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Abstract 14 

Mass-movements in cold and Polar climates often involve permafrost and ice and 15 

hence these two phenomena are recurring themes throughout this chapter. We 16 

consider specifically mass movements in glacial, periglacial and paraglacial settings. 17 

For each environmental setting we describe the types of mass movement that have 18 

been documented in the literature, describing the current research foci and remaining 19 

challenges. We specifically highlight that mass-movements in cold and Polar climates 20 

are particularly sensitive to climate change, because of the involvement of permafrost 21 

and ice in their triggering and dynamics and therefore we may anticipate an increasing 22 

frequency and increased hazard from these phenomena in the future in response to 23 

unprecedented rates of environmental change.  24 
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1. Introduction 31 

Mass movement refers to the processes of downslope movement of rock, debris 32 

and soil under the influence of gravity (Crozier, 2002; Hutchinson, 1968). Mass 33 

wasting, mass movement, slope movement or slope failure are commonly used as 34 

synonyms. Another commonly used term for discrete slope movements is “landslides” 35 

(Crozier, 1989), and these movements are set apart from processes of subsidence 36 

and creep that usually lack discrete failure boundaries. Mass movements are generally 37 

divided into slow and rapid mass movements. Slow mass movements evolve over 38 

extended periods of time from months to decades or longer, such as deep-seated 39 

gravitational slope deformations (e.g., Dramis and Sorriso-Valvo, 1995). They also 40 

include phenomena like solifluction, a process that originates from the action of freeze–41 

thaw cycles that induce downslope displacement in general at a rate of at most 42 

1 m/year of soils in cold environments, where vegetation is lacking or sparse (e.g., 43 

Andersson, 1906; Ballantyne and Harris, 1994; Washburn, 1980). In contrast, rapid 44 

mass movements usually refer to high-magnitude, low-frequency processes that can 45 

be extremely fast moving (up to the scale of 5 m/s; Hungr, 2007).  46 

Mass movements are classified in a number of ways, for example, according to the 47 

type of material, the type of movement, the volume of displaced material, and the 48 

extent of the material’s spreading area (Cruden and Varnes, 1996; Hungr et al., 2014; 49 

Varnes, 1978). Varnes (1978) developed a classification system for slope movements, 50 

based on five possible types of movement (fall, topple, slide, spread and flow) and on 51 

the type of material (rock, debris and earth). In Varnes' (1978) classification, slow 52 

processes such as subsidence, creeping and solifluction are not accounted for, and 53 

are considered by other authors (Sidle and Ochiai, 2006). Here, we adopt the updated 54 

Varnes landslide classification from Hungr et al. (2014), where the most significant 55 



changes from the initial Varnes’ version are: i) the use of textural classes to replace 56 

the term “earth”, which has no standard definition in either geological or geotechnical 57 

material description schemes; ii) the reintroduction of “ice” as type of material, because 58 

many destructive mass movements on mountain slopes contain varying proportions of 59 

ice; iii) the introduction of slow mass movements under the movement type of “slope 60 

deformation”. 61 

This chapter will specifically describe and discuss mass movements in cold and 62 

polar environments. We divide this chapter into three sections which consider the 63 

following geomorphological and environmental settings: glacial, periglacial and 64 

paraglacial. Glacial environments are those where the accumulation of ice and snow 65 

is favoured to such an extent that bodies of ice accumulate on hillslopes or even flat 66 

ground and then flow en masse (glaciers or ice caps). 67 

Periglacial environments are those where 1) the process of ground-freezing and 68 

thawing is dominant (Tricart, 1956); 2) permafrost - defined as soil or rock with a 69 

temperature below 0°C continuously for >1 year (Dobinski, 2011; French, 2007; Muller, 70 

1945; Péwé and Brown, 1973; Subcommittee, 1988; Washburn, 1980) - is present. 71 

Paraglacial environments are non-glacial and landforms in this type of environments 72 

are formed during and after the deglaciation (Slaymaker, 2004; Church and Ryder, 73 

1972). The paraglacial processes in non-glacial environments are though directly 74 

influenced by glaciation (Church and Ryder 1972). 75 

In each section we will describe the types of mass movement that have been 76 

documented in each environment, describing their general geomorphic 77 

characteristics, behaviour/dynamics, and triggering factors. We will highlight 78 

remaining open research questions, or key areas of active research. Finally we discuss 79 

the role of climate change in modulating the hazard posed by the mass movements in 80 

these three environments. 81 



2. Rapid Mass Movements in glacial environments 82 

Mountainous cold and polar environments form steep-slope environments 83 

conducive to mass failures and to the presence of glaciers, hence it is not surprising 84 

that the two phenomena interact. There are four broad configurations of this 85 

interaction: 86 

• Landslides can fall on top of glaciers without entraining a significant portion 87 

of the glacier itself so called “supra-glacial landslides”. 88 

• Landslides can fall on top of glaciers and in so doing entrain a significant 89 

portion of the glacier ice, resulting in rock-ice avalanches. 90 

• Glaciers themselves can fail catastrophically resulting in ice avalanches. 91 

Such ice avalanches can themselves entrain debris resulting in rock-ice 92 

avalanches.  93 

• Glaciers can advance over and remobilise landside deposits (e.g., Burki et 94 

al., 2009; Cook et al., 2013). Although glaciers could be considered as a type 95 

of mass movement, they are specifically discussed in the “Cryospheric 96 

Geomorphology” volume of this encyclopedia, and hence this remobilisation 97 

will not be detailed further in this chapter. However, this type of reworking is 98 

important in the context of supraglacial landslide deposits and will be briefly 99 

mentioned in that context. 100 

In the following sections we will discuss first supra-glacial landslides, then ice and 101 

rock-ice avalanches.  102 

 103 

2.1 Supra-glacial landslides 104 

Spectacular examples of large-scale rock avalanches falling onto glaciers are 105 

documented in the literature, mainly from the United States (Post 1965, Shreve 1966, 106 



Dufresne et al. 2019, Crandell & Fahnestock 1965), the Himalayas (Hewitt 1988, 107 

2009a) and the New Zealand (Chinn et al. 1992). The main characteristic of such rock 108 

avalanches is the exceptionally long distances reached by the deposits over the ice 109 

surface. Several large-scale mass movements which have fallen onto glaciers during 110 

recent decades have been described and an international dataset with fall height, 111 

runout and volume has been developed (e.g. Schneider et al. 2011, Deline et al. 112 

2015a). 113 

Landslides falling onto glaciers have deposits that differ from their counterparts that 114 

fall onto other terrain types due to the interaction with the ice. Most notably, their runout 115 

can be a lot greater than other landslides (e.g., Evans and Clague, 1994; Pirulli, 2009; 116 

Sosio et al., 2012). They tend to spread out, forming sheets of debris, which cover 117 

large areas (Figure 1; e.g., Delaney and Evans, 2014). Tongue-shaped, multi-lobed 118 

margins (Dufresne et al., 2019; Shreve, 1966; Shugar and Clague, 2011) and 119 

longitudinal furrows/ridges/bands (e.g., Dufresne and Davies, 2009) are other 120 

characteristics associated with these landslide deposits (Figure 1). A greater 121 

fragmentation of the rockmass is observed compared to non-glacial slides (Delaney 122 

and Evans, 2014). These observations are linked to the fact that the falling debris 123 

moves over a low-friction surface. Details on how the ice and snow incorporated in the 124 

landslide affect the physical processes which determine the landslide’s motion are 125 

complex and debated (Pudasaini and Krautblatter, 2014; Schneider et al., 2011; Sosio 126 

et al., 2012). It should also be noted that not all mass wasting onto glaciers causes 127 

excessive runouts or distinctive deposits (e.g., Deline, 2009). 128 

Similar to landslides in general, the triggers for such landslides are linked to a wide 129 

variety of factors, including seismic events (Shreve, 1966) and rockwall permafrost 130 

degradation (Coe et al., 2018), but of particular interest is the potential link with glacial 131 

retreat (see below). 132 



 133 

  134 

Figure 1: Examples of supraglacial rock avalanches. (a) On February 16, 2014 135 

a rock avalanche detached from Mount La Perouse in Glacier Bay National Park, 136 

Alaska, USA. Relief from head scarp to toe is about 1770 m. Photo taken on March 6, 137 

2014 by Marten Geertsema. (b) The Morsárjökull rock avalanche in Iceland, which 138 

occurred on 20th March 2007. Width of the deposit is ~350 m and the relief from head 139 

scarp to toe is ~640 m. Photo taken in July 2007 by Matthew Roberts. 140 

 141 

Snowmelt is often one of the triggers of the ground-saturation that leads to 142 

landslides (e.g., Moreiras et al., 2012), but the influence of the incorporation of snow 143 

itself into the body of landslides is less-well studied. Yamasaki et al. (2014) found that 144 

the incorporation and propagation over deep snow alone can increase the mobility of 145 

a landslide. Dufresne et al. (2019) reported that that passive sliding on snow atop of a 146 

glacier caused the Lamplugh rock avalanche to slide “silently”, or aseismically. This 147 

mechanism has been inferred to be the origin of many “silent” supraglacial landslides 148 



not detected by seismometers but instead in optical remote sensing (Smith et al., 149 

2020). 150 

The attempt to understand the dynamics of these landslides is partly driven by a 151 

need to understand the long runout of these landslides, as this can pose hazard to 152 

downslope communities and infrastructure, particularly if the landslide debris falls into 153 

the sea or terminal lake (e.g., Dufresne et al., 2018 a,b; Hubbard et al., 2005).  154 

Understanding the magnitude-frequency of this type of landslide is important for 155 

understanding their role in landscape evolution at geological timescales, yet this is 156 

remarkably hard to quantify as deposits are usually unrecognisable in the landscape 157 

due to glacial reworking (e.g., Schleier et al., 2015). Debris that falls in the 158 

accumulation zone can be hidden by snowfall then rapidly sequestered into glaciers 159 

on the order of months (e.g., Dunning et al., 2015; Smith et al., 2020). Hence, deposits 160 

that fall on the ablation zone are transported down-glacier and contribute to the glacial 161 

deposits which are reworked beyond recognition at geological timescales. Some 162 

success has been obtained by monitoring seismic signals (e.g., Ekstrom and Stark, 163 

2013), but this only gives a snapshot of the situation at the present day. These 164 

landslides are on the continuum in our understanding of the role of mass movements 165 

in landscape evolution during glacial retreat (see Section 4 on mass movements in 166 

Paraglacial environments) and it is still an open question as to whether paraglacial or 167 

supraglacial mass movements play a greater role in shaping what we recognise today 168 

as the typical post-glacial landscape. 169 

These landslides also play a role in conditioning the behaviour of glaciers and have 170 

therefore been studied by glaciologists in order to understand glacial response to 171 

changing climate and the sedimentary deposits (e.g., Reznichenko et al., 2011). 172 

Debris in the ablation zone can alter glacial dynamics by shutting off ablation (e.g., 173 

D’Agata and Zanutta, 2007), or accelerating it. Debris can accelerate the glacier 174 



motion (e.g., Shulmeister et al., 2009) and provoke surging behaviour (e.g., Hewitt, 175 

2009a). Equally, thick isolating debris can decelerate, or stall glacial movement. 176 

Supraglacial debris inputs by landslides can confound attempts to use moraines as 177 

markers of glacial advances/retreats and therefore limit their use as climate markers. 178 

This is because they confuse the sedimentary record via the introduction of significant 179 

lags between temperature changes and recorded “events”. The dynamic interplay 180 

between debris and ice within the glacial system is an active area of research and the 181 

role of mass movements in this interplay is yet another piece to add to the puzzle. The 182 

key drivers motivating research in this field are: understanding glacial meltwater 183 

generation for its contribution to sea level change, hydroelectricity generation and as 184 

a resource for potable water. Generation of glacial meltwater and sediment can also 185 

generate hazardous process-linkages and pose significant risk to infrastructure and 186 

habitation. 187 

 188 

2.2 Ice, Rock-ice and ice-rock avalanches 189 

2.2.1 Snow, ice avalanches and slushflows 190 

Snow and ice avalanches are a common type of rapid mass movement in cold and 191 

polar environments and are a critical driver of alpine glacial accumulation (e.g., Price 192 

et al., 2019).  They take many forms because they can incorporate materials with a 193 

wide range of material properties (powder snow, sintered snow, ice, liquid water, rocks, 194 

debris, mud…) in varying proportions and can include phase changes e.g. from ice to 195 

water. From a geomorphology point of view many of these mass movements are 196 

transient as they do not supply significant sediment volume. Avalanche debris cones 197 

and strewn boulders are landscape elements that indicate the dominance of 198 

avalanches in downslope sediment transport (Figure 2b,c; e.g., Decaulne and 199 



Sæmundsson, 2010; Jomelli and Francou, 2000; Luckman, 1992). Research into snow 200 

avalanches is mainly driven by a desire to understand the risk and design engineering 201 

solutions to mitigate it. 202 

 203 

Figure 2: Examples of slush flow and avalanche deposits. (a) Freshly deposited 204 

slushflow from the Mt. Bleikkollubólstindur above the farm Hof in SE, Iceland. Photo 205 

taken by Brynja Kristjánsdóttir 2021. (b) Aerial view of two chutes in the Hólsádalur 206 



valley, northern Iceland, which host frequent snow avalanches whose deposits are 207 

found on the opposite side of the stream in the valley. The viewpoint of panel c is noted 208 

on the figure. Credit Loftmyndir ehf. (c) Field view of avalanche deposits within which 209 

pebbles from the stream below are found. A person is standing atop the deposits for 210 

scale. Photo taken by Þorsteinn Sæmundsson 2016. 211 

 212 

Slush flows are mass movements that behave like debris flows (described fully in 213 

Section 3), but contain a significant amount of snow or ice (e.g., André, 1990; Decaulne 214 

and Sæmundsson, 2006; Elder and Kattelmann, 1993; Gude and Scherer, 1995; Hétu 215 

et al., 2017; Larocque et al., 2001; Nyberg, 1989; Pérez-Guillén et al., 2019). They are 216 

characterised by levees and lobate tongues (Figure 2a) and have a longer runout than 217 

dry avalanches. They are capable of transporting clasts up to metres in size, although 218 

some slush flows contain only snow and are usually called “slush avalanches” or “wet 219 

avalanches” (Figure 2a; e.g., Bartelt et al., 2012; Eckerstorfer and Christiansen, 2012). 220 

Slush flows are triggered in a similar way to debris flows, by saturation of the sliding 221 

mass by snowmelt or precipitation. There has not yet been any research that permits 222 

the distinction of slush flow and debris flow deposits in the sedimentary record 223 

meaning their impact on the landscape at geologic timescales is broadly unknown. 224 

Slush flows are generally studied alongside snow avalanches or debris flows and form 225 

part of a spectrum of processes that can pose hazard to populations and infrastructure 226 

in steep mountainous environments. 227 

 228 

2.2.3 Ice, ice-rock and rock-ice avalanches 229 

Mass movements in glacial areas can originate from the glaciers themselves, the 230 

hillslopes, or both. Once initiated these mass movements can further interact with 231 



downslope debris, snow, ice or rock causing complex events that can be hard to 232 

classify uniquely (e.g., Petrakov et al., 2008). 233 

There have been three recent well-reported cases where large portions of glaciers 234 

detached to form rapid mass movements (Evans et al., 2009a; Falaschi et al., 2019; 235 

Gilbert et al., 2018; Kääb et al., 2018; Tian et al., 2017). For example, the collapse of 236 

two nearby glaciers in the Aru range in Tibet was widely reported in the media because 237 

of the remarkable visibility in satellite images (Figure 3a). However, these mass 238 

movements leave very little geomorphological evidence in the landscape, because 239 

their main constituent is ice which is rapidly ablated in the relatively warm locations 240 

where the deposits are laid down. Hence, the frequency of such failures in the geologic 241 

record is unknown. The limitation to a handful of present-day cases means that, 242 

although these types of failure pose considerable risk, there are many open questions 243 

as to how they are triggered. 244 



 245 

Figure 3: (a) Pléiades 3D rendering of the two glacier collapses in the Aru 246 

Mountains, Tibet with kind permission of Etienne Berthier at the CNRS. The fan in the 247 

foreground is ~2 km across. Image credit CNES Pléiades, Airbus Defence and Space.  248 

(b, c and d) Mt. Kazbek in Southern Russia before and after a hanging glacier 249 

collapsed from the slope of Mt. Dzhimarai-Khokh onto the Kolka Glacier which 250 



triggered an avalanche of ice and debris that went over the Maili Glacier terminus then 251 

slid more than 24 km burying villages in North Ossetia on 20th September 2002. (b, c) 252 

False-colour images from the Advanced Spaceborne Thermal Emission and 253 

Reflection Radiometer (ASTER) aboard NASA’s Terra satellite. The deep reds show 254 

vegetated land surfaces, grey areas are bare rock, and white shows ice-cover. (d) True 255 

colour image from the Advanced Land Imager instrument on the EO-1 spacecraft. 256 

Images available from https://earthobservatory.nasa.gov 257 

 258 

Landscape change does occur where glaciers and rock detach together, or rock 259 

avalanches impact and incorporate glaciers or rock glaciers (Evans et al., 2009b; 260 

Haeberli et al., 2004; Schneider et al., 2011). Triggering of these large, complex events 261 

has been attributed to thermal perturbations from both climate and geothermal origins 262 

(Huggel, 2009; Huggel et al., 2012). These events occur on the flanks of volcanoes as 263 

well as in in uplifted mountain areas. They have no specific geomorphic signature and 264 

can display the attributes generally associated with rock avalanches (Figure 3b-d), 265 

debris avalanches, debris flows and supraglacial landslides, with their defining 266 

characteristic being their large mobility. The large-scale of these events and their 267 

mobility means they are both rare, but can be extremely hazardous (Evans et al., 268 

2009b; Iribarren Anacona et al., 2015). The deposits of ancient rock-ice avalanches 269 

are reported in the literature, but only when the role of the ice is thought to have played 270 

a minimal effect on the resulting geomorphology (Robinson et al., 2014). It is unclear 271 

how important such large mass movements are in long-term landscape evolution, 272 

because their sedimentary signal is hard to detangle from other mass movements with 273 

which they share morphologic properties. The main research challenge lies in 274 

dissecting the dominant processes within the evolution of the mass movement to 275 

understand the mobility and potential hazard of such flows. Predicting where and when 276 



such huge movements might occur remains the major challenge, as it does for rock 277 

avalanches in general. 278 

 279 

3. Mass Movements in periglacial environments 280 

Periglacial environments are sensitive to rapid changes in local climate, snow cover, 281 

topography, incoming radiation, ground and soil characteristics, which influence the 282 

variability of ground thermal regimes at local scale (e.g., Harris and Pedersen, 1998; 283 

Harris et al., 2009; Thomas et al., 2009; Hasler et al., 2015). As average temperatures 284 

continue to rise, permafrost and permafrost ice are expected to degrade (Biskaborn et 285 

al., 2019; Blunden and Arndt, 2020; Christiansen et al., 2010; Gisnås et al., 2017; 286 

Harris et al., 2009; Romanovsky et al., 2010; Slater and Lawrence, 2013), particularly 287 

at high latitudes, where average yearly temperatures are increasing at faster rates than 288 

global averages (Alexeev and Jackson, 2013; Blunden and Arndt, 2020; Masson-289 

Delmotte et al., 2006; Screen et al., 2012).  290 

In the last decades, mass movements have been studied in relation to degrading 291 

permafrost conditions (Ashastina et al., 2017; Blais-Stevens et al., 2015; Fischer et al., 292 

2006; Gruber and Haeberli, 2007; Haeberli et al., 2017a; Huscroft et al., 2003; Patton 293 

et al., 2019a; Ravanel et al., 2017). Mass movements are particularly common under 294 

periglacial conditions, as freeze-thaw weathering causes deterioration of rock, 295 

sediments and soils (e.g., Dobinski, 2011; Harris et al., 2001). Frost action promotes 296 

mechanical fragmentation of rocks (Matsuoka and Murton, 2008; Prick, 2003), with 297 

resulting loose material available for transport (Van Vliet-Lanoë and Fox, 2018). 298 

Degrading-permafrost conditions reduce slope stability, as reaching −1.5°C - 0 °C or 299 

melting temperatures causes reduction in ground shear strength, loss of ice/rock 300 

interlocking, increase in the hydraulic permeability, and ice segregation (Davies et al., 301 



2001; Draebing et al., 2017; Draebing and Krautblatter, 2019; Gruber and Haeberli, 302 

2007; Krautblatter et al., 2013a; Matsuoka and Murton, 2008; Murton et al., 2006).  303 

Different types of mass movements can occur in terrains affected by permafrost, 304 

which in high-latitude lowland permafrost regions is classified into zones based on its 305 

geographic extent and continuity. Permafrost is defined continuous where frozen 306 

ground is present at 90-100% localities, while it is defined discontinuous where units 307 

of frozen ground (50-90%) are separated by unfrozen areas. Sporadic and isolated 308 

permafrost is restricted to limited areas, covering respectively 10-50% and 0-10% of 309 

the terrain considered as permafrost (e.g., Black, 1954; French, 2007; Péwé, 1983). 310 

Permafrost is also present at lower latitudes at high elevation, it is called mountain 311 

permafrost, and it is characterised by an extreme spatial variability (Gruber and 312 

Haeberli, 2007; Haeberli et al., 2011; Péwé, 1983; Stearns, 1966). Mass movements 313 

in periglacial environments can be distinctive of a particular class of permafrost or 314 

ubiquitous in various permafrost terrains, and we will specifically discuss: active-layer-315 

detachment slides, retrogressive-thaw slumps, debris flows, rock/debris falls, 316 

rock/debris slides, rock/debris avalanches.  317 

 318 

3.1 Active-layer-detachment slides 319 

Active-layer-detachment slides are localised slope failures (Figure 4) that are 320 

confined to the permafrost active layer in continuous and discontinuous ice-rich 321 

permafrost terrains (Leibman, 1995; Lewkowicz, 1990; Lewkowicz et al., 1992;  322 

Lewkowicz and Harris, 2005a,b). They fall in the suite of landforms resulting from the 323 

process of thawing of ice-rich permafrost or melting of massive ground ice called 324 

thermokarst (French, 2007; Kokelj and Jorgenson, 2013). They occur due to a 325 

reduction in shear strength resulting from high porewater pressures and low effective 326 



strengths, due to rapid thawing of ice lenses at the base of the active layer or in the 327 

upper part of permafrost in fine-grained soils with low hydraulic conductivity (French, 328 

2007; Lamoureux and Lafrenière, 2009; Lewkowicz, 2007). The movements generally 329 

involve shallow (~1 m deep) failures over a thin shear zone or shear plane on very low-330 

angled slopes (Kokelj and Jorgenson, 2013; Lewkowicz and Harris, 2005a). Few direct 331 

observations exist of in-action active-layer-detachment slides, and they develop over 332 

a period of minutes to several days by a single almost instantaneous sliding movement 333 

or by progressive movements of a few metres per hour, reaching runout distances of 334 

up to several hundred metres (Lewkowicz, 2007; Lewkowicz and Harris, 2005a). 335 

Active-layer-detachment slides usually occur in clusters (Balser et al., 2009; Couture 336 

and Riopel, 2008; Lamoureux and Lafrenière, 2009), generally after warm summers, 337 

rapid spring thaw, high snowmelt, prolonged summer precipitation, or forest or tundra 338 

fires (Gooseff et al., 2009; Lamoureux and Lafrenière, 2009). Active-layer-detachment 339 

slides can enhance slope sediment and solute yields in stream systems (Lamoureux 340 

and Lafrenière, 2009; Lewkowicz, 2007; Lewkowicz and Kokelj, 2002), impact the 341 

patterns of tundra vegetation communities (e.g., Cannone et al., 2010; Frost et al., 342 

2018; Verdonen et al., 2020) and mobilise carbon sequestered in shallow permafrost 343 

(e.g., Abbott et al., 2015; Beamish et al., 2014; Turetsky et al., 2019; Woods et al., 344 

2011). An increase in active-layer-detachment slides has been observed also in the 345 

western Antarctic Peninsula region, where permafrost has reached degrading 346 

temperatures (− 0.4 to − 3.1 °C; because the area has been affected by the greatest 347 

degree of warming in the past 50 years (Bockheim et al., 2013; Guglielmin, 2012; 348 

Vieira et al., 2008). Research is particularly focussed on the role these mass 349 

movements have in releasing carbon contributing to the positive feedback mechanism 350 

of the warming climate releasing carbon trapped in continuous permafrost, which goes 351 

on to exacerbate future warming and so on. Although areas with continuous permafrost 352 



are sparsely inhabited, these mass movements can pose risk to infrastructure (e.g. 353 

Behnia and Blias-Stevens 2018), but also to archaeological investigations (Walls et al. 354 

2020). 355 

 356 

Figure 4 - Active-layer detachment slide (perimeter marked with white dashed line), 357 

Fosheim Peninsula, Ellesmere Island, Nunavut, Canada. Modified after Lewkowicz, 358 

2007. 359 

 360 

3.2 Retrogressive-thaw slumps 361 

Retrogressive-thaw slumps are semi-circular depressions resulting from thawing of 362 

ice-rich permafrost terrains (Burn and Friele, 1989; French, 2007; Lantuit and Pollard, 363 

2008). They occur where ice-rich permafrost is exposed to thaw, and are generally 364 

triggered by wave action along coasts, undercutting erosion of banks along streams 365 

or lakes, or active-layer-detachment slides (Lantuit and Pollard, 2008; Patton et al., 366 

2019b). Thaw slumps cannot be classified as “rapid movements” ─ they can develop 367 

over decades (Lacelle et al., 2010) ─ but phenomena like falls or flows can transport 368 

thawed material from the slump headwall as secondary movements (Lantuit et al., 369 

2012; Murton, 2001). They can cover vast areas, from 0.05 up to 0.8 km2, as in the 370 

case of the Batagaika mega-thaw-slump (Figure 5), which in the last thirty years has 371 

increased its size by three times, reaching an area of 0.78 km2 in 2018 (Vadakkedath 372 

et al., 2020). Thaw slumps expose ground ice to thaw, modify the landscape, and can 373 

erode and transport thawed material to lakes, valley-bottoms or coastal zones (Kokelj 374 

et al., 2015; Lafrenière and Lamoureux, 2019; Lantuit et al., 2012; Murton et al., 2017). 375 



Retrogressive thaw slumps are showing an accelerated activity due to global warming 376 

in continuous and discontinuous permafrost terrains, from western Canadian Arctic to 377 

Siberia (e.g., Ashastina et al., 2017; Jones et al., 2019; Segal et al., 2016). Thousands 378 

of retrogressive thaw slumps have formed in the last 30 years due to extreme 379 

temperatures in High Arctic (Banks, Island, Canada), and are modelled to rise to over 380 

10,000 per decade by 2075 (Lewkowicz and Way, 2019). Hence, similarly to active-381 

layer detachment slides current research focuses on the impact climate change is 382 

having on these mass movements.  383 

 384 

Figure 5 – The Batagaika mega-thaw slump in the Chersky Range area, Sakha 385 

Republic, Russia. CNES/Airbus Image from Google Earth, 6th October 2019. 386 

 387 

3.3 Debris Flows 388 



Debris flows are rapid, downslope flows of poorly sorted debris mixed with water 389 

(e.g., Iverson, 1997), and are common on the slopes of periglacial environments, 390 

including in the European Alps to Iceland (Figure 6), from the Tibetan Plateau to 391 

Antarctica (Decaulne and Sæmundsson, 2006b; Morino et al. 2019; Cannone et al., 392 

2006; Oliva and Ruiz‐Fernández, 2015; Sattler et al., 2011; Yu et al., 2020). Debris 393 

flows can travel over long distances and transport large amounts of material at great 394 

speed (Zimmermann and Haeberli, 1992). They are characterised by a central 395 

channel, the construction of levees on one or both sides of channel, and a terminal 396 

depositional lobe or lobes (e.g., Costa, 1984). Steep slopes, loose materials and wet 397 

conditions are favourable for the occurrence of debris flows (Lewin and Warburton, 398 

1994). This combination of factors is extremely common in periglacial mountain 399 

environments, where climatic warming during the 19th and 20th centuries has 400 

indirectly increased the frequency of debris flows (Decaulne and Sæmundsson, 401 

2006b; Haeberli et al., 1990; Rebetez et al., 1997; Zimmermann, 1990; Zimmermann 402 

and Haeberli, 1992). This increased frequency is not directly linked to the thaw of 403 

perennially frozen debris in the source areas (i.e., meltwater producing a source of 404 

fluid), but it has been shown that there is a link between the initiation zones and the 405 

thickening of the active layer as a reaction to the increase in atmospheric temperatures 406 

(Sattler et al., 2011). This has also been observed where the interface between frozen 407 

and unfrozen ground seems to control the depth of movement in debris flows (Huscroft 408 

et al., 2003). Active-layer failures may result from increased concentration of water 409 

above the permafrost table, generating debris flows and mass failures (Kummert et al., 410 

2018; Lugon and Stoffel, 2010; Marcer et al., 2020), particularly in formerly frozen 411 

sediment mantled slopes (Davies et al., 2001; Fischer et al., 2013; Haeberli, 2013). 412 

Recently deglaciated terrains have an abundance of debris often perched in unstable 413 



positions that are particularly susceptible to remobilisation by debris flows (Ballantyne 414 

2002). 415 

 Debris flows often pose hazard to human habitation and infrastructure and the main 416 

challenge lies in developing tools to effectively predict where and when they will be 417 

triggered in addition to understanding their runout. On one hand this requires, a deeper 418 

understanding of the physical mechanisms where significant effort is being put into 419 

focussed monitoring and developing sophisticated physics-based models. And on the 420 

other hand it also requires the development simple yet effective tools to enable public 421 

authorities and other stakeholders to mitigate the hazard posed by debris flows.  422 

 423 

 424 

Figure 6 – The debris flows above in the Gleiðarhjalli slope above the town of 425 

Ísafjörður, Westfjords, Iceland (Decaulne and Sæmundsson, 2006b; Morino et al. 426 

2019). 427 



 428 

3.4 Rock/debris falls 429 

Rock/debris falls are mass movements on steep slopes (Fig. 7a), rock/debris slides 430 

(Fig. 7b) are mass movements that occur along discrete surfaces, and rock/debris 431 

avalanches are large-volume (>1M m3) mass movements that cause fragmentation 432 

during rapid transport (Fig. 7c) (Cruden and Varnes, 1996; Hungr et al., 2014). These 433 

phenomena are frequent in mountain glacial and periglacial environments, usually in 434 

paraglacial settings where glacial over-deepening, stress-release fracturing after 435 

removal of glacial ice (Ballantyne, 2002; McColl and Davies, 2013), glacial 436 

debuttressing (Blikra et al., 2006; Cossart et al., 2014), degrading permafrost (Clague 437 

et al., 2012a; Deline et al., 2015a; Fischer et al., 2006; Gruber and Haeberli, 2007; 438 

Krautblatter et al., 2013b; Magnin et al., 2020; Morino et al., 2019; Sæmundsson et 439 

al., 2018), and cooling-warming cycles (Draebing, 2020) can all act  to destabilise rock 440 

walls and debris source areas. These factors can induce changes in the stress field 441 

and expose previously insulated surfaces to altered mechanical and thermal erosion 442 

(Draebing et al., 2017; Haeberli, 1997; Jia et al., 2015; Krautblatter et al., 2013b; 443 

Wegmann et al., 1998), which can consequently favour mass wasting processes. The 444 

increase in temperatures in the last decades due to climate change has resulted in 445 

increased activity of such rock/debris falls, slides and avalanches; a correlation 446 

between exceptional heatwaves and rockfalls (Fig. 7a) has been established (Huggel 447 

et al., 2012; Ravanel et al., 2017; Ravanel and Deline, 2008). When permafrost 448 

degrades, physical changes also occur in the rock mass and in loose deposits (Allen 449 

and Huggel, 2013; Draebing et al., 2017; Gruber and Haeberli, 2007; Harris et al., 450 

2009; Ravanel et al., 2017). After permafrost thaw, the shear strength of rock/debris 451 

significantly reduces with warming (minimum factor of safety is between −1.5°C and 452 



0°C) (Davies et al., 2001). Ice segregation and volume expansion subsequent to 453 

increased temperatures can lead to failures (Gruber and Haeberli, 2007). Elevated 454 

water pressure and reduced frictional strength can result from meltwater or ground-455 

water flow in previously frozen masses (Harris, 2005). Ice-rich permafrost occurs in 456 

loose-deposits landforms such as rock glaciers, ice-cored moraines and talus slopes 457 

(Dramis et al., 1995; Isaksen et al., 2000; Kenner et al., 2017; Lukas et al., 2005; 458 

Monnier and Kinnard, 2015), and its degradation can cause a reduction in 459 

cementation, which can lead to the occurrence of falls, slides (Fig. 7b) or avalanches 460 

(Fig. 7c; Dramis et al., 1995). Rock and debris falls, slides and avalanches directly 461 

attributed to this mechanism have been reported from numerous locations in cold 462 

climates around the globe, including Alaska, Canada, European Alps, Greenland. 463 

Himalaya, New Zealand, Norway, Russia (Deline, 2009; Evans et al., 2009a,b,c; 464 

Fischer and Huggel, 2008; Frauenfelder et al., 2018; Gruber et al., 2017; Huggel et al., 465 

2012, 2005; Magnin et al., 2019; Patton et al., 2019a; Sosio et al., 2008; Svennevig et 466 

al., 2019). Much current research is focussed on mitigating the risk from such events 467 

and is reliant on understanding and modelling the influence of increasing temperature 468 

on the state of the permafrost, the influence of the associated hydrology which finally 469 

leads to the destabilisation of rock mass. 470 

 471 



 472 

Figure 7 – Rapid mass movements caused by permafrost degradation. a. The Tour 473 

Ronde rock fall of 27th August 2015, Mont Blanc Massif, France (modified after 474 

Ravanel et al., 2017); b. The Móafellshyrna debris slide of 20th September 2012, 475 

Tröllaskagi peninsula, Iceland (Sæmundsson et al. 2018, Morino et al. 2019); c. The 476 

Val Pola rock avalanche of 28th July 1987, Central Alps, Italy (modified after Crosta et 477 

al., 2004). 478 

 479 

4. Rapid Mass Movements in Paraglacial Environments  480 

Paraglacial environments represent the relatively rapid adjustment from deglaciated 481 

landscape to non-glacial conditions (Ballantyne 2002). A wide range of subaerial 482 

processes are active in these environments which can be active over different 483 

timescales and lead to different rates of landscape change (evolution). Many of these 484 



processes are intimately associated with periglacial environments, already described 485 

in Section 3. Periglacial conditions usually only persist for a relatively short period after 486 

deglaciation, and here we focus on (large scale) Mass Movements that are not 487 

necessarily related to periglacial environmental conditions, yet occur in a paraglacial 488 

setting.  489 

Massive rock slope failures are as frequent or more frequent in glaciated basins 490 

than in equivalent ice-free mountainous terrain (McSaveney 2002, Geertsema et al. 491 

2006, Hewitt 2009a Deline et al. 2015a). Complex interactions between several factors 492 

can affect the occurrence of mass movements according to Pacione (1999); inherent 493 

factors (e.g. lithology, rock structure, slope form, topographic relief), preparatory 494 

factors (e.g. weathering, de-buttressing, climate change), triggering factors (e.g. 495 

earthquake, rainstorm) and factors that may affect mobility (e.g. glacial surface) 496 

(Agliardi et al. 2012, Deline et al. 2015b). According to Ballantyne (2002) the response 497 

of a rock slope to glacier down wasting has been reported to result in large rock 498 

avalanches, large-scale, progressive and slow rock mass deformation, and frequent 499 

rock fall events. Slope steepening caused by glacial erosion and unloading or de-500 

buttressing due to glacial retreat often leads to rock slope failures (Agliardi et al. 2012, 501 

Holm et al. 2004, Lane et al., 2017, Stoffel & Huggel 2012). Thermal and mechanical 502 

alteration can result from cycles of ice loading and unloading and exposition of rock to 503 

new thermal regimes due to the glacier retreat (Cody et al., 2020; Coquin et al., 2015; 504 

Evans and Clague, 1994; Grämiger et al., 2017; McColl, 2012; McColl and Draebing, 505 

2019; Mercier et al., 2017; Wegmann et al., 1998). Finally, permafrost fluctuations 506 

throughout the Holocene is likely a first order control on past and modern rock slope 507 

failures (Hilger et al., 2021). 508 



 509 

Figure 8 A Deep seated gravitational slope deformation at Forkastningsfjellet in 510 

Spitsbergen documented by Kuhn et al. (2019, 2021). (a) Unannotated view towards 511 

the blocks that are sliding downslope. (b) Annotated view showing the location of the 512 

main sliding surfaces that define the different blocks with white arrows indicating 513 

displacement directions. (c) Side-on view of the same slope showing the rotation of 514 

the block nearest the coast. Images kindly provided by Reginald Hermanns. 515 

 516 

Deep seated gravitational slope deformation (DSGSD, also called ”sagging” or 517 

“sackung”, Figure 8) are one of the adjustment processes which can be detected in 518 



paraglacial setting and can be categorized as mountain slope deformation of steep, 519 

high mountain slopes, manifested by scarps and cracks, but lacking a defined rupture 520 

surface and slow movement rates (Hungr et al., 2014). DSGSD are large mass 521 

movements with long duration slow motion processes that can experience irregular 522 

rates of activity characterized by periods of rapid reactivating (Pánek et al. 2013) which 523 

often result in high volume and long-runout events (Hewitt et al., 2008; Hewitt, 524 

2009a,b,c; Mege and Bourgeois, 2011; Pánek & Klimeš, 2016; Pedrazzini et al., 2013). 525 

The firsts observations of the geomorphic role and impact of DSGSD dates back to the 526 

1940s, but recent developments in remote sensing, e.g. Insar have made it easier to 527 

detect these slow movements which has led to increasing understanding and 528 

recognition of DSGSD (e.g. Ambrosi and Crosta, 2006; Colesanti and Wasowski, 529 

2006; Hilley et al., 2004; Saroli et al., 2005; Teshebaeva et al. 2019).  530 

DSGSD have been observed in various rock types and are generally characterized 531 

by discontinuous or poorly defined lateral boundaries (Ambrosi and Crosta, 2006; 532 

Varnes et al., 1990). According to Agliardi et al. (2001) diagnostic features of DSGSD 533 

ca include: “morpho-structures (doubled ridges, scarps, counterscarps, etc.) similar to 534 

those observable, at a smaller scale, in cohesive soils landslides; size of the 535 

phenomenon comparable to the slope; present day low rate of displacement (mm/y, in 536 

alpine and prealpine areas); presence of minor landslides inside the deformed mass 537 

and ancient collapses of the lower part of the slope”. 538 

DSGSD are not considered as imminent hazardous phenomena because of their 539 

slow movement rate, but a part of the creeping mass can evolve into multiple 540 

sequential failures or into fast large catastrophic slope failures such as rockslides and 541 

rock avalanche (Agliardi et al. 2012). These large-scale events, even though they are 542 

infrequent, can cause hazardous conditions e.g. on glaciers and surrounding areas 543 

(e.g. Deline et al. 2015b; Dufresne et al. 2019; Hewitt et al. 2011), in fjord environments 544 



were rock-slope failures can generate tsunamis (Böhme et al. 2011; Kuhn et al. 2019) 545 

and in valley systems were large rock-slope failures can dam rivers (Oppikofer et al., 546 

2020; Strom and Korup, 2006). 547 

Many case studies of DSGSD have been described in various settings around the 548 

world, but it is difficult to understand their controlling factors due to the variety of 549 

geologic and environmental settings which they occur in (Agilardi et al. 2012). They 550 

are widespread in orogenic mountain ranges (Ambrosi and Crosta, 2006; Agliardi et 551 

al. 2009; 2012; Korup, 2006;), and have been described from the Central-Eastern Alps 552 

(Forcella, 1984; Forcella and Orombelli, 1984; Zischinsky, 1966), Norway (Böhme et 553 

al. 2013; Oppikofer et al. 2017; Schleier et al. 2016), Spitsbergen (Figure 8) (Kuhn et 554 

al. 2019; 2021), Iceland (Coquin et al. 2015; 2019) and other places. 555 

Research challenges, on mass movements in Paraglacial environments and in 556 

some extend in Periglacial environments, have during the last decades focused more 557 

and more on the hidden hazard which DSGSD can cause to human habitation in these 558 

environments. Recent and future developments in remote sensing will without doubt 559 

deepen our understanding on the physical mechanisms and triggering factors for 560 

DSGSD. These developments will improve our monitoring and hazard analyses.  561 

 562 

5. Climate change and hazard of mass movements in cold and 563 

polar climates 564 

According to the definition of (Varnes, 1984), landslide hazard is defined as the 565 

probability that a landslide event of a certain magnitude occurs within a period of time 566 

in a given area. Landslide risk - as any other risk - refers to the expected degree of 567 

loss due to a landslide event, and it is the result of the product of the landslide hazard 568 

and the vulnerability, with the latter being the degree to which a community, a structure, 569 



a service or an area is likely to be damaged by a hazardous phenomenon (UNDHA, 570 

1992). Mass movements can be extremely dangerous, as they are processes that can 571 

severely threaten human life and affect infrastructures (Crozier and Glade, 2005; 572 

Geertsema et al., 2009; Haque et al., 2016; Kjekstad and Highland, 2009; Petley, 573 

2012). Slope failures can involve different types of materials and can have a great 574 

diversity of velocities and fluid contents, making them hard to understand and produce 575 

the appropriate countermeasures.  576 

Even if high level of uncertainty of global-climate predictions and the lack of spatial 577 

resolution of the available downscaled projections, there is a strong theoretical basis 578 

for increased landslide activity as a result of climate change (Borgatti and Soldati, 579 

2010; Crozier, 2010; Gariano and Guzzetti, 2016; Haque et al., 2019; Wood et al., 580 

2020). There are few studies (Coe, 2020; Coe et al., 2018; Schlögel et al., 2011; 581 

Uhlmann et al., 2013) that systematically evaluate and compare the magnitude, 582 

frequency, and extent of landslide events in glacial and periglacial environments on 583 

the long term (Allen et al., 2011; Bessette-Kirton and Coe, 2020; Hock et al., 2019). 584 

Cold environments are particularly sensitive to variations in atmospheric temperatures 585 

(Clague et al., 2012b; Huggel et al., 2012) that lead to an enhanced reaction of slopes 586 

to glacial retreat and permafrost degradation (e.g., Gruber et al., 2017; Gruber and 587 

Haeberli, 2007; Harris et al., 2009; Hock et al., 2019; Kos et al., 2016; Patton et al., 588 

2019a; Schoeneich et al., 2011). As result of climate change, mass movements in 589 

cryospheric regions can be triggered by warming periods, freeze-thaw, rapid 590 

snowmelt, intense and/or prolonged precipitation (Huggel et al., 2012, 2010; Stoffel 591 

and Huggel, 2012). From a hazard perspective, understanding how these factors will 592 

impact failures’ frequency and magnitude is becoming increasingly important. 593 

In glacial environments, retreat and thinning of glacial ice reduces lateral support of 594 

steep rock walls (Ballantyne, 2002). This can generate a reduction in slope stability by 595 



debutressing steep valley walls (Lane et al., 2017), that are impacted by modifications 596 

in the stress field and subject to mechanical and thermal alteration, and consequently 597 

slope instabilities (Cody et al., 2020; Coquin et al., 2015; Evans and Clague, 1994; 598 

Grämiger et al., 2017; McColl, 2012; McColl and Draebing, 2019; Mercier et al., 2017; 599 

Wegmann et al., 1998). Failures linked to glacial retreat can range from small-scale 600 

rock fall to catastrophic rock/debris avalanches. As glacial environments are highly 601 

dynamic because of increasing atmospheric temperatures, the landslide hazard in 602 

these regions is more difficult to assess because of the changing zones of instability 603 

and initiation (e.g., Evans and Clague, 1988; Geertsema et al., 2006a,b; Kääb et al., 604 

2005). The consequences of landslides in glacial environments can be more 605 

unexpected and severe than the events themselves, generating hazardous 606 

consequences because of dam-creation (Fan et al., 2020; Oppikofer et al., 2020; 607 

Strom and Korup, 2006), or tsunami if they reach the water (Dahl-Jensen et al., 2004; 608 

Dai et al., 2020; Dufresne et al., 2018a). A better understanding of changes in slope 609 

stability caused by the loss of glacier ice could improve the definition of landslide 610 

hazard zones, aiding to protect areas and populations exposed to these hazards 611 

(Haeberli et al., 2017b; Hock et al., 2019). 612 

Climate change is causing permafrost degradation at high latitudes and in mountain 613 

regions (e.g., Blunden and Arndt, 2020; Slater and Lawrence, 2013), and this is 614 

confirmed by local monitoring permafrost studies in the European Alps, Alaska, 615 

Canada, Siberia, Iceland, Greenland, northern Europe, the Tibetan Plateau, the Andes 616 

and the Antarctic Peninsula (Christiansen et al., 2010; Czekirda et al., 2019; Gisnås et 617 

al., 2017; Harris et al., 2009; Panda et al., 2014; Pastick et al., 2015; Romanovsky et 618 

al., 2010; Westermann et al., 2017; Zou et al., 2017). Among the consequences of 619 

permafrost degradation, the most hazardous are mass movements like rock falls, 620 

debris flows, rock/debris avalanches (Darrow et al., 2017; Deline et al., 2015a; 621 



Huscroft et al., 2004; Patton et al., 2019a; Schoeneich et al., 2011). Mountains host 622 

12% of the global population (Schild, 2008), and about a quarter of the permafrost on 623 

Earth is hosted in mountainous terrains (Gruber, 2012). Therefore, mass movements 624 

in periglacial mountain environments pose at direct risk the local population and 625 

infrastructure (e.g., Haeberli, 2013; Schoeneich et al., 2011), and can impact local 626 

economies and tourism, communication and transport systems and power generation 627 

industries (e.g., Arenson and Jakob, 2017; Duvillard et al., 2019; Mourey et al., 2019; 628 

Pröbstl-Haider et al., 2016). The unpredictability of the extension and speed of 629 

permafrost degradation makes the understanding of landslide processes in mountain 630 

periglacial environments even more urgent, in order to predict and mitigate their 631 

hazardous consequences.  632 

Due to their magnitude and mobility, rock/ices avalanches are also particularly 633 

hazardous in both glacial and periglacial environments (Davies and McSaveney, 2012; 634 

Evans and Clague, 1988; Geertsema et al., 2006a, 2006b; Hungr and Evans, 2004). 635 

Several examples with volumes ranging up to millions of cubic metres include the 636 

rock/ice avalanche from Monte Rosa in the western Italia Alps in 2007 (Fischer et al., 637 

2011), the rock/ice avalanches at Mount Munday in 1997 and at Kendall Glacier in 638 

1999 in British Columbia (Delaney and Evans, 2014; Geertsema et al., 2006a), the 639 

2005 Mt. Steller rock/ice avalanche in Alaska (Huggel et al., 2008), the 2002 rock/ice 640 

avalanche at Kolka/Karmadon, Russian Caucasus, with the latter one causing the 641 

death of ~140 people (Evans et al., 2009c; Haeberli et al., 2004; Huggel et al., 2005).  642 

Hazard related to mass movements in both glacial and periglacial environments 643 

include also catastrophic phenomena such as glacial lake outburst floods (GLOFs). 644 

GLOFs are floods that originate from lakes formed behind a landslide dam (Fan et al., 645 

2020; Oppikofer et al., 2020; Strom and Korup, 2006) or dammed by a frontal moraine 646 

or glacial ice (Carey et al., 2012; Clague and Evans, 2000; Cook et al., 2016; Haeberli 647 



et al., 2016; Harrison et al., 2018; Hubbard et al., 2005; Richardson and Reynolds, 648 

2000; Veh et al., 2019; Westoby et al., 2014). The lakes can drain catastrophically for 649 

several reasons, including mass movements into the lake (Figure 9) (Costa and 650 

Schuster, 1988; Korup and Tweed, 2007). Their influence on settlements and infra-651 

structure can be devastating (e.g. Kjartansson 1967; Dahl-Jensen et al., 2004; Stoffel 652 

& Huggel, 2012; Dai et al., 2020; Deline et al., 2015b; Dufresne et al., 2018a, b). In 653 

regions like the Himalaya, GLOFs have been recognised as the dominant long-term 654 

drivers of fluvial erosion and valley evolution (Cook et al., 2018). They are extremely 655 

destructive due to their magnitude and unpredictability (Khanal et al., 2015; Mool et 656 

al., 2011; Schwanghart et al., 2016; Shrestha et al., 2010). GLOFs’ frequency and 657 

magnitude are thought to be increasing in response to climate change (Bajracharya 658 

and Mool, 2009; Bolch et al., 2011; Dussaillant et al., 2010; Harrison et al., 2018; Lutz 659 

et al., 2016). This is due to the fact that outlet glaciers have thinned and retreated from 660 

their basins, resulting often in unstable slopes combined with accelerated formation 661 

and rapid growth of proglacial lakes (e.g. Guðmundsson et al. 2019; IPCC, 2012). 662 

 663 



 664 

Figure 9. The Steinsholtsjökull rockslide and the GLOF in the Steinsholtsdalur valley 665 

in 1967. The extent of panels d and e are shown as black boxes on panels a-c. (a) 666 

Aerial photograph taken in August 1960 (b) Aerial photograph taken in September 667 

1967, eight months after the rock slide. (c) Modern image showing clearly that the 668 

headwall of the slide was about 900 m long. (d) Detailed view showing a 100 m long 669 

fracture in the Innstihaus above the Steinsholtsjökull outlet glacier. (e) Same view as 670 

in panel d, but using the modern image shown in panel c to illustrate the amount of 671 

material mobilised. Aerial images are from the National Land Survey of Iceland. 672 

 673 

Landslides and mass movements such as active-layer-detachment slides and thaw 674 

slumps in degrading-permafrost terrains can impact on the environments in which they 675 



occur. The physical and ecological structure of hillslopes and fluvial networks can be 676 

affected by an increased sediment, nutrients, and soil displacement of mass 677 

movements (Abbott and Jones, 2015b; Bowden et al., 2008; Gooseff et al., 2009; 678 

Osterkamp et al., 2009; Turetsky et al., 2019; Zongxing et al., 2016). These 679 

phenomena can generate disturbance to terrestrial and aquatic ecosystems (Bowden 680 

et al., 2008; Callaghan et al., 2011; Cannone et al., 2010; Osterkamp et al., 2009; 681 

Racine et al., 2004). An increase in mass movements occurrence in cold and polar 682 

terrains due to permafrost thaw because of the warming climate may also accelerate 683 

the release to the atmosphere of Pleistocene sequestered carbon (Belshe et al., 2013; 684 

Grosse et al., 2011; Masyagina et al., 2019; Pautler et al., 2010; Schuur et al., 2009, 685 

2008; Tarnocai et al., 2009). Thaw-slumps and active-layer-detachment-slides activity 686 

in the Arctic has enhanced in the last decades (Jorgenson and Osterkamp, 2005; Luo 687 

et al., 2019), generating alterations in the water quality of nearby lakes and streams 688 

(Kokelj et al., 2013; Lafrenière and Lamoureux, 2019; Segal et al., 2016), vegetation 689 

and soils (Khomutov and Leibman, 2014; Lantuit et al., 2012), and trace gases (Abbott 690 

and Jones, 2015).  691 

 692 

6. Conclusions 693 

In this chapter, we emphasized the major types of rapid mass movements that 694 

reflect the most characteristic expression of rapid down-slope sediment transport in 695 

cold and polar environments under glacial, periglacial and paraglacial conditions.  696 

Many of these rapid mass wasting processes are not exclusive to the glacial, 697 

periglacial and paraglacial domains, but we highlighted that permafrost and ice are the 698 

critical agent in their development. We focussed on the specific attributes that 699 

distinguish these mass movements from ones in other environments and the 700 



associated specific research challenges. Cryospheric terrains in mountainous and 701 

high-latitude environments are the most susceptible to slope stability problems, as 702 

warming temperature cause permafrost and ice to degrade. These changes if 703 

maintained or worsen can have significant implications for hazard analyses and 704 

adaptation strategies in these environmentally sensitive areas of the world.  705 

 706 
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