
HAL Id: hal-03356277
https://hal.science/hal-03356277v1

Submitted on 28 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

No particular genomic features underpin the dramatic
economic consequences of 17th century plague epidemics

in Italy
Andaine Seguin-Orlando, Caroline Costedoat, Clio Der Sarkissian, Stéfan

Tzortzis, Célia Kamel, Norbert Telmon, Love Dalén, Catherine Thèves, Michel
Signoli, Ludovic Orlando

To cite this version:
Andaine Seguin-Orlando, Caroline Costedoat, Clio Der Sarkissian, Stéfan Tzortzis, Célia Kamel, et al..
No particular genomic features underpin the dramatic economic consequences of 17th century plague
epidemics in Italy. iScience, 2021, 24 (4), pp.102383. �10.1016/j.isci.2021.102383�. �hal-03356277�

https://hal.science/hal-03356277v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ll
OPEN ACCESS
iScience

Article
No particular genomic features underpin the
dramatic economic consequences of 17th century
plague epidemics in Italy
Andaine Seguin-

Orlando, Caroline

Costedoat, Clio

Der Sarkissian, ...,

Catherine Thèves,
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SUMMARY

The 17th century plague epidemic had a particularly strong demographic toll in
Southern Europe, especially Italy, where it caused long-lasting economical dam-
age. Whether this resulted from ineffective sanitation measures or more patho-
genic Yersinia pestis strains remains unknown. DNA screening of 26 skeletons
from the 1629-1630 plague cemetery of Lariey (French Alps) identified two teeth
rich in plague genetic material. Further sequencing revealed two Y. pestis ge-
nomes phylogenetically closest to those from the 1636 outbreak of San Procolo
a Naturno, Italy. They both belonged to a cluster extending from the Alps to
Northern Germany that probably propagated during the Thirty Years war.
Sequence variation did not support faster evolutionary rates in the Italian ge-
nomes and revealed only rare private non-synonymous mutations not affecting
virulence genes. This, and the more heterogeneous spatial diffusion of the
epidemic outside Italy, suggests environmental or social rather than biological
causes for the severe Italian epidemic trajectory.

INTRODUCTION

With the advent of next-generation DNA sequencing, ancient DNA research has moved from single locus

studies to the characterization of the complete genomes of ancient individuals, including from extinct hom-

inids such as Neanderthals and Denisovans (see Orlando et al., 2021 for a review). The variation present in

the genome of ancient individuals now provides a novel type of historical source that can help rewrite the

history of population movements across the OldWorld and into the NewWorld (see Nielsen et al., 2017 for

a review). Time-stamped genome data have also provided unprecedented resolution to the study of the

process by which plants and animals have been domesticated, selected and propagated around the world

(see Frantz et al., 2020 and Kistler et al., 2020 for reviews). As the DNA fragments of ancient pathogens can

survive together with those from their hosts, ancient genomic data have largely contributed to better un-

derstand past epidemics. Such data have not only contributed to solve the mysterious origins of past ep-

idemics, such as that, that have decimatedMexican populations following their first contact with Europeans

in the 16th century CE (Common Era) (Vågene et al., 2018) but also to track their evolutionary dynamics and

the genetic changes that could facilitate transmission and may have affected virulence (see Spyrou et al.,

2019a for a review).

Together withMycobacterium tuberculosis (the agent of tuberculosis), Yersinia pestis (the agent of plague)

represents the bacterial pathogen that thus far has received most attention in ancient DNA research.

Although historians have identified the Justinian plague of the sixth century CE as marking the beginning

of the first major plague pandemics, ancient DNA data have revealed that plague pathogens had in fact

already started to infect human populations thousand years earlier, between the third and sixth millennium

BCE (Before Common Era) (Rasmussen et al., 2015; Andrades Valtueña et al., 2017; Spyrou et al., 2018; Ras-

covan et al., 2019). Additionally, genome sequencing has revealed a pathogenic genetic toolkit much

different then than at the time of the Justinian plague (Wagner et al., 2014; Feldman et al., 2016; Namouchi

et al., 2018; Keller et al., 2019) and the infamous Black Death (Bos et al., 2011, 2016; Spyrou et al., 2016,

2019b; Guellil et al., 2020; Morozova et al., 2020; Susat et al., 2020), which marked the beginning of the

so-called second pandemic by decimating 30-60% of the European population in the 14th century CE (Eck-

ert, 1978; Benedictow, 2004). For example, the absence of the ymt locus, which is normally present on the
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Figure 1. Sample information and metagenomic analyses

(A) Map showing the location and temporal range of the Lariey-Puy-Saint-Pierre cemetery together with previously published second pandemic plague

genomes. Colors are indicated with respect to Spyrou et al. (2019b) and according to the main phylogenetic clusters shown on Figure 3.

(B) Multiple burial showing the LAR8 individual (right).
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Figure 1. Continued

(C) Simple burial showing the LAR11 individual.

(D) Hierarchical clustering dendrogram of Bray-Curtis distances between MetaPhlAn2 (Truong et al., 2015) bacterial abundance profiles (10,000 bootstrap

pseudo-replicates) and disregarding abundances below 1%. All clusters are supported with a pvclust (Suzuki and Shimodaira, 2006) approximately unbiased

p value of 100.

(E) LEfSe (Segata et al., 2011) Linear Discriminant Analysis indicating those microbial species with most contrasted abundance patterns (LDA scores >3).

Higher log10-LDA scores identify those bacterial species contributing the most to the differences in the metagenomic content of teeth positive or negative

for Yersinia pestis, petrosal and dental calculus remains. The source of each species was predicted on the basis of the literature and conservatively

categorized as ‘environmental’ whenever both sources were likely.

See also Figures S1 and S2.
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pMT1 plasmid and is key for the transmission of the disease by fleas (Sun et al., 2014), suggested different

transmission modes for plague epidemics during the Bronze Age and the Iron Age (Rasmussen et al., 2015;

Andrades Valtueña et al., 2017). Comparative genomic work has also provided examples of convergent

evolution between strains from the first and second pandemics, including the parallel loss of magnesium

transporters essential for survival into themacrophage phagosome (Keller et al., 2019; Spyrou et al., 2019b).

Furthermore, strains from the 14th century CE have been found remarkably homogeneous genetically

across Europe and the Caucasus, suggesting a history of extremely rapid spread from a unique source

(Bos et al., 2016). Genome characterization of additional strains accompanying the epidemic waves from

the following centuries, and until the 18th century CE (Biraben, 1975), have been found to form at least

two main phylogenetic groups, potentially indicative of different origins from strains descending from

the Black Death and either surviving in Europe (Bos et al., 2016) or in nearby foci (Guellil et al., 2020, see

also Barbieri et al., 2020 for a review).

The second pandemic represents the plague pandemic that is currently best documented at the genetic

level, with over 70 complete ancient plague genomes hitherto sequenced. Despite this, many areas require

further research. One such area relates to the particular historical trajectory that plague epidemics from the

17th century CE have had in Italy. There, the pathogen has been reported to have been more pervasive

geographically than in most other European regions, especially in 1629-1631 CE where it caused a massive

demographic impact in both the main cities (e.g. 62% mortality in Verona (Donazzolo and Saibante, 1926)

and around 50% in Bologna, Mantua, Pavia (Del Panta and Livi Bacci, 1977) or Parma (Lucchetti et al., 1998))

and the countryside (Manfredini et al., 2002; Alfani and Murphy, 2017). This unleashed a long-lasting eco-

nomic crisis, as tax incomes became considerably reduced and cities could not be rapidly repopulated

from nearby villages so as to provide the manpower yet necessary to sustain their activities (Alfani,

2013). This particular context has been proposed to have marked the beginning of the Great Divergence

between Italy and the other European countries, in which economies could restart much quicker and could,

for some, benefit from established and growing colonial empires. As the Italian economy and institutions

were amongst the best in the continent at the time when the epidemic struck (e.g. cities were equipped

with permanent health boards from the 15th century CE (Cipolla, 1976; 1981) and anti-plague tracts and

other measures available at the time have been largely inspired from Italian publications (Cohn, 2009)), his-

torians have proposed that the emergence of a new, more virulent strain may have contributed to the

particularly dramatic impact measured in Italy (Alfani, 2013). In this study, we sequenced two complete

plague genomes from individuals who died in the French Alps in 1629-1630 CE. These genomes were

phylogenetically closest to those previously characterized in Italy in the following decade (Guellil et al.,

2020). This provided us with a unique opportunity to investigate whether or not the pathogen developed

a particularly harmful genetic set that could explain the dramatic epidemic striking Italy at the time.
RESULTS AND DISCUSSION

Genomic and metagenomic screening

A total of 12 ancient human petrosal bones, 10 teeth and 7 dental calculus from 15 individuals excavated at

the Lariey-Puy-Saint-Pierre cemetery (France) were prepared in ancient DNA facilities for shallow shotgun

sequencing on the MiniSeq Illumina instrument (transparent methods; Table S1 and Figure S1). This cem-

etery represents the only French site from the 17th century CE that can unambiguously be linked to the

1629-1630 CE plague pandemic (Signoli et al., 2003a) (Figures 1A–1C). Sequence mapping against the

hs37d5 human reference genome revealed substantial variation in human DNA content, with petrosal

bones showing maximal proportions (median = 72.43%, range = 1.57%–97.96%), followed by teeth (me-

dian = 2.67%, range = 0.02%–18.82%) and dental calculus (median = 0.08%, range = 0.05%–0.34%; Table
iScience 24, 102383, April 23, 2021 3
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S1A). This is in line with the generally better postmortem DNA preservation reported for petrosal bones

(Pinhasi et al., 2015) and dental calculus deriving mainly from oral bacterial biofilms (Warinner et al.,

2015). The high variation in the human endogenous DNA content measured across samples of similar types

supports that DNA preservation is driven by micro-environmental factors instead of global physico-chem-

ical parameters characteristics of the site.

Bacterial taxonomic profiling with metaBIT (Louvel et al., 2016) against the MetaPhLAn2 database (Truong

et al., 2015) indicated marked differences in 29 samples successfully characterized, with only one single

tooth from individual LAR23 and one dental calculus tissue from individual LAR13 clustering together

with modern dental plaque samples (Figure S2). Most of the other remains occupied a central position

in the Principal Coordinate Analysis, indicating low diversity probably due to the presence of environ-

mental microbes contaminating archaeological remains after death. However, abundance profiles possibly

suggested non-negligible DNA proportions of Yersinia pestis in the teeth of two individuals LAR8

(10.8–10.9%) and LAR11 (40.7–42.1%). Polymerase chain reaction (PCR) amplifications of a 133-bp fragment

located in the pPCP1 pla gene returned positive results on the tooth DNA extracts of these two individuals.

They remained, however, negative across all the other tooth extracts tested, except one (LAR27), including

13 additional extracts that were not previously screened by sequencing (Table S1). The fact that only a small

fraction of the individuals was detected positive for plague reflects the extensive postmortem DNA frag-

mentation and the relatively limited power of shotgun sequencing in identifying plague from DNA extracts

dominated by human and/or environmental bacterial templates.

The microbial profiles from the LAR8 and LAR11 teeth were closer to each other than to any other material

sequenced, including other teeth (Figure 1D). Yersinia pestis was furthermore confirmed through Linear

Discriminant Analyses in LEfSe (Segata et al., 2011) as the top bacterial species driving the abundance

profiles of those two teeth versus those that were negative for Yersinia pestis and the other remains.

The presence of a number of oral microbes, such as Tannerella forsythia and Treponema denticola, was

also characteristic of microbial profiles obtained from ancient dental calculus tissues (Figure 1E).

Readmapping against the CO92 plague reference genome with the stringent parameters described in pre-

vious studies (Spyrou et al., 2019b; Keller et al., 2019) revealed clear signatures of postmortem DNA dam-

age, confirming the likely presence of the pathogen in both the LAR8 and LAR11 individuals (Figure S3).

Such signatures appeared mainly in the form of an excess of cytosines at those genomic positions preced-

ing mapped reads and increased (although faint) C-to-T (G-to-A) nucleotide mis-incorporation rates at

read starts (ends) (Briggs et al., 2007). This is so because DNA extracts were treated with the USER enzy-

matic mix that breaks the DNA backbone downstream of those cytosine residues that have been deami-

nated after death (Rohland et al., 2015). Interestingly, mapDamage (Jónsson et al., 2013) inferred higher

nucleotide mis-incorporation rates in human sequence alignments than in plague data. This was not indic-

ative of different postmortem DNA degradation in the host and the plague genome. Instead, this reflected

faster postmortem cytosine deamination at methylated CpG dinucleotides (Smith et al., 2014; Seguin-Or-

lando et al., 2015), which are found in the human but not the plague genome (Figure S4).

Altogether, our results suggested the likely presence of Yersinia pestis DNA in the tooth extracts of the

LAR8 and LAR11 individuals. The virtual absence of plague DNA in the petrosal bones of individuals other-

wise positive for the infection confirms previous reports on plague (Margaryan et al., 2018). The absence of

plague DNA in the dental calculus of individuals otherwise positive for the infection contrasts, however,

with the recent successful characterization of Mycobacterium leprae from ancient dental calculus remains

(Fotakis et al., 2020). This likely reflects the different etiology of the diseases, with leprosy, but not plague,

causing lesions in the mucous membranes of the upper respiratory tract (de Abreu et al., 2006).
Plague genome sequencing

The fraction of plague DNA sequences identified during our preliminary screening indicated that complete

bacterial genomes could be obtained with reasonable sequencing efforts. Further stringent mapping of an

additional 139.0 and 188.6 million reads generated on the NovaSeq instrument from the DNA content of

LAR8 and LAR11 tooth libraries resulted in the characterization of two plague genomes at an average 2.3-

fold and 13.7-fold coverage, respectively (Figures 2A–2D). The pCD1, pMT1 and pPCP1 plasmids were also

sequenced at 4.7–219.3-fold coverage in both individuals (Table S2). Edit distance distributions confirmed

the genetic proximity to Yersinia pestis relative to close outgroups, such as Yersinia pseudotuberculosis
4 iScience 24, 102383, April 23, 2021
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Figure 2. Plague chromosome and plasmid sequence coverage

(A) Coverage and%GC variation along 1,000 bp windows along the CO92 plague reference genome ( GenBank: NC_003143.1) (Parkhill et al., 2001). Average

depth-of-coverage was calculated using Paleomix (Schubert et al., 2014). %GC composition was calculated using seqtk (https://github.com/lh3/seqtk).

Circular plots were traced using the circlize library in R (Gu et al., 2014) (max = 10-fold). In case multiple genomes are available for one site, the genome

showing maximal coverage is shown.

(B) Coverage and %GC variation along 100 bp windows along the pCD1 plague plasmid (GenBank: NC_003131.1).

(C) Same as panel B, except that the pMT1 plasmid is shown (GenBank: NC_003134.1).

(D) Same as panel B, except that the pPCP1 plasmid is shown (GenBank: AL109969.1).
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Figure 2. Continued

(E) Edit distance profiles obtained when mapping the sequence data underlying the LAR8 and LAR11 genomes and a comparative panel of 78 ancient and

155 modern Yersinia pestis (Ype), Yersinia pseudotuberculosis (Yps) and Yersinia similis (Ysi) sequence datasets aligned against the Ype and Yps reference

genomes, respectively (Table S2). Edit distance distributions were considered as long as based on a minimum of 500 reads.

(F) Heterozygosity profiles of the LAR8 and LAR11 genomes and a comparative panel of 78 ancient and 129 modern Yersinia pestis sequence datasets

aligned against the CO92 Yersinia pestis reference chromosome (Table S2). Transition SNPs were disregarded to account for the differential rates of

postmortem DNA damage amongst the comparative panel.
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and Yersinia similis (Figure 2E). Additionally, the fraction of heterozygous calls was limited in both individ-

uals and comparable to that observed in modern individuals infected by a single bacterial strain and most

ancient genomes previously characterized (Figure 2F). This indicated that a single infection rather thanmul-

tiple co-infections from highly divergent strains likely caused the death of the two individuals.
Human genome analyses

Further mapping of the tooth sequence data provided limited coverage of the human genome for the LAR8

and LAR11 individuals (0.377-fold and 0.085-fold, respectively). This was, however, sufficient to confirm pre-

vious sex determination of LAR8 as a female individual based on the shape of the coxal bone (Signoli et al.,

2003b) and to identify LAR11, an immature individual who could not be sexed anatomically (Figure S1B), as

a male individual. Both the presence of typical postmortem DNA damage profiles (Figure S3B) and the

calculation of negligible contamination rates (%1%) supported data authenticity. The latter were obtained

on the basis of mitochondrial sequence variation for both individuals, or the X chromosome for the male

individual (Tables S3 and S4). We found that the two individuals were not first- or second-degree relatives

(Table S5) and projected onto the genomic variation of modern western European (Figure S5A), close to

present-day French, Spanish, and Italian individuals. f3-Outgroup statistics also supported genetic affin-

ities to present-day western Europeans (Figures S5B and S5C), and the two individuals carried mitochon-

drial (T1a1 and H2a1 for LAR8 and LAR11, respectively) and Y-chromosomal (R1b1a1b1 for LAR11)

haplogroups that are relatively common in this region today (Tables S3 and S4).
Phylogenetic analyses

We next placed the LAR8 and LAR11 plague genomes into the phylogeny of modern and ancient plagues

using Maximum Likelihood reconstruction with IQTree (Minh et al., 2020) (Figure 3A). This confirmed pre-

vious findings showing that Neolithic-Bronze Age strains (Rasmussen et al., 2015; Andrades Valtueña et al.,

2017; Spyrou et al., 2019a; Rascovan et al., 2019), and those strains underlying the first (Wagner et al., 2014;

Namouchi et al., 2018; Keller et al., 2019) and second pandemics (Bos et al., 2011, 2016; Morozova et al.,

2020; Spyrou et al., 2016, 2019b; Susat et al., 2020) had various evolutionary origins. Additionally, no phylo-

genetic structure was found amongst 14th century CE second-pandemic strains. This is in line with their

rapid, almost clonal spread across Europe at the time of the Black Death (Bos et al., 2016).

Post-Black-Death strains appeared, however, differentiated into two main phylogenetic groups. The LAR8

and LAR11 plague genomes were nested within a first phylogenetic cluster grouping together strains

retrieved from individuals buried during the late 15th to the mid-17th century CE in Italy (San Procolo a Na-

turno, SPN; 1636 CE), Switzerland (Stans, 1485-1635 CE), and Germany (Landsberg, 1455-1632 CE and

Brandenburg, 1618-1648 CE) (Figures 1A and 3A). The second phylogenetic cluster included strains

stretched throughout the Caucasus and Europe and spanning the mid-15th to the late 18th century CE.

Bayesian phylogenetic analyses in BEAST v2 (Bouckaert et al., 2019) indicated that both clusters split be-

tween 1379 and 1434 CE (median = 1407 CE) while the most common recent ancestor of second pandemic

strains most likely lived between 1228 and 1321 CE (median = 1283 CE) (Figure 3B; Table S2). We noticed

that each of the second-pandemic and post-second pandemic clusters showed a clear temporal structure

in which older genomes generally branched first. Interestingly, these data are in line with historical evi-

dence indicating that plague would have circulated fromGermany to France and Italy following Thirty Years

War troops movements. This, and the coexistence of two differentiated phylogenetic clusters within Eu-

rope, suggest a history of outbreaks deriving from two different bacterial strains, both descending from

the Black Death. The geographic restriction of the first phylogenetic cluster along the Alps and Germany

(Figure 1A) may indicate the persistence of local foci in the region, possibly adapted to new rodent second-

ary hosts, as previously suggested (Carmichael 2014; Bos et al., 2016; Susat et al., 2020). It may, however,

also reflect the insufficient sampling currently available throughout Europe, the Caucasus and Russia.

Therefore, further work is required to test the possibility of alternative sources.
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Figure 3. Phylogenetic reconstructions

(A) Maximum Likelihood topology returned by IQTree (Minh et al., 2020) using a TVM + F + R6 substitution model and a total of 21,279 polymorphic sites.

Node supports are indicated using SH-aLRT support (Guindon et al., 2010) (left), as well as the ultrafast bootstrap approximation (Hoang et al., 2018) (right)

when superior or equal to 80%. Only one value is shown when both supports are equal to 100%.

(B) Consensus maximal clade credibility phylogeny obtained with BEAST v2 (Bouckaert et al., 2019) restricting the sequence alignment to ancient and

modern plague genomes phylogenetic clustering with or descending from second pandemic strains.
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Interestingly, the two genomes from Lariey were monophyletic and appeared phylogenetically extremely

close, suggesting that both individuals died during a single outbreak (Figure 3B). This contrasts to the sit-

uation reported in another site from the 17th century CE of Latvia, where two local genetically divergent

strains could be documented (G488 and G701) (Susat et al., 2020). Importantly, the LAR8 and LAR11 ge-

nomes were closest to those from SPN, characterized from individuals who died at this Italian location in

1636 CE. Both Lariey and SPN genomes seem directly related to one genome from Brandenburg

(BRA001), Germany, that was sequenced from the remains of one foreign Swedish soldier who occupied

the city in 1631 CE during the Thirty Years War (Spyrou et al., 2019b). The direct genetic connection found

between these different genomes adds to multiple historical sources highlighting the role that this war

played in spreading the disease (Wilson, 2009).

Genome evolution in Italy

The sister phylogenetic relationship found between the SPN and Lariey genomes provided a unique op-

portunity to test the possibility of local biological adaptation for the plague circulating at the time in Italy,

where the epidemic had a more profound demographic impact than in most other European countries (Al-

fani, 2013). There, the epidemic spread and killed in cities, hamlets and villages alike, which considerably

limited the repopulation potential and the available workforce of the country. This has been proposed to
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Figure 4. Genome composition of SPN, Lariey and other second pandemic plague genomes

(A) Sequence coverage at 207 gene loci involved in the pathogen virulence and transmission. Coverage represents the fraction of the gene CDS at least

covered once (0 = not covered, 1 = fully covered).

(B) Non-synonymous (blue), synonymous (yellow) and intergenic (red) mutations present in a subset of 27 second pandemic ancient plague pMT1 plasmids.

Open circles indicate sites not covered by at least 2 independent sequencing reads in an individual plasmid. The sequence data was trimmed and individual

base quality scores rescaled in order to limit the potential impact of postmortem DNA damage.

(C) Same as Panel B, except that those mutations affecting the CO92 reference chromosome are shown.

See also Figure S6.
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have significantly delayed the economic recovery of major city centers and to have played an important role

in the economic divergence that followed between Italy and neighbor countries, especially those with

increasing colonial power (Alfani, 2013; Parker, 2017).

In order to assess potential differences in the gene composition of the SPN and Lariey plague genomes, we

looked at patterns of coverage variation at 207 virulence loci (Figure 4A) (Cui et al., 2013). This approach

confirmed the previously described deletion of the mgt and mgtC genes in several second pandemic

strains (Spyrou et al., 2019b; Guellil et al., 2020). These deletions were, however, not present in the phylo-

genetic cluster that included the SPN and Lariey genomes. Some virulence factors showed limited

coverage across several SPN genomes (irp1-irp8; Figure 4A). Since this was only the case for those ge-

nomes characterized at minimal average coverage (SNP1, SNP8, SNP13, and SPN14; 1.2–2.6-fold average

coverage), it was indicative of local coverage drop due to limited sequencing efforts, rather than deletions.

Therefore, the SPN strain likely did not benefit from the increased intracellular survival potential within

macrophages associated with mgtB and mgtC loss (Ford et al., 2014). Likewise, the SPN genomes were

not different from other genomes in their phylogenetic clusters, as those did not show any particular dele-

tion of the inv gene either (Figure 4A). The product of this gene is involved in epithelial colonization in

Yersinia pseudotuberculosis but not in Yersinia pestis (Simonet et al., 1996), and deleted strains were pre-

viously reported in post-Black Death strains from Cambridge, UK (Spyrou et al., 2019b) and St Gertrude,

Latvia (Susat et al., 2020). Furthermore, it has been hypothesized that the coexistence of pla-deleted

and regular pPCP1 plasmids in some post-Black Death plague strains may have reduced the rapid spread

of the disease through flea vectors and favored the emergence of septicemic rather than bubonic symp-

toms (Susat et al., 2020). We recovered those coverage drops previously reported for some second

pandemic strains and confirmed their presence in both the SPN and Lariey genomes, which all showed

sequencing read spanning the whole locus (Figure S6). This suggests no pla-dependent differential trans-

mission rates between those strains.

We finally established the list of private mutations found amongst SPN genomes compared to other

second pandemic plague genomes, including from Lariey (Figures 4B and 4C, Table S6). This was

restricted to the SPN7 and SPN19 genomes, as the only one sequenced at sufficient coverage to confi-

dently identify SNPs (i.e. approximately �6.1-fold following trimming and base rescaling for handling

possible nucleotide mis-incorporation arising from postmortem DNA damage; Table S2). Similarly,

LAR8 was dismissed due to limited coverage. Only two non-synonymous mutations were common to

the SPN7 and SPN19 genomes and not found in LAR11 or any other second pandemic genomes pre-

sent in our comparative panel (Table S6). The first such mutation was located at the treC locus (CO92,

NC_003143.1:4,130,262 G > A) (Figure 4C), a gene encoding the trehalose-6-phosphate hydrolase (also

known as the alpha,alpha-phosphotrehalase). This enzyme is not known to affect virulence but is

involved in starch and sucrose metabolism and acts as osmoprotectant in Escherichia coli (Rimmele

and Boos, 1994). The second non-synonymous variant found specifically in SPN genomes only affected

the YPO_RS00910 gene (pMT1, NC_003134.1:71,016A > G) (Figure 4B), which is involved in the type II

toxin-antitoxin system RelE/ParE family toxin, a system ensuring stable plasmid inheritance for the bac-

teria (Guglielmini and Van Melderen, 2011). The SPN and Lariey genomes differed for a third mutation

affecting one tRNA gene (CO92, NC_003143.1:3,336,035). This site was, however, found polymorphic

across the other second pandemic strains and was, thus, an unlikely candidate for driving SPN-specific

virulence phenotypes.

The relatively limited number of variants distinguishing the SPN genomes from those of Lariey and other

second pandemic strains suggested no excessive accumulation of beneficial mutations along the SPN line-

age. As hypermutability can, however, lead to the quicker emergence of beneficial mutations providing a

fitness advantage to the pathogen in the co-evolutionary arms race against their host (Elena and Lenski,
iScience 24, 102383, April 23, 2021 9
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2003), we further explicitly tested whether the SPN lineage displayed particularly accelerated evolutionary

rates. Root-to-tip regression in TempEst (Rambaut et al., 2016) indicated temporality in the sequence data

available for second pandemic strains (Supplemental information). However, BEAST analyses did not sup-

port any specific substantial shift in the mutational clock along the branch leading to the SPN cluster (Fig-

ure 3B). Our approach did not show limited sensitivity since a major acceleration in other phylogenetic

branches could be detected. This, and the absence of private mutations affecting genes involved in

DNA repair, rules out potentially beneficial hyper-mutator phenotypes amongst SPN strains. Hypermuta-

bility can thus be dismissed from the list of possible drivers of the increased damage to the Italian human

population observed at the time.
Conclusion

Overall, the Italian plague genomes from the 17th century CE analyzed in this study showed only minute

genetic differences with their closest evolutionary relatives. While the existence of other diverging strains

taking over SPN cannot formally be ruled out without extensive genome sampling in Italy at the time, the

relative genetic proximity amongst other second pandemic plague genomes suggests this as an unlikely

alternative. The reason why more virulent strains would then remain endemic to Italy at the time of trans-

European wars is also unclear. Overall, this suggests that the strains circulating in Italy during the Thirty

Years War were likely not more virulent than their close phylogenetic relatives found in France,

Switzerland and Germany. It follows that the underlying cause of the specific epidemic trajectory in Italy

may not lie in the pathogen biology itself but rather in factors such as environmental, social and political

that ultimately facilitated territorial pervasiveness and spread of the disease to villages, hamlets and cit-

ies altogether (Alfani, 2013). Previous work suggested that this extreme situation prevented the country

from a quick demographic recovery, which limited the total production and fiscal income and resulted in

important, long-lasting economical damage. Further work will be required to investigate the role of path-

ogens other than plague (e.g. typhus) and climate change in this crisis as the two other common

scourges at the time.
Limitations of the study

In this study, the sequence variation present among the ancient plague strains was only investigated

following read alignment against one single reference genome and not through de novo genome assem-

bly. Structural variants and their possible functional consequences, thus, remain overlooked. Additionally,

the genetic diversity present in Italy during the 17th century CE may not have been fully characterized from

the sequence variation present in the single archaeological site of San Procolo a Naturno.
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We thank Loreleı̈ Chauvey, Stéphanie Schiavinato, and Laure Tonasso-Calvière for managing the ancient

DNA lab facilities in Toulouse and running the MiniSeq sequencing instrument. We thank Claudia Gillet,

Pierre Clavel and all other members of the AGES research group at CAGT for discussions. The authors

acknowledge support from Science for Life Laboratory, the National Genomics Infrastructure (NGI) in Swe-

den, the Knut and AliceWallenberg Foundation, and UPPMAX for providing assistance in massively parallel

DNA sequencing and computational infrastructure. This project has received funding from the French Na-

tional Research Agency (ANR) under the Investments for the Future (Investissements d’Avenir) program,

grant ANR-17-EURE-0010; the ANR LifeChange; the CNRS MITI ‘Défi Ecologie de la Santé 2020’ program;
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mortalité en Italie: 1600-1850. Population 32,
401–446.

Parker, G. (2017). Global Crisis: War, Climate
Change and Catastrophe in the Seventeenth
Century (Yale University Press).

Parkhill, J., Wren, B.W., Thomson, N.R., Titball,
R.W., Holden, M.T., Prentice, M.B., Sebaihia, M.,
James, K.D., Churcher, C., Mungall, K.L., et al.
(2001). Genome sequence of Yersinia pestis, the
causative agent of plague. Nature 413, 523–527.

Pinhasi, R., Fernandes, D., Sirak, K., Novak, M.,
Connell, S., Alpaslan-Roodenberg, S., Gerritsen,
F., Moiseyev, V., Gromov, A., Raczky, P., et al.
(2015). Optimal Ancient DNA yields from the
inner ear part of the human petrous bone. PLoS
One 10, e0129102.

Rambaut, A., Lam, T.T., de Carvalho, L.M., and
Pybus, O.G. (2016). Exploring the temporal
structure of heterochronous sequences using
TempEst. Virus Evol. 2, vew007.
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Supplemental Figures 
 
 
Figure S1. Preservation states of the cranial and post-cranial skeletons of the LAR8 and LAR11 
individuals. (A) Sample LAR8. (B) Sample LAR11. Related to Figure 1. 
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Figure S2. Genus-level Principal Coordinates Analysis (PCoA) of MetaPhlAn2 (Truong et al., 2015) 
bacterial abundance profiles. The 29 profiles obtained in this study are compared to a panel of 15 soil and 
689 human-associated modern microbiota obtained from (Fierer et al., 2012; The Human Microbiome 
Project Consortium, 2012). Those remains analyzed here with shotgun sequencing DNA data are indicated 
with respect to the tissue originally sampled (c: dental calculus; p: petrosal bone, and; t: tooth) and the 
external (i) and internal indices (lr) used for constructing triple-indexed double-stranded DNA libraries. 
Related to Figure 1. 
 
 
  



LAR8t_i44_lr35
LAR8t_i63_lr35

LAR11t_i76_lr47

LAR11t_i77_lr48

LAR23t_i67_lr39

LAR13c_i44_lr22

LAR11c_i41_lr21

LAR5c_i32_lr18

LAR8c_i37_lr19

LAR9c_i38_lr20

LAR26c_i47_lr24LAR24c_i46_lr23

−0.50

−0.25

0.00

0.25

−0.4 −0.2 0.0 0.2 0.4

PCoA 1 : 27.6 %

LAR3p_i71_lr42
LAR8p_i9_lr9
LAR8p_i44_lr21
LAR9p_i16_lr27
LAR9p_i55_lr27
LAR9p_i72_lr43
LAR14p_i13_lr32
LAR14p_i73_lr44
LAR23p_i12_lr33
LAR23p_i61_lr33
LAR23p_i74_lr45
LAR26p_i64_lr36
LAR27p_i56_lr28

LAR24t_i69_lr40
LAR27t_i71_lr42
LAR30t_i72_lr43
LAR31t_i73_lr44

Mouth

Skin

Nose

Stool

Vagina

Soil

Modern humans

Tooth

Petrous

Calculus

Ancient humans

0 42%

Yersinia
relative abundance

P
C
oA

2
:
15
.0
%



Figure S3. DNA fragmentation profiles. (A) DNA fragmentation profiles underlying the two 
ancient plague genomes characterized in this study (top: DNA library LAR8t_i63_lr35; 
bottom: DNA library LAR11t_i76_lr47). All aligned reads were processed using 
mapDamage2 (Jónsson et al., 2013) considering base with quality scores superior or equal to 
30. Position-wise base compositional profiles are provided with the 10 first (left, 1 to 10) and 
10 last (right, N-9 to N) read positions within sequencing reads, and the 5 genomic positions 
preceding read starts (left, -1 to - 5) or following read ends (right, N+1 to N+5). (B) DNA 
fragmentation profiles underlying the two ancient human genomes characterized in this 
study (top: DNA library LAR8t_i63_lr35; bottom: DNA library LAR11t_i76_lr47). Related to 
Figure 2. . 
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Figure S4. Nucleotide mis-incorporation profiles within CpG and CpH contexts in human and plague 
aligned sequencing reads. Nucleotide mis-incorporation rates are calculated within CpG and outside of 
CpG contexts (CpH refers to CpA, CpC and CpT contexts) in order to account for the difference in DNA 
methylation patterns in the human and the bacterial genome. Ancient human DNA data show evidence for 
higher Cytosine deamination rates than ancient bacterial DNA data in CpG contexts, in line with the 
presence of methylated CpGs in the human genome, that are known to undergo fast post-mortem decay 
(Smith et al., 2014, Seguin-Orlando et al., 2015). No differences in Cytosine mis-incorporation rates are 
found outside of CpG contexts across the human and bacterial data, confirming similar post-mortem 
deamination rates. The difference in overall Cytosine deamination rates observed by mapDamage (Figure 
S3) is thus fully driven by the different DNA methylation properties of plague and human genomes. (A) 
specimen LAR8, plague data. (B) specimen LAR11, plague data. (C) specimen LAR8, human data. (D) 
specimen LAR11, human data. C→T: Cytosine mis-incorporation rates in CpH contexts. All others: Average 
nucleotide mis-incorporation rates affecting adenine, guanine and thymine residues, but not cytosines. 
Related to Figure 2. 
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Figure S5. Human Population Genetic Affinities. (A) Principal Component Analysis (PCA) showing the two 
human genomes from Lariey projected onto the genetic variation present across 792 modern humans from 
Western Eurasia (Lazaridis et al., 2014). (B) Top-25 (Mbuti; LAR8t, X) f3-Outgroups, where X is a modern 
human individual from the 1240K panel. (C) Same as Panel B, for the top-25 (Mbuti; LAR11t, X) f3-
Outgroups. Related to Figure 1. 
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Figure S6. Sequence coverage profiles along the pPCP1 plasmid and the pla gene (red). The depth of 
coverage is calculated per-position and normalized to the average coverage value represented by the 90% 
quantile. Related to Figure 4. 
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Transparent Methods 
 
Archaeological sites, archaeological and anthropological information 
The cemetery from Lariey-Puy Saint Pierre was excavated in 2002 CE (Signoli et al., 2003a) on the basis of 
prospective archaeological digs carried out in 2001 CE (Signoli et al., 2001). This site is located in the 
French Alps, approximately two kilometers west of Briançon (France), and 90 kilometers west of Turin (Italy) 
(Figure 1A). It represents the only French site unambiguously assigned to the 1628-1632 CE plague 
epidemic, based on direct radiocarbon dating of four individuals (Signoli et al., 2003a) and on the presence 
of rare ceramic artefacts of local origin with Piedmontese influence. In addition, historical archive confirms 
the presence of plague in 1630 CE in Le Pinet, one of Puy St Pierre hamlets (Briançon municipal archives). 
The cemetery from Lariey-Puy Saint Pierre is therefore traditionally associated with years 1629-1630 CE 
(Bergé, 1989; Bigny, 1982). Interestingly, the plague cemetery is still part of the local popular memory 
today, as testified by a wooden cross engraved “cimetière de la peste” (literally, standing for “plague 
cemetery” in French) erected on the site and regularly replaced, and by the annual pilgrimage organized by 
Puy Saint Pierre villagers for Saint-Roch’s day, commemorating the Saint specially invoked against the 
plague. The funerary ensemble covers an area of approximately ~1,800 square meters and is delimited by a 
stone wall, while the cemetery per se is limited to ~53 square meters, in which 17 adult individuals and 17 
immatures could be identified. Both individual and multiple sepultures are present on site and are 
displayed along a north-to-south organization (Signoli et al., 2007). While single burials are concentrated in 
the northern area of the funerary ensemble, the presence of double and multiple burials increases towards 
the south. This has suggested that the funerary ensemble was first opened from the north at the time where 
infection and mortality rates were still limited. As infection and mortality rates increased, bodies had to be 
buried together within double and multiple burials, possibly as an attempt to react promptly and prevent 
further spread. The LAR8 individual was identified as an adult female on the basis of the coxal morpho-
anatomy (Murail et al., 2005; Brooks and Suchey, 1990; Schmitt, 2005). The LAR11 individual showed 
characteristic of an immature individual, probably belonging to the 15-19 age class (Schaffer et al, 2009; 
Scheuer and Black, 2004). Preservation states of the cranial and post-cranial skeletons of the LAR8 and 
LAR11 individuals are illustrated in Figure S1. Archaeological evidence indicates that LAR11 was one of the 
first victims of the epidemic, and was buried in a single sepulture in the most remote part of the cemetery. 
On the other hand, LAR8, buried in the southern part of the cemetery, was part of a group of four 
individuals who were buried simultaneously (LAR7, a young female adult; as well as LAR9 and LAR10: 
children aged between 5 and 9 years old) (Figure 1B-C; Signoli et al., 2003a). As both the administrative 
and scientific director of the Lariey excavation, co-author M. Signoli has obtained full official permission 
from the French Ministry of Culture and Communication, as well as from the regional archaeology 
authorities (Service Régional de l’Archéologie SRA PACA) to carry out sampling and scientific analyses on 
the material excavated (site reference 05 109 7 AH). Accordingly, the analyses presented in this study have 
directly involved the regional archaeology authorities SRA PACA, which are represented by co-author S. 
Tzortzis who took part of data collection and interpretation. The Lariey remains are currently located at the 
laboratory Anthropologie bio-culturelle, droit, éthique et santé ADES, UMR 7268, Aix-Marseille University, 
France. Sampling took place in February and March 2019 under the authority of co-author M. Signoli, who 
was then the director of this laboratory. 
 
 
DNA extraction 
Remains belonging to 26 different individuals were processed for this study, of which 15 were subjected to 
DNA sequencing and 11 were tested for the presence of Yersinia pestis through PCR amplification 
targeting a short fragment within the pla locus. Sample preparation was performed in the CAGT laboratory 
(UMR5288, Toulouse, France), following strict procedures to avoid and detect potential contamination. 
Samples were processed (down to the PCR setup step) in state-of-the-art ancient DNA facilities, fully 
dedicated to the analyses of archaeological remains and physically separated from post-PCR and modern 
DNA laboratories. Additionally, all experimental procedures were implemented following a systematic 
decontamination of material and surfaces, using disposable personal protective equipment and co-
processing negative blank controls together with individual samples. For 12 individuals, DNA was extracted 



from 50-200mg of petrosal bone that were obtained through the pulverization on a Retsch MM 200 
instrument of a short bone piece cut with a Dremel instrument. For 23 individuals, 15-50mg of dental pulp 
and dentin powder was drilled from the inner surface of the tooth roots and crowns, following the 
procedure described by Neumann and colleagues (2020). A total of 7 teeth also showed the presence of 
dental calculus that we collected for DNA extraction (the weight of each sample was below the scale range, 
i.e. inferior to 10mg). For each sample (including petrosal bone, tooth and dental calculus), DNA content 
was extracted following the protocol described in (Seguin-Orlando et al., 2021), using 963μL of lysis buffer 
(0.45M EDTA, 0.25mg/mL proteinase K and 0.5% N-lauryl Sarcosyl) for a first pre-digestion step of 1 hour at 
37°C, before carrying out a full digestion of the pellet overnight at 42°C in 963μL of fresh lysis buffer. 
Dental calculus was processed using the same extraction procedure, except that the pre-digestion step was 
skipped. The overnight digestion buffer was centrifuged at 12,000 rpm for 2 minutes in order to remove 
potentially remaining pellets, before an aliquot of 200μL of the supernatant was purified on a MinElute 
column (QIAGEN©) and eluted in 26μL of elution buffer (EB + 0.05% Tween 20). 
 
 
PCR screening 
The presence of Yersinia pestis DNA in the tooth extracts was assessed through a PCR assay targeting a 
sequence of the pPCP1 pla gene, as previously described (Seifert et al., 2013). A total PCR reaction volume 
of 25μL containing 2μL of DNA extract, 1.5 units of AmpliTaq GoldTM polymerase (ThermoFisher Scientific), 
1X Gold Buffer and 200nM of each primer, was subjected to a touch-down amplification program (2 cycles 
of 30 seconds at 94°C, 30 seconds at 64°C and 60 seconds at 72°C, followed by 2 cycles of 30 seconds at 
94°C, 30 seconds at 62°C and 60 seconds at 72°C, and finally; 46 cycles of 30 seconds at 94°C, 30 seconds 
at 60°C and 60 seconds at 72°C). The presence of a specific 133bp amplified product was visualized by 
electrophoresis on a 2% agarose gel. 
 
 
Uracil excision, library construction and amplification 
For a total of 29 remains, originating from 15 distinct individuals (Table S1), a 22.8μL aliquot of DNA extract 
was subjected to Uracil-Specific Excision Reagent treatment by incubation at 37°C for 3 hours with 7μL of 
USER enzyme (NEB®). Illumina sequencing libraries were constructed following a well-established protocol 
(originally described in (Rohland et al., 2015) and modified as described in (Fages et al., 2019)) to introduce 
a unique 7-nucleotide barcode within both adapters P5 and P7 (those indices are referred to hereafter as 
‘internal’ indices as they form the first 7 nucleotide positions within each sequencing read; see lrXX, where 
XX is identified as a number on Table S1). Libraries were amplified and indexed by performing 8-12 PCR 
cycles in 25μL reaction volumes using 1 unit of AccuPrimeTM Pfx DNA polymerase, 4-6μL of DNA library and 
with an overall concentration of 200nM of both the InPE1.0 primer and one custom PCR primer including a 
unique 6-nucleotide index (this index is hereafter referred to as ‘external’ index as its sequence is obtained 
following the priming of a sequencing reaction independent from that leading to each read pair; see iXX, 
where XX is identified as a number on Table S1). Amplified products were purified using Agencourt Ampure 
XP beads (1.4:1 or 1.6:1 as beads:DNA ratio) and eluted in 20μL EB+0.05% tween. Library molarity, size and 
concentration were checked on a Tapestation 4200 instrument (Agilent Technologies) and on a QuBit HS 
dsDNA assay (Invitrogen). Up to 3 amplified libraries were obtained per sample, for a total of 45 DNA 
libraries (Table S1).  
 
 
DNA Sequencing 
Amplified libraries were pooled with other indexed libraries and sequenced using the Paired-End mode on 
an Illumina MiniSeq instrument (2x80 bp reads) at the CAGT laboratory (Toulouse, France) or on a NovaSeq 
S4 (2x150 bp reads) at SciLifeLab (Stockholm, Sweden) in order to obtain deeper genome coverage.  
 
 
 
 



Read processing, alignment, trimming and rescaling 
Illumina paired-end reads were demultiplexed according to the 7-bp ‘internal’ indexes present at both read 
starts (Rohland et al., 2015), using a maximum edit distance of 1 mismatch per individual index. 
Demultiplexed reads were then trimmed for adapter sequences (--mm 5) and poor-quality ends (Phred 
quality scores ≤ 2), and collapsed into single reads using AdapterRemoval2 (Schubert et al., 2016). 
Collapsed, collapsed truncated and non-collapsed pairs were mapped against a number of reference 
genome sequences, including the human reference genome (GRCh37, hg19), the human revised 
Cambridge reference sequence (rCRS, Genbank Accession Number NC_120920.1), the plague reference 
genome (strain CO92, Accession Number = NC_003143.1 ; (Parkhill et al., 2001)), and each individual 
plasmid, including pCD1 (Accession Number = NC_003131.1), pMT1 (Accession Number = NC_003134.1), 
and pPCP1 (Accession Number = AL109969.1). As the plague chromosome is circular, the first and last 30 
bp of the CO92 chromosome sequence were duplicated at the end and the start of the CO92 chromosome 
sequence in order to identify those reads extending across both regions. The same was done to handle the 
circularity of each plasmid, except that only the first 30 bp were copied at the end of each individual 
plasmid reference sequence. Read alignment against the human nuclear and mitochondrial genomes was 
carried out using Bowtie2 (Langmead et al., 2012) according to the recommendations of Poullet and 
Orlando (2020) and the procedures described by Seguin-Orlando and colleagues (2021). Read alignment 
against the plague chromosome and plasmids was carried out using BWA backtrack v0.7.17-r1194-dirty and 
followed the stringent parameters described by Spyrou and colleagues (2019b). All aligned reads shorter 
than 25 bp and alignments showing mapping quality strictly inferior to 30 were disregarded. PCR duplicates 
were removed using MarkDuplicates from Picard Tools (version 2.18.0, 
http://broadinstitute.github.io/picard/) and read were locally re-aligned around indels using GATK (version 
3.8.1, (McKenna et al., 2010)). Read collapsing, trimming and mapping, as well as PCR duplicate removal 
and local realignment were carried out using the Paleomix automated computational pipeline (version 
1.2.13.2 (Schubert et al., 2014)). Sequencing statistics, including numbers of sequencing reads, endogenous 
DNA content, clonality, and coverage are provided in Table S1. We downloaded previously published 
sequence data from 30 Yersinia pseudotuberculosis strains, 2 Yersinia similis, as well as 127 modern and 
133 ancient Yersinia pestis strains (Table S2), representing a total of 24.8 billion reads. Raw fastq reads (or 
read pairs) were subjected to the same processing steps as described above so as to obtain an extensive 
comparative genome panel. We noticed that the ancient genomes previously characterized combined a full 
array of archaeological sites and experimental methods (including DNA extracts treated or not treated using 
the USER-enzyme (Rohland et al., 2015), shotgun sequencing and capture data). They were, thus, likely 
affected by various levels of post-mortem DNA damage, resulting in the presence of different proportions 
of nucleotide mis-incorporations in our comparative panel. In order to mitigate such effects, all plague BAM 
alignment files were subjected to the following procedure. First, we used PMDtools (Skoglund et al., 2014) 
to identify those aligned reads carrying post-mortem DNA damage signatures, using the conservative score 
of 1. The base quality of all read positions affected by signatures of post-mortem Cytosine deamination (i.e. 
C-to-T and G-to-A transitions, relative to the reference) was further downscaled using mapDamage v2.7 
(Jónsson et al., 2013). This effectively resulted in the elimination of all mutations potentially introduced by 
post-mortem DNA damage. Once rescaled, read alignments were further trimmed across the first and last 
10 positions to eliminate additional sources of spurious variation potentially present. Those aligned reads 
that did not show any evidence of post-mortem DNA damage (PMD score threshold < 1) were trimmed the 
first and last 5 read positions only. Aligned reads were then merged together using samtools merge (Li et 
al., 2009) in order to obtain final BAM files for downstream analyses. 
 
 
Human genome analyses 
Individual sex was inferred on the basis of X-to-autosomal sequence coverage. Mitochondrial haplotypes 
were called using haplogrep (version 2.2 (Kloss-Brandstätter et al., 2011)), minimal mapping and base 
quality thresholds of 30 and a minimal depth filter of 5 (or 3 for those individuals showing minimal 
coverage; Table S1), following the procedure from Seguin-Orlando and colleagues (2021). Contamination 
rates based on mitochondrial data were estimated using Schmutzi (Renaud et al., 2014). The Y-chromosome 
haplotype carried by individual LAR11 was called using the Yleaf statistical package (Ralf et al., 2018). 



Contamination rates were also estimated for males using heterozygosity measurements at polymorphic sites 
present on the X chromosome, following the methodology from (Rasmussen et al., 2011) and implemented 
in ANGSD (Korneliussen et al., 2013), excluding transition substitutions and sites covered only once or more 
than 200-times. Relatedness between the LAR8 and LAR11 individuals was assessed using lcMLkin (Lipatov 
et al., 2015), considering all autosomal positions overlapping the 1240K dataset (v42.4 available at 
https://reichdata.hms.harvard.edu/pub/datasets/amh_repo/curated_releases/V42/V42.4/SHARE/public.dir/v
42.4.1240K_HO.tar) and random sampling one read at those sites covered multiple times. The sequence 
data was converted to vcf prior to running lcMLkin using VCFtools (version 0.1.17) (Danecek et al., 2011), 
and pruned using the SNPbam2vcf.py script for sites located at least 100 kb apart and present at minimal 
5% allelic frequencies (--thin 100000 --maf 0.05). Principal Component Analysis (PCA) was carried out using 
the Human Origin reference panel for 592,998 autosomal genotypes in 796 modern west Eurasian 
individuals, as reported by Patterson and colleagues (2012) and Lazaridis and colleagues (2014). The 
analysis was based on pseudo-diploid genotype calls due to the limited genome coverage achieved for 
both the LAR8 and LAR11 individuals. PCA was carried out using smartPCA from EIGENSOFT version 7.2.1 
(Patterson et al., 2006), and turning the lsqproject and shrink options on for projecting the two ancient 
individuals onto the two first principal components (PCs) obtained from modern reference individuals. 
Finally, we carried out f3-Outgroup statistics using q3Pop from Admixtools (version 5.0 (Patterson et al., 
2012)) to identify those modern individuals showing highest genetic affinities with the two ancient 
individuals sequenced in this study. The comparative panel included a total number of 6,152 individuals 
from across the world, including 4 Mbuti individuals who were used as outgroup (S_Mbuti-3.DG, B_Mbuti-
4.DG, S_Mbuti-2.DG, S_Mbuti-1.DG).  
 
 
Metagenomic profiling 
Microbial taxonomic profiles of each individual DNA library were determined using the metaBIT automated 
computational package (Louvel et al., 2016), disregarding collapsed truncated and uncollapsed pairs as well 
as collapsed reads showing high-quality (mapping quality ≥ 30) unique alignments against the human 
genome, and restricting assignments to non-viral and non-eukaryotic taxa present in the MetaPhlAn2 
diversity database (Truong et al., 2015). Bacterial taxa supported by abundances lower than 1% at either the 
species level (Figure 1D) or the genus level (Figure S2) were disregarded. Unsupervised clustering of 
abundance profiles was carried out at the species level using the pvclust R package (https://cran.r-
project.org/web/packages/pvclust/index.html) (Suzuki and Shimodaira, 2006), assessing node support 
through approximately-unbiased (au) tests and 10,000 bootstrap pseudo-replicates. Principal Coordinate 
Analyses were carried out based on Bray-Curtis distances to compare the taxonomic profiles of all individual 
DNA libraries sequenced in this study. The analyses were repeated to a broader panel, including a range of 
modern microbial profiles, including from 15 soil samples as well as 689 human-associated modern 
microbiota obtained from (Fierer et al., 2012; The Human Microbiome Project Consortium, 2012). Linear 
Discriminant Analyses were carried out in LEfSe with default parameters (Segata et al., 2011), and grouping 
samples in four categories corresponding to Yersinia pestis-positive teeth, Yersinia pestis-negative teeth, 
petrosal bones and dental calculus. 
 
 
Phylogenetic analyses 
Maximum Likelihood phylogenetic trees were constructed using IQ-Tree v1.6.12 (Minh et al., 2020). The 
best mutational model (TVM+F+R6) was automatically selected using AICc from a panel of 283 individual 
models corresponding to various combinations of 22 common substitution models, site frequency models 
(F), and rate heterogeneity across sites (G). Base frequencies were optimized by Maximum Likelihood (ML) 
during phylogenetic reconstruction. Sequence alignments corresponded to those CO92 chromosome 
positions that were polymorphic (disregarding indels) and covered in at least half of the plague 
chromosomes. Any strain showing less than 75% of the resulting sites was further removed from the 
alignment, resulting in a total of 21,279 sites, including 17,688 parsimony-informative and 3,591 singletons. 
Individual base positions were called using BCFtools (version 1.8-31-g9ba4024, using htslib 1.7-41-
g816a220; (https://github.com/samtools/bcftools)), especially considering minimum base and mapping 



Phred scores of 30 in the mpileup module, turning the --ploidy flag to 1 in the call module, and filtering 
those variants located within a 10 bp range of indels and those showing a genotype Phred score strictly 
inferior to 30. Positions showing coverage superior to the 99.5% quantile of the position-wise coverage 
distribution were disregarded as potentially indicative of undetected chromosomal rearrangements such as 
duplications. The individual threshold per strain was obtained from the Paleomix depths command with 
default parameter (Schubert et al., 2014). Node support was estimated using a total of 1,000 ultrafast 
bootstrap (UFBoot) approximation (Hoang et al., 2018) and the SH-like approximate likelihood ratio (aLRT) 
test with 1,000 replicates (Guindon et al., 2010).  
 
Bayesian phylogenetic reconstructions were carried out in BEAST v2.6.3 (Bouckaert et al., 2019), following 
the methodology from Spyrou and colleagues (2019b). In short, the sequence alignment used in IQ-Tree 
was restricted to those strains that formed the second plague pandemic as well as those belonging to the 
same main phylogenetic cluster, which included modern third pandemic strains (see Table S2 for the final 
list of samples considered). The Beast2 xml file was prepared in BEAUti 2 (Drummond et al., 2012), 
importing the fasta alignment and providing absolute dates for tips (before present). The GTR+G8 
substitution model was considered and mutation rate variation (uniform prior range between 1.e-2 to 1.e-10 
substitution per site per year) along the tree branch lengths was modeled using the Relaxed Clock Log 
Normal clock model (Drummond et al., 2006). Root-to-top regression in TempEst v1.5.3 
(http://tree.bio.ed.ac.uk/software/tempest/) using the IQtree ML-tree obtained on the data underlying the 
Beast2 analysis, and constructed without molecular clock assumption, supported temporal structure in the 
data (R squared function, correlation coefficient = 0.769). Effective population size could vary according to 
the stepwise coalescent Skyline model (Drummond et al., 2005), considering a total of 20 individual time 
bins. The tree topology, branch length and the other model parameters were estimated following 
750,000,000 MCMC iterations, sampling 1 very 100 state. A final set of 50,000 trees was obtained using 
LogCombiner disregarding the first 20% as burn-in and sampling a final subset of 50,000 trees with 
LogCombiner (https://www.beast2.org/programs/). The maximum clade credibility tree was obtained in 
TreeAnnotator (https://www.beast2.org/treeannotator/). MCMC convergence was assessed through ESS 
values superior to 200 for all relevant model parameters. All trees were plotted using the R ggtree library 
(Yu et al., 2018). 
 
 
Genome characteristics 
Patterns of depth-of-coverage variation along the CO92 chromosome were calculated for each individual 
strain using 1,000 bp non-overlapping sliding windows using the Paleomix coverage command (Schubert et 
al., 2014) (Figure 2). Depth-of-overage calculations were carried out within 100 bp non-overlapping sliding 
windows for the three individual plasmids. Additionally, patterns of %GC variation along the CO92 
chromosome and the three plasmids were calculated within the same windows and using seqtk 
(https://github.com/lh3/seqtk). Circular plots were plotted using the R circlize library (Gu, 2014). Gene 
coverage was calculated using the Paleomix depths module (Schubert et al., 2014) for a total of 163 
chromosome and 44 plasmid regions previously described to be associated with virulence characteristics 
(Zhou et al., 2004; Zhou and Yang, 2009; Keller et al., 2019; Spyrou et al., 2019b). Here, gene coverage was 
calculated as the fraction of the positions that was covered at least once. Gene coverage was plotted using 
the heatmap function from the R ggplot2 library (https://cran.r-
project.org/web/packages/ggplot2/index.html) (Figure 4A). Synonymous and non-synonymous sequence 
polymorphisms were annotated using snpToolkit v2.0.6 (Namouchi et al., 2018) and the individual vcf files 
generated as described in the previous section. The minimal depth threshold was set to 3 (DP4≥3) for bases 
showing Phred scores above or equal to 30. The allele present in a given strain was then identified as long 
as it was present in at least 90% of the reads. We also calculated the overall heterozygosity observed along 
the CO92 chromosome using VCFtools and the same parameters as those described in the previous 
section, except that the –ploidy option was set to 2. Edit distance distributions were generated from the 
NM:i field obtained while running the samtools view command. Coverage variation along the pPCP1 
plasmid shown as Figure S6 is calculated per-position and normalized to the average coverage value 
represented by the 90% quantile. 



Data availability 
Raw sequence data and alignments are available at the European Nucleotide Archive (ENA) under 
accession number PRJEB43291. 
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