
HAL Id: hal-03356261
https://hal.science/hal-03356261v1

Submitted on 27 Sep 2021 (v1), last revised 3 Mar 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Value learning from trajectory optimization and Sobolev
descent: A step toward reinforcement learning with

superlinear convergence properties
Amit Parag, Sébastien Kleff, Léo Saci, Nicolas Mansard, Olivier Stasse

To cite this version:
Amit Parag, Sébastien Kleff, Léo Saci, Nicolas Mansard, Olivier Stasse. Value learning from tra-
jectory optimization and Sobolev descent: A step toward reinforcement learning with superlinear
convergence properties. International Conference on Robotics and Automation (ICRA 2022), May
2022, Philadelphia, United States. �hal-03356261v1�

https://hal.science/hal-03356261v1
https://hal.archives-ouvertes.fr

Value learning from trajectory optimization and Sobolev descent:
A step toward reinforcement learning with superlinear convergence properties

Amit Parag1,2, Sébastien Kleff2,3, Léo Saci2, Nicolas Mansard1,2 and Olivier Stasse1,2

Abstract— The recent successes in deep reinforcement learn-
ing largely rely on the capabilities of generating masses of data,
which in turn implies the use of a simulator. In particular,
current progress in multi body dynamic simulators are under-
pinning the implementation of reinforcement learning for end-
to-end control of robotic systems. Yet simulators are mostly
considered as black boxes while we have the knowledge to
make them produce a richer information. In this paper, we
are proposing to use the derivatives of the simulator to help
with the convergence of the learning. For that, we combine
model-based trajectory optimization to produce informative
trials using 1st- and 2nd-order simulation derivatives. These
locally-optimal runs give fair estimates of the value function and
its derivatives, that we use to accelerate the convergence of the
critics using Sobolev learning. We empirically demonstrate that
the algorithm leads to a faster and more accurate estimation
of the value function. The resulting value estimate is used
in model-predictive controller as a proxy for shortening the
preview horizon. We believe that it is also a first step toward
superlinear reinforcement learning algorithm using simulation
derivatives, that we need for end-to-end legged locomotion.

I. INTRODUCTION

We consider the problem of computing the optimal control
policy in the continuous domain, with application to the
end-to-end control of polyarticulated robots, like torque-
controlled manipulator arms or legged robots. Since the
advent of deep reinforcement learning [1] and its general-
ization to continuous domain [2], [3], robot control has been
recognized has one of the major challenges of the domain [4].
On the one hand, researches have targeted advanced robot
scenarios and sensor outputs [5], [6] often relying on an
underpinning low-level controller (impedance or Cartesian
controller). On the other hands, efforts have been made
to target more complex robots such as quadruped [7] or
biped [8] robots by focusing on a more accurate modeling of
the robot dynamics [9] and a more advanced (stronger, more
robust, faster) simulation of the polyarticulated behavior [10],
[11]. In parallel, RL solvers have made great progress and
are now more stable [3] and faster to converge [12].

Yet solving end-to-end polyarticulated problem remains a
difficult challenge for generic RL solvers. Indeed, sending
reference torques directly to the simulator or to the model
makes the system much more unstable [13]. The introduction
of a lower level of control, hand-tuned to the particular
robotic system, mitigates this effect [7]. Yet imposing a priori
the low-level controllers structure and its corresponding
impedance might be suboptimal or even lead to improper

1Artificial and Natural Intelligence Toulouse Institute, France
2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
3New York University, USA

behavior during demanding contacts, in particular for biped
locomotion [14]. Following the recent advances in legged
locomotion [15]–[17], we believe that computing a policy
that would drive the robot directly in torque, if achievable,
would have great practical interest.

While current RL solvers have difficulties to directly tackle
end-to-end polyarticulated problems, several approaches
have been proposed to make their work easier. Acknowledg-
ing for the improved capabilities of motion planner to dis-
cover complex movement, guided policy search bootstrap the
reinforcement loop with locally optimal trajectories obtained
from a trajectory optimizer [18]. The trajectories can later
be refined using the trained policy to produce better demon-
strations by warm-starting the trajectory optimizer [19], or
the policy and the demonstrations be simultaneously opti-
mized [20], [21]. These works show the correlation between
policy learning and trajectory optimization, as optimal trajec-
tories and optimal policies are two ways of considering the
solution of the optimal control (or Markov decision) problem.
Reciprocally, several works have tried to take advantage of
this duality to learn a quantity that would help a trajectory
optimizer. In [22], a trajectory optimizer is helped with a
dedicated dynamic model learned on a specific task. In [23],
a dedicated cost model is learned to cope with the prohibitive
complexity of optimizing long-horizon trajectories. Shorten-
ing the trajectory horizon typically leads to observing the
importance of obtaining a good approximation of the value
function, both in trajectory optimization and policy learning.
It was originally proposed to learn the value as a proxy for
the cost corresponding to the end of the horizon [24]. While
a fair approximation of the value function can be obtained
offline by sampling long locally optimal trajectories, the cost
might become prohibitive when the state space is large or
implies clever sampling solutions [25]. In [26], the value ap-
proximation gets reinforced when short horizon trajectories
are optimized with a terminal cost set to the approximated
value. Producing new optimal trajectories while exploiting a
previously optimized value approximation in a reinforcement
loop can be considered as an actor-critic formulation, where
the actor is optimally acting over an horizon: it can then
be shown that the prediction reduces the noise in learning
the value and speed up the training [27]. As shown in [28],
deep policy gradients methods often fail to adhere to the
key primitives of reinforcement learning: the role of the
value function estimated by the critic is only marginal since
the learned value function does not accurately model the
underlying value function.

In this paper, we focus on learning the value function by

combining a trajectory optimizer and a supervised learning
phase using value approximation and its derivatives. Our
objective is to learn the value with a high accuracy, while
avoiding the need of extensively sampling the state space. A
trajectory optimizer is first used to sample optimal trajecto-
ries over a short horizon a get a lower bound of the value
function. As we are using differential dynamic program-
ming [29]–[31], a particular instance of (direct shooting)
trajectory optimizer, we also get for free samples of the
derivative of the value (see Sec. II). We then train a neural
network to approximate the value and its derivative using a
Sobolev loss [32] (see Sec. III). This particular loss acceler-
ates the convergence to a more accurate approximation, while
enabling better generalization despite sparse sampling. As a
side effect, it also provides an accurate way of evaluating
the approximate gradient of the value. As our trajectory
optimizer also demands the Hessian of the value, we propose
a particular network architecture, that we call Gauss-residual
network, which provides a fair approximate of the second
derivatives. We evaluate the interest of our approach on three
classical control problems : inverted pendulum, cartpole and
unicycle.

II. RECURSIVE OPTIMALITY

A. Problem formulation and notations

While optimal control problem are best written with
continuous time and integrals, we directly consider here its
transcription into a time-discrete system with autonomous
dynamics:

xt+1 = f(xt, ut,Ω) (1)

where the states x are living in an n-dimensional vector
space x ∈ X , (possibly representing an element of a Lie
group), and controls u ∈ U , with Ω a parametrization
of the environment where the system evolves and f , the
time independent dynamic function that governs the state
transition from the current state and control. The goal in
optimal control is to find pairs of trajectories X : t→ x(t) ∈
X and U : t→ u(t) ∈ U that minimizes some cost functional
L(X,U). Typically, the cost functional is composed of an
integral cost term and a terminal cost term. For a discrete
system, the cost functional can be written as :

L(X,U) =

+∞∑
k=0

l(xk, uk) + lt(xN) (2)

where l(x, u) : X ×U → R is the running cost and lt(x, u) :
Rn → R is the terminal cost. Therefore given an initial state
x0 and a time horizon T , aim of optimal control is to find
the pair of optimal state and control trajectories X∗, U∗ that
minimizes the cost functional.

We denote by V : x→ V (x) ∈ R the value function, i.e.
the optimal value of L(X,U) when the trajectory X starts
from a given state x, and by π : x→ π(x) ∈ U the optimal
policy.

B. Truncating the horizon

While we typically want to control the system during an
indefinite (infinite) horizon, finite computational resources
implies to shorten the horizon to a finite length T . We denote
by Vk cost-to-go from a starting state x:

Vk(x) = min
U

T−1∑
j=k

l(xj , uj) + lt(xt) (3)

where k is the time step.
Recursive optimality can be obtained if the terminal cost

is chosen to be the value function. In that case, the problem
writes:

min
X,U

T−1∑
k=0

l(xk, uk) + V (xT) (4)

s.t.∀k = 0..T − 1, xk+1 = f(xk, uk)

This problem is stricly equivalent to the infinite horizon
problem but can be solved with finite resources, given that
V (x) can be properly evaluated.

In that particular case, the cost-to-go is independent of the
timestep and is equal to the value function:

Vk(x) = V (x), ∀k = 0 · · ·T

C. Differential Dynamic Programming

Differential dynamic programming (DDP) exploits the
recursive nature of Bellman Optimality Principle by rewriting
the optimal value function, Eq 3, as

Vk(x) = min
u
l(x, u) + Vk+1(f(x, u)) (5)

with the terminal condition VT (x) = lx It proceeds by iter-
atively solving the the optimal control problem described in
Sec II-A to find the local solution by performing a backward
pass to approximate a quadratic fit of the value function
around the current candidate trajectory and a forward pass
to compute a new nominal trajectory based on the value
function computed in backward pass. For our experiments,
we use Crocoddyl [31] as our model-based DDP solver.

A consequence of the backward pass is that it reconstructs
a quadratic model of the value function along the horizon.
The solver then returns an evaluation of the cost-to-go and its
first and second order derivatives over the preview horizon.

DDP is a second-order algorithm which exhibits super-
linear convergence rate [29], [33]. It then requires at each
iteration an evaluation of the dynamic and cost function and
their derivatives. In particular, we need to provide the first
and second order derivatives of the cost l(x, u).

D. Value at the horizon start and end

In the following, we will use an approximation of the
value function as a proxy to represent the truncated horizon
end. This implies that we should be able to evaluate an
approximation of the value function and its first and second
order derivatives at the end of the horizon. The solver will
then return a refined approximation of the value function at
the beginning of the horizon, and its derivatives. We will
now use these two properties to build our algorithm.

III. DIFFERENTIAL VALUE PROGRAMMING

A. Algorithm principles

1) Batch of trajectories and cost-to-go learning: The
first iteration of our algorithm, named Differential Value
Programming (DVP), simply generates a batch of optimal
trajectories of horizon length T without any terminal cost
model, i.e. approximating the value function at the end of the
horizon by 0. We then learn the value function by supervised
learning, as explained with more details below. The result of
this first iteration is a neural network approximating the cost-
to-go for an horizon of T .

2) Iterative value learning: DVP then proceeds by itera-
tively building upon its estimates of value functions. In the
subsequent iterations, we replace the terminal cost functional
with the approximated value predicted by the neural network.
So, after the initial iteration is complete, we replace (3) with

Vi(x) = min
u

T−1∑
k=0

l(x, u) + V i−1θ (xT) (6)

where i is the DVP iteration number and Vθ is a deep
neural network parameterized by θ representing the value
approximated at the previous iteration. Should each iteration
result in a perfect training, iteration i would lead to the
approximation of the cost-to-go for an horizon of (i+1)×T ,
which would tend toward V as i increases.

B. Sobolev Regression

Classical regression invariably involves optimizing the
parameters of a deep neural network such that the error
between the learned function and the ground truth function
decreases. While the function approximation theoretically
guarantees that neural networks can learn arbitrarily well, the
accuracy and generalization capabilities yet depend on the
quality (exactness and density) of the training dataset. The
premise of Sobolev learning, [34], is to use the derivatives of
the function to be approximated, such that the derivatives of
the network match the derivatives of the learned function. In
our work, we further benefit from the advantage of Sobolev
learning since we need to provide the derivatives of the value
function to our optimal control solver.

The loss function for our regression is then composed of
two terms:

lossf =

N∑
i=1

λ (m (xi | θ) , f (xi)) (7)

lossd =

N∑
i=1

K∑
j=1

λj
(
Dj

xm (xi | θ) , Dj
xf (xi)

)
(8)

where lossf penalizes the differences between the model and
the dataset with a norm λ (in our case the L2 norm), lossd
penalizes the difference between the derivatives of the model
and the derivatives of the observations, and Dj

x are the higher
order derivatives evaluated at x (we stay at order 1 in our
implementation, although order 2 would be feasible) for a
norm λj (also L2 in our implementation).

Sobolev learning has been shown to lead to better gener-
alization in robotics and reinforcement learning [35], albeit
at a higher computation cost [36], as it constrains training
by forcing neural networks to fit a target slope. However,
encoding the target derivative information in neural networks
has been shown, empirically, to increase robustness against
noise as proven in [37] and mitigate the problem of increased
computation cost by being more data efficient [38].

C. Evaluating second-order derivatives

As mentioned above, Sobolev learning allows us to obtain
a more accurate convergence despite a sparser dataset, and
also regularizes the derivatives of the model. This second
point is important as these derivatives are needed by the DDP,
as explained in Sec. II. Yet DDP also requires the Hessian of
the value function. While Sobolev would theoretically benefit
from second-order information, which is also available in
practice from the DDP, the evaluation of the second-order
loss (8) and the backpropagation of its gradient are not
reasonable to evaluate.

We rather propose to set up a particular network ar-
chitecture, called Gauss-residual network architecture, that
we demonstrate to properly regularize the training of the
Hessian. Our network model reads:

m(x|θ) = r(x|θ)2 (9)

where r(x|θ) is a vector-tailed network, called the residual
network, whose output is squared and summed to produce
the final value. The gradient of this model is then simply:

D1
xm(x|θ) = 2D1

xr(x|θ)T r(x|θ)

where D1
xm and D1

xr are the gradient of m and Jacobian of
r respectively. The the Hessian of m is approximated as:

D2
xm(x|θ) ≈ 2D1

xr(x|θ)TD1
xr(x|θ)

This approximation is known as the Gauss approximation,
and leads to the famous superlinear algorithm Gauss-Newton
(which is typically implemented in most of DDP frame-
works). We can interpret this network as computing the value
as the square of a latent vector r, and approximating the
second order derivatives of the value as the derivatives of
the network tail.

We will show empirically that this particular model,
combined with first-order Sobolev learning, leads to an
accurate, robust and efficient representation of the value
function, which perfectly suits to the requirements of the
DDP algorithm.

IV. EMPIRICAL EVALUATION

A. Experimental setup

We propose to benchmark our approach on 3 systems
by using as a baseline (ground truth) the arbitrarily good
approximations of the value function that can be obtained
by sampling large datasets of long optimal trajectories in
various configurations. We used the following problems:

a) Unicycle: The unicycle [39] features a kinematic
model of evolving on the 2D horizontal plane either driving
forward or turning on the spot. Denoting the configuration
vector q = (x, y, θ)T of dimension n = 3, the unicycle model
reads:

ẋ = v cos(θ) (10)
ẏ = v sin(θ) (11)

θ̇ = ω (12)

where the control u = (v, ω) includes the unconstrained
longitudinal and angular velocities. The task is to reach the
goal position q = (0, 0, 0)T while minimizing the residual
sum of errors:

L = ||w1 ∗ q||2 + ||w2 ∗ u||2 (13)

b) Cartpole: A cartpole1 is a dynamical system where
an underactuated pole is attached on top of a 1D actuated
cart. The task is to balance the pole around its unstable
unstable equilibrium (upper position) by controlling the
horizontal forces acting on the cart [40]. The cost functional
to be minimized is:

L = w1||x||2 + w2||u||2 (14)

where x = (q, v) is the state and the control u is force
exerted on the cart.

c) Simple Pendulum: The inverted pendulum1 swingup
problem consists in bringing the pendulum from a random
position to its upper equilibrium and maintaining it upright.
The cost functional we use is identical to the cartpole cost
functional, with u representing the torque applied about the
pendulum’s rotation axis.

In our experiments, we empirically establish baselines
of DVP. Concretely, we aim to quantify the convergence
properties of DVP and the influence of Sobolev training.
In order to characterize the convergence properties of our
algorithm, we use a validation dataset as a substitute for
the value function of the infinite horizon problem. This can
be done, albeit at an extremely high computational cost,
by solving the optimal control problem over extremely long
horizons.

B. Convergence of DVP

1) Overall convergence: Fig. 1 shows the value function
learned by our algorithm in its 10th iteration and the cor-
responding mean squared error with respect to the ground
truth value function. Convergence to 10−5 is obtained for
the pendulum and the cartpole, and convergence to 10−3 is
obtained for the unicycle (which would eventually reach the
same accuracy with more iterations).

The difference between the value function at each iteration
and ground truth with respect to DVP iterations is depicted in
Fig. 2. For the pendulum case, just 1 iteration is sufficient for
DVP to achieve convergence. For cartpole, DVP takes a few
more iterations to converge to a good enough approximation

1We use the Open Ai gym implementation of the dynamical model.

a: Pendulum

b: Cartpole

c: Unicycle

Fig. 1: The predicted value functions after 10 iterations (right) and mean
squared error between the predicted function and ground truth value function
(left).

a: Pendulum

b: Cartpole

c: Unicycle

Fig. 2: Evolution of the mean squared difference between value predictions
of iterations 1, 5 and 10 and ground truth for the 10th iteration.

of the global value function. For systems with regions of
local minima like unicycle, achieving convergence requires
relatively more iterations.

Fig. 3 quantifies the convergence through validation loss at
the end of every epoch. We used the idea of Bellman residual
[41], [42] to establish the convergence criteria of DVP. It is
easy to see that as the value function estimates come closer
to the optimal value function, the difference in successive
estimates decreases. Residuals between two successive value
functions can be a good indication of prediction. Upon or
near convergence, the higher iterations of DVP should not
show much difference between their behaviors.

2) Influence of the horizon length: We discuss two results
regarding the impact of the initial horizon length T . Short
horizons lead to important differences between the cost-to-go
and the value, hence to a poor approximation of the value
in early iterations of DVP. This clearly appears in Fig. 4,
where the truncation to small horizon leads to trajectories
far from the optimum. Once the value is properly estimated,

a: Pendulum

b: Cartpole

c: Unicycle

Fig. 3: Bellman residuals i.e difference between the value at two successive
iterations (left) and difference between value function at each iteration and
ground truth (right)

a: Solver with terminal network b: Solver

Fig. 4: (left) State trajectories computed by the solver with the value as
terminal proxy (6), for T = 20 to 100. The trajectory in black is the reference
ground truth state trajectory computed by the solver at horizon 1000. (right)
State trajectories computed by the solver without the terminal value proxy,
for different horizons: more variability (suboptimality) appears.

the bundle of trajectories converges closer to the optimum
(on the unicycle, the convergence is not perfect despite an
accurate convergence to the value, due to nonholonomy).

Consequently, DVP converges faster when T increases.
For the considered system, the typical duration of an episode
(until system steady state) is 150, and DVP shows proper
convergences for T ≥ 40, see Fig. 5. For smaller T ,
the convergence is slower or even fails to reach a global
optimum. This is not surprising and can be mitigated by
increasing the dataset size.

3) Robust convergence: We empirically establish the sta-
bility and robustness of our algorithm by forcing DVP to
learn a noisy dataset at the first iteration. We find that DVP
requires only a few iterations to learn the ground truth.
Fig. 6 shows the convergence of DVP under various levels
of initialization noise.

C. Influence of Sobolev learning

1) Importance of the Sobolev loss: Our experiments with
Sobolev learning corroborate the generalization capabilities

a: Cartpole b: Unicycle

Fig. 5: Evolution of the difference between ground truth value function and
different iterations, for high horizons (top) and small horizons (low).

Fig. 6: Evolution of the algorithm under noise initialization. The y-axis
measures the mean squared difference between each iteration and ground
truth value function.

and confirm that Sobolev regression requires fewer training
epochs than classical regression, see Fig. 7. Sobolev training
requires only 50 samples to achieve a 10−3 accuracy on a
validation dataset.

2) Gauss-residual network: For our experiments, we use a
3 layered Gauss-residual network with hyperbolic tangent as
an activation function and 64 units in each hidden layers. The
final residual layer contains 3 units. Empirically, we find that
the advantage of modeling the value function as a squared
residual leads to faster convergence during Sobolev training
as shown in Fig. 8. The gradients of residual network are
also more accurate than those of feed forward network as

Fig. 7: Comparision of sample size needed to achieve sufficient accuracy
with classical and Sobolev regression (left) with Sobolev loss (right) without
Sobolev loss. The Sobolev loss is less prone to be stuck in a local minimum
when smaller dataset are provided when approximating the value (top). The
derivative of the value is always better approximated with Sobolev loss
(bottom).

a: Value b: Gradients

Fig. 8: Sobolev training Loss comparison for Gauss Residual Network
and Feed Forward Network. The red curve shows the training loss for
Gauss Residual Network, while the green curve shows the training loss of
feedforward network. Fig. a shows the training loss in predicting the value
function while Fig. b shows the training loss in gradients for feedforward
and residual network

a: Gradients computed by solver at infinite horizon

b: Gradients of Smooth Residual Network

c: Gradients of Feed forward Network

Fig. 9: Evaluation of the gradient approximation for the unicycle. (top)
true gradients of the underlying function computed by the solver. (mid)
gradients of Gauss residual network. (bottom) gradients when using a plain
feedforward network (no Gauss approximation). The underlying function
is V (X,T) where T = 1000 and X is the 3-dimensional state vector,
X = (x, y, θ). The two neural networks were trained for 50000 epochs on
100 samples generated by solver at horizon = 50.

shown on Fig. 9. Additionally, we benefit from being able to
make Gauss approximation of the Hessian, since computing
exact Hessians of neural network can become prohibitively
expensive when the number of hidden layers increase.

D. Comparision with PPO

We compare the accuracy and rate of convergence of
DVP against a classical actor-critic RL algorithm off the
shelf, which approximates the value as a side quantity when
computing the policy (critic network). To cope with the
requirement of the RL solver, we have consider for both
DVP and PPO a discounted version of the optimal control
problem considered until now. Fig. 10 shows the qualitative
comparision of the value functions predicted for pendulum,
cartpole and unicycle by DDP, DVP and PPO. PPO properly
captures the overall shape and the spread of the topology, but
overestimates it. This is to be expected, since policy gradient
methods often fail to guarantee anything about value function
as empirically established in [28].

Fig. 10: Comparison between the values estimated by DVP, PPO and the
ground truth for the unicycle. Differences between (left) ground truth and
DVP, (mid) ground truth and PPO and (right) DVP and PPO. PPO produces
a value approximation which is further to the ground truth than DVP.

a: DVP b: PPO

Fig. 11: The state trajectories predicted by DVP and PPO for unicycle. The
x-axis denotes the horizon in knots, while the y-axis shows how the state
vector of unicycle evolves. The goal is to reach the origin [0, 0, 0]

Fig. 11 shows the state trajectories computed by DVP and
PPO. We observe that the trajectories computed by DVP
are smoother than the trajectories output by PPO. From our
experience, PPO was also more sensitive to small changes,
either to the environment parameters (e.g discount factor) and
algorithm hyperparameters which limited the experiments we
have been able to carry out.

V. CONCLUSION

In this paper, we have proposed an algorithm to accurately
learn the value function of an optimal control problem. Our
contribution relies on a trajectory optimizer which produces
good estimates of the cost-to-go over a finite preview hori-
zon. We then leverage on supervised learning using (i) a
Sobolev loss and (ii) a particular network architecture that
we named Gauss residual network, to learn an accurate
approximation of the value function and its derivatives. We
can then use our value model to evaluate an approximation
of the value at the end of the horizon, and its derivatives. By
alternating between production of new optimal trajectories
and refinement of the value and its derivatives, we set up a
reinforcement loop which leads to a quick convergence to an
accurate value approximation. We have proposed a complete
evaluation of our method, on three typical control systems,
with more qualitative results in the video. We are currently
working toward using this approach on higher dimensional
systems such as manipulators. We see our algorithm as a first
step toward building a complete reinforcement learning al-
gorithm for the continuous domain, able to fully exploits the
derivatives of the simulator to reach superlinear convergence
rate.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski

et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” in Int. Conf. on Learning Representations, 2015.

[3] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning. PMLR, 2015, pp. 1889–1897.

[4] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and
S. Levine, “Meta-world: A benchmark and evaluation for multi-task
and meta reinforcement learning,” in Conference on Robot Learning.
PMLR, 2020, pp. 1094–1100.

[5] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[6] R. Strudel, A. Pashevich, I. Kalevatykh, I. Laptev, J. Sivic, and
C. Schmid, “Learning to combine primitive skills: A step towards ver-
satile robotic manipulation §,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 4637–4643.

[7] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” arXiv preprint
arXiv:1812.11103, 2018.

[8] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. Panne, “Learning
locomotion skills for cassie: Iterative design and sim-to-real,” in
Conference on Robot Learning. PMLR, 2020, pp. 317–329.

[9] M. Hutter, C. Gehring, A. Lauber, F. Gunther, C. D. Bellicoso,
V. Tsounis, P. Fankhauser, R. Diethelm, S. Bachmann, M. Blösch
et al., “Anymal-toward legged robots for harsh environments,” Ad-
vanced Robotics, vol. 31, no. 17, pp. 918–931, 2017.

[10] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[11] J. Hwangbo, J. Lee, and M. Hutter, “Per-Contact Iteration Method for
Solving Contact Dynamics,” IEEE Robotics and Automation Letters,
vol. PP, p. 1, 2018.

[12] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[13] A. Albu-Schäffer, C. Ott, and G. Hirzinger, “A unified passivity-
based control framework for position, torque and impedance control of
flexible joint robots,” The international journal of robotics research,
vol. 26, no. 1, pp. 23–39, 2007.

[14] N. Hogan, “Impedance control: An approach to manipulation: Part
i—theory,” Journal of Dynamic Systems Measurement and Control-
transactions of The Asme, vol. 107, pp. 1–7, 1985.

[15] F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wüthrich,
M. Naveau, V. Berenz, S. Heim, F. Widmaier, T. Flayols, J. Fiene,
A. Badri-Spröwitz, and L. Righetti, “An open torque-controlled mod-
ular robot architecture for legged locomotion research,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 3650–3657, 2020.

[16] B. Katz, J. Di Carlo, and S. Kim, “Mini cheetah: A platform for
pushing the limits of dynamic quadruped control,” in International
conference on robotics and automation (ICRA). IEEE, 2019, pp.
6295–6301.

[17] E. Dantec, R. Budhiraja, A. Roig, T. Lembono, G. Saurel, O. Stasse,
P. Fernbach, S. Tonneau, S. Vijayakumar, S. Calinon et al., “Whole
body model predictive control with a memory of motion: Experiments
on a torque-controlled talos,” in International conference on robotics
and automation (ICRA), 2021.

[18] S. Levine and V. Koltun, “Guided policy search,” in International
conference on machine learning. PMLR, 2013, pp. 1–9.

[19] N. Mansard, A. DelPrete, M. Geisert, S. Tonneau, and O. Stasse,
“Using a memory of motion to efficiently warm-start a nonlinear
predictive controller,” in International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 2986–2993.

[20] I. Mordatch and E. Todorov, “Combining the benefits of function
approximation and trajectory optimization.” in Robotics: Science and
Systems, vol. 4, 2014.

[21] I. Mordatch, N. Mishra, C. Eppner, and P. Abbeel, “Combining model-
based policy search with online model learning for control of physical
humanoids,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2016, pp. 242–248.

[22] I. Lenz, R. A. Knepper, and A. Saxena, “Deepmpc: Learning deep

latent features for model predictive control,” in Robotics: Science and
Systems. Rome, Italy, 2015.

[23] A. Tamar, G. Thomas, T. Zhang, S. Levine, and P. Abbeel, “Learning
from the hindsight plan—episodic mpc improvement,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2017, pp. 336–343.

[24] M. Zhong, M. Johnson, Y. Tassa, T. Erez, and E. Todorov, “Value
function approximation and model predictive control,” in 2013 IEEE
symposium on adaptive dynamic programming and reinforcement
learning (ADPRL). IEEE, 2013, pp. 100–107.

[25] B. Landry, H. Dai, and M. Pavone, “Seagul: Sample efficient adver-
sarially guided learning of value functions,” in Learning for Dynamics
and Control. PMLR, 2021, pp. 1105–1117.

[26] K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mordatch,
“Plan online, learn offline: Efficient learning and exploration via
model-based control,” in Int. Conf. on Learning Representations, 2019.

[27] D. Hoeller, F. Farshidian, and M. Hutter, “Deep value model predictive
control,” in Conference on Robot Learning, 2020.

[28] A. Ilyas, L. Engstrom, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph,
and A. Madry, “A closer look at deep policy gradients,” in Int. Conf
on Learning Representations, 2020.

[29] D. Q. Mayne, “Differential dynamic programming–a unified approach
to the optimization of dynamic systems,” in Control and Dynamic
Systems. Elsevier, 1973, vol. 10, pp. 179–254.

[30] E. Todorov and W. Li, “A generalized iterative lqg method for locally-
optimal feedback control of constrained nonlinear stochastic systems,”
in Proceedings of the 2005, American Control Conference, 2005.
IEEE, 2005, pp. 300–306.

[31] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud,
M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and
N. Mansard, “Crocoddyl: An efficient and versatile framework for
multi-contact optimal control,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 2536–2542.

[32] H. Son, J. W. Jang, W. J. Han, and H. J. Hwang, “Sobolev
training for the neural network solutions of pdes,” arXiv preprint
arXiv:2101.08932, 2021.

[33] L.-z. Liao and C. A. Shoemaker, “Advantages of differential dynamic
programming over newton’s method for discrete-time optimal control
problems,” Cornell University, Tech. Rep., 1992.

[34] W. M. Czarnecki, S. Osindero, M. Jaderberg, G. Świrszcz, and
R. Pascanu, “Sobolev training for neural networks,” in NIPS, 2017,
p. 4281–4290.

[35] T. M. Mitchell, S. B. Thrun et al., “Explanation-based neural network
learning for robot control,” Advances in neural information processing
systems, pp. 287–287, 1993.

[36] R. Masuoka, “Noise robustness of ebnn learning,” in International
Conference on Neural Networks (IJCNN-93-Nagoya, Japan), vol. 2,
1993, pp. 1665–1668.

[37] J.-W. Lee and J.-H. Oh, “Hybrid learning of mapping and its jacobian
in multilayer neural networks,” Neural computation, vol. 9, no. 5, pp.
937–958, 1997.

[38] J. B. Witkoskie and D. J. Doren, “Neural network models of potential
energy surfaces: Prototypical examples,” Journal of chemical theory
and computation, vol. 1, no. 1, pp. 14–23, 2005.

[39] S. Fleury, P. Soueres, J.-P. Laumond, and R. Chatila, “Primitives for
smoothing mobile robot trajectories,” IEEE transactions on robotics
and automation, vol. 11, no. 3, pp. 441–448, 1995.

[40] R. V. Florian, “Correct equations for the dynamics of the cart-
pole system,” Center for Cognitive and Neural Studies (Coneural),
Romania, 2007.

[41] R. Bellman, “Dynamic programming, princeton univ,” Pres, Princeton,
19S7, 1957.

[42] ——, “On the theory of dynamic programming,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 38,
no. 8, p. 716, 1952.

