations. The spat~ audio engines (for instance
spat5.binaural~) can be controlled by either qua-

ternions or Euler angles, therefore facilitating the
cross-operability with VR SDKs.

4.4 Panoramix

Panoramix is a full-featured versatile work-
station for sound spatialization and artificial rever-
beration, primarily intended for 3D mixing and
post-production scenarios. The tool has been pre-
sented in previous publications [39, 40]. It offers
essentially the same functionalities as spat5.oper
and spat5.spat~, however with an ad-hoc front-
end (see Figure 5), especially designed for mixing
heterogeneous multichannel content, seamlessly
combining object-, scene-, and channel-based pa-
radigms.

Even though it is distributed separately as a
standalone application, panoramix is completely
built upon modules included in the spat~5 pack-
age. It is therefore possible to integrate spat5.pa-
noramix~ in larger Max projects (also in Max for
Live devices), to cope with non-conventional mi-
xing scenarios or to better communicate with other
multimedia tools. The interested reader can refer to

[39, 40]for further details about the design and usa-
ge of panoramix.
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Figure 5: Overview of the spat5.panoramix mixing
workstation.

4.5 Object-based audio

In recent years, there has been renewed interest
in the object-based paradigm for producing and
broadcasting multichannel audio. Several inter-
exchange formats have proposed; in particular, the
Audio Definition Model (ADM)® is an open
standard, published by the ITU and EBU’, for the
description of object-oriented media encapsulated

8 ITU-R BS.2076 (ADM Audio Definition Model)
https://www.itu.int/rec/R-REC-BS. 2076/

9 International Telecommunication Union and European Broadcasting Union



in a Broadcast Wave Format (BWF) container. ADM
prescribes a set of metadata (such as time-varying
position and gain of audio objects) encoded in a
XML chunk. spat~is one of the first toolbox offering
a complete production chain for BWF-ADM files:
spat5.adm.record~ allows for the creation of BWF
file with embedded spatialization metadata, and
spat5.adm.renderer~ copes with the real-time ren-
dering of ADM media over an arbitrary repro-
duction setup (headphones or loudspeaker layout);
other externals also allow to handle objects' inte-
ractivity. These externals are presented in greater
details in [41]. Note however that only a subset of
the ADM specifications is currently supported
(although covering most typical usages), and a tigh-
ter integration of the format within the spat~ archi-
tecture remains to be done (e.g. direct import/ex-
port of ADM files from processors such as
spat5.spat~). This is part of on-going development
work.

4.6 Multichannel tools

When working with massively multichannel data,
users often face inappropriate or cumbersome
tooling, even for basic operations. The spat~
library has thus been supplemented by a number of
simple — yet efficient - tools for dealing with these
common tasks. It is beyond the scope of this article
to examine them exhaustively and we just mention
here a few examples:

spat5.sfplay ~ and spat5.sfrecord ~ supersede
the Max built-in sfplay~ and sfrecord~ objects:
while they exhibit similar functionalities and
messaging, they are especially designed for
massively multi-channel streams. They can easily
handle hundreds of audio channels, and they
support a wide range of audio formats, in particular
WAV RF64 which allows the usual 4GB file size limit
to be overridden.

Mixing and producing spatial audio usually
requires multichannel FX, therefore spat~ comes
with a tool-chain of processors such as compressor,
limiter, noise gate, graphic EQ, parametric EQ, etc.,
especially optimized for applications with high-
channel count. Facilities for multichannel routing
and signal matrixing are also provided, comple-
menting the built-in Max features.

4.7 Time Code

Spat~ is also frequently used for audio-visual
productions; in such contexts, it is necessary to
synchronize the audio and video streams. One of
the most popular technique to do so, is to use a
Linear Timecode (LTC) [42] which encodes SMPTE
frames, and is transmitted as a longitudinal audio
signals.

Unfortunately, this standard is not natively su-
pported in Max. We have therefore developed tools
for receiving (spat5.ltc.decode~) and generating
(spat5.ltc.encode~) linear time codes.

Furthermore, the spat5.ltc.trigger ~external can
be used as a cue manager as it triggers actions at
specific (user-defined) time stamps; the temporal
granularity is rather low (typically 30 fps~33 millise-
conds), but sufficient for most spatialization use
cases.

4.8 Control interfaces

The spat~ package contains more than thirty
graphical user interface (GUI) control objects. Some
of them are particularly tied to a given processor,
e.g. we have mentioned before spat5.oper (see Fi-
gure 6) the control interface bound to spat5.spat~.

On the other hand, some of these GUIs are
completely generic, and highly customizable, and
they can be employed to control a broad range of
processors (not necessarily from the spat~ library)
in various contexts.

As will be discussed in Section 5, user-friendly
mechanisms are offered in order to edit (via Max
messages), store, recall, interpolate, the parameters
exposed by these GUIs. The graphic components
can be temporarily disabled —-while maintaining all
other functionalities alive— in order to optimize per-
formances. This is especially useful during show-
time, when only minimal graphical feedback is
needed/wished.
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Figure 6: Graphical user interface for spat5.oper
(high-level perceptual control for spat~).
Perceptual factors for controlling room effect (left);
filtering (centre); 2D view of the sound scene (right).
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5. INTEGRATION IN MAX

5.1 OSC syntax

Starting with version 5 of spat~, all external
objects natively support the Open Sound Control
(OSC) [43] protocol and syntax. The rationale
behind this choice has been explainedin[7].

At the Max interface level, OSC messages are
converted to/from Max native format: atoms. Such
conversion is trivial as atoms and OSC arguments
have very similar data type (int, float, symbols, etc.).
OSC bundles are transmitted as FullPacket that only
convey a pointer to a memory address (similarly to
Max dictionaries). This allows for the very efficient
transmission of large amount of data (the Max
scheduler service is triggered only once per bundle,
and not for each individual message contained in
the bundle).

The syntax we have adopted is inspired from the
REST (Representational State Transfer) style [44]. For
instance, to control the Cartesian position of a
sound source in spat~5, one can use the following
message:

/source/1/xy [float][float]

External objects support pattern matching seman-
tics, which facilitate the grouping of multiple ele-
ments:

/source/*/mute [boolean]

/source/[2-5]/mute [boolean]

/source/{3,6,7}/mute [boolean]

Routing and dispatching OSC address patterns
in Max may require the manipulation of regular
expressions (regexp), which is usually cumbersome
and inefficient; we have thus developed a toolbox
of handy objects (approximately 35 externals) to
ease usual operations (see Figure 7).

The most frequently used OSC address patterns
are stored in a hash table at compile-time. This
avoids CPU-intensive string operations during
runtime, and guarantees efficient dynamic lookup
(similar to Max static symbol tables).

5.2 Inter-operability and compatibility

One potential advantage of the OSC interface is
that users can benefit from existing tools and libra-
ries, such as:

e The odot package [45], which provides a powerful
expression language for the manipulation of OSC
bundles in a variety of programming paradigms.
Typically, odot might be used for the algorithmic
generation and transformation of spatialization
data such as trajectories.

the OSC bundle transits

as a “FulPacket” collect OSC messages to

bt bo bundied togother

[ R A L) | /1/azim 204 spat5.osc.view can

iname ‘violin' visualize OSC
Nimute 0 messages or bundles

r2ixy253
12iname ‘celio’

FullPacket 132 105553124566016 || spat5.osc prepend /source add pattern in front of input

reverse the OSC
address pattern

tum an
OSC bundie
into a Max
dictionary

Isource/1/azim 204
Isource/1/name ‘violin"
Isource/1/mute 0

=

Isource/2/name ‘cello’

Jazim/1/source 204
/name/1/source ‘violin"
Imute/1/source 0
Ixyl2/source 2.5 3

display the /source/1/azim: 204.
/source/1/name: violin

match an OSC address
pattern, and accordingly
dispatch o the proper outiet
/source/1/mute: 0

/source/2/xy: 250 3.00
/source/2/name: cello

Isource/1/name ‘violin®
Isource/2/name ‘cello’

Isource/1/azim 204
Isource/1/name ‘violin'
Isource/1/mute 0

turns a Max
e

into an OSC

bundle
FullPacket 172
105828000392182

Isource/1/azim 204
Isource/1/name ‘violin'
Isource/1/mute 0
Isource/2ixy 2.53
Isource/2/name ‘cello’ Imute 0

trim the first two elements of
the OSC address pattemn

spat5.osc.trim 2

Figure 7: Examples of usual OSC manipulations.
OSC bundles are conveyed (as FullPacket)
through the blue-colored patchcords.

e JoscA[46](and its successor OSCar), a DAW plugin
that allows the transmission of automation data
over OSC. Although ToscA is designed as a
completely generic tool, it has been thought,
from its inception, for the remote control of
object-based spatialization processors such as
spat—~.

® JanniX [47], 07 [6], Antescofo [48], Vezér'®, Qlab",
Holo-Edit [49], etc., are other examples of OSC
compatible software tools with powerful features
for generative compositional processes.

10 https://imimot.com/vezer/
11 https://glab.app



5.3 Usability

With very few exceptions, spat~5 external
objects do not use Max built-in attributes. As a con-
sequence, they cannot benefit from Max built-in
features such as the inspector or automatic docu-
mentation hints. We have thus introduced ad-hoc
mechanisms that serve as a replacement: each ob-
ject has its own status and help window (see Figure
8). The status window displays the current state of
the object, similar to the Max inspector; it comes
with a search filter, and one can copy/paste
messages from this window to the patcher. The help
window displays a text description of all supported
OSC messages. Reference pages are also proposed
and can be accessed via the standard Max docu-
mentation browser.

The state of each object is internally represented
as an OSC bundle. Convenient mechanisms are
offered to export/import this bundle, either as
human-readable file on disk, or as in-memory snap-
shot. This provides a simple process for creating,
recalling, and even interpolation presets. The
bundle can also be stored (i.e. embedded) into the
host patcher, or via the Max snapshots window
("Parameter Enable Mode"); in these cases, the
OSC bundle is converted to a binary blob, and sa-
ved within the patcherfile.

o @ status window [ spat5.viewer ]

Q @D we | w0 @D @S s

Isource/number [int] : set the number of sources

Isource/findex)/visible [boolean) : set the visibility of the i-th source
isource/findex]/editable [boolean) : set the editability of the ith source
Isource/findex]/select [boolean] : selects the i-th source

Jsource/findex]/color [color] : set the color of the i-th source
Isource/findex)/proportion [number] : set the proportion the ith source.
Jsource/findex}/circularconstraint [boolean] : set the circular constraints for the i-t
Isource/findex)iabel [string) : set the label for the i-th source
Isource/findex}fabel/visible [boolean] : set the visibility for the label for the -th s.
Isource/findex)label/color [color] : set the color for the label for the i-th source
Isource/findex)abelfjustiication [string) : set the text justification for the label for...
Isource/findex)/vumeterivisible [boolean] : set the visibiity for the vumeter for the..
Jsource/findex}ievel [number] : set the vumeter level for the i-th source

Isource/1/select 0
Isource/1/circularconstraint 0

Isource//orientation 0.0 0 1
Isource/1/proportion 0.07
Isource/1/color 0.490196 10 1
Isource//coordinatesivisible 1
Isource/1/label '1'
Isource/1/labelvisible 1
Isource/1/labelicolor 00 0 1
Isource/1/labeljustification ‘centred'
Isource/1/vumeter/visible O
Isource/1/vumeterflevel -60
Isource/1/aperture/visible O Jsource/findex}/xy [number]inumber] : set the position of the i-th source
Isource/1/aperture/color 111 1 Isource/findex]/x [number] : set the position of the i-th source

Isource/2/visible 1 [number] : set the position of the i-th source

Isource/2/editable 1 Isource/findex)/z [number] : set the position of the i-th source

Isource/2select O i ) set the position of the i-th source
Isource/2circularconstraint 0 inumber) : set the position of the i-th source

Figure 8: Status window (left) and help window
(right) for spat5.viewer.

5.4 Multichannel audio streams

Introduced with Max version 8, MC —acronym for
“Multi-Channel”~ is a new feature that, among
other things, enables the use of multi-channel signal
patchcords, conveying an arbitrary number of cha-
nnels.spat~5 has been one of the first toolbox
made compatible with MC as this tremendously
eases the development, readability, and mainte-
nance of massively multichannel applications for
high-density loudspeaker arrays, such as presented
in[50].

This feature is disabled by default, for backward
compatibility with previous Max versions. It is simply
enabled via the @mc attribute of spat~externals.
spat~objects support an arbitrary number of
input/output audio channels, and the only limiting
factor is the available computing capacity of the
host processor.

5.5 Scheduling and thread-safety

Most audio software applications, including Max,
involve multiple concurrent threads such as the
audio thread, message thread, high-priority events
thread, etc. Proper communication and synchroni-
zation between these processes, under real-time
constraints, is essential for the integrity and efficien-
cy of the program. spat~ uses a thread-safe non-
blocking FIFO'2 queue (detailed in [51]) wherein
incoming events (OSC messages or bundles) are
stored, and later processed, in due time and in the
appropriate thread.

For DSP objects, the FIFO is dequeued in the
audio thread, at the beginning of the rendering
callback (see Figure 9). Such behavior is similar to
the Max scheduler in audio interrupt mechanism. By
default, all spat~5 audio objects operate as such,
regardless of the overdrive or interrupt settings of
the host application. Admittedly this strategy does
not guarantee perfectly accurate timing, as events
might be delayed until the beginning of the next
audio callback. However, such temporal granularity
is believed to be sufficient for most sound spa-
tialization applications. When a faster automation
rate is needed, dedicated spat~ externals suppor-
ting signal-rate (i.e. sample-accurate) control can be
used (see e.g. spat5.pansig~).

incoming message
events . . i i ) S thread

il A

audio
rendering

host
block size

il B wBE e

message l
processing

audio
thread

audio
rendering

audio
rendering

audio audio audio
callback callback callback

audio
callback

Figure 9: Scheduling of events according to the
scheduler in audio interrupt procedure.

12 First-In First-Out
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6. CONCLUSION

We have presented a broad overview of the
spat~5 framework for sound spatialization and
reverberation, implemented in the Max environ-
ment. The library contains a modular, flexible,
scalable, comprehensive set of more than 250
processors, covering a large scope of multichannel
multimedia activities. The toolkit is accompanied by
rich documentation and tutorials.

Driven by research outcomes, technological

innovations, and artistic challenges, spat~ remains
an ever-evolving environment.
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The short-term prospects notably focus on the
extension of the framework to 3D spatial room
impulse responses manipulated in the HOA do-
main, and the integration of an hybrid rever-
beration engine allowing to seamlessly combine
algorithmic and convolution-based approaches.
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