
HAL Id: hal-03356261
https://hal.science/hal-03356261v2

Submitted on 3 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Value learning from trajectory optimization and Sobolev
descent: A step toward reinforcement learning with

superlinear convergence properties
Amit Parag, Sébastien Kleff, Léo Saci, Nicolas Mansard, Olivier Stasse

To cite this version:
Amit Parag, Sébastien Kleff, Léo Saci, Nicolas Mansard, Olivier Stasse. Value learning from tra-
jectory optimization and Sobolev descent: A step toward reinforcement learning with superlinear
convergence properties. International Conference on Robotics and Automation (ICRA 2022), May
2022, Philadelphia, United States. �hal-03356261v2�

https://hal.science/hal-03356261v2
https://hal.archives-ouvertes.fr

Value learning from trajectory optimization and Sobolev descent:
A step toward reinforcement learning with superlinear convergence properties

Amit Parag1,2,∗, Sébastien Kleff2,3, Léo Saci2, Nicolas Mansard1,2 and Olivier Stasse1,2

Abstract— The recent successes in deep reinforcement learn-
ing largely rely on the capabilities of generating masses of data,
which in turn implies the use of a simulator. In particular,
current progress in multi body dynamic simulators are under-
pinning the implementation of reinforcement learning for end-
to-end control of robotic systems. Yet simulators are mostly
considered as black boxes while we have the knowledge to
make them produce a richer information. In this paper, we
are proposing to use the derivatives of the simulator to help
with the convergence of the learning. For that, we combine
model-based trajectory optimization to produce informative
trials using 1st- and 2nd-order simulation derivatives. These
locally-optimal runs give fair estimates of the value function and
its derivatives, that we use to accelerate the convergence of the
critics using Sobolev learning. We empirically demonstrate that
the algorithm leads to a faster and more accurate estimation
of the value function. The resulting value estimate is used
in model-predictive controller as a proxy for shortening the
preview horizon. We believe that it is also a first step toward
superlinear reinforcement learning algorithm using simulation
derivatives, that we need for end-to-end legged locomotion.

I. INTRODUCTION

We consider the problem of computing the optimal control
policy in the continuous domain, with application to the
end-to-end control of polyarticulated robots, like torque-
controlled manipulator arms or legged robots.

Since the advent of deep reinforcement learning [1] and its
generalization to continuous domain [2], [3], robot control
has been recognized as one of the major challenges of
the domain [4]. On the one hand, research has targeted
advanced robot scenarios and sensor outputs [5], [6], often
relying on an underpinning low-level controller (impedance
or Cartesian controller). On the other hand, efforts have been
made to target more complex robots such as quadruped [7]
or biped [8], by focusing on a more accurate modeling of
dynamics [9] and a more advanced - stronger, robust, faster -
simulation of polyarticulated behavior [10], [11]. In parallel,
RL solvers have made great progress and are now more
stable [3] and faster to converge [12].

Yet solving end-to-end polyarticulated problem remains a
difficult challenge for generic RL solvers. Several appraoches
have been proposed to make their work easier. Acknowl-
edging for the improved capabilities of motion planner to
discover complex movement, guided policy search has been
used to bootstrap the reinforcement loop with locally optimal

1Artificial and Natural Intelligence Toulouse Institute, France
2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
3New York University, USA
∗corresponding author: aparag@laas.fr
This work has been supported by the the European project MEMMO

(GA-780684) and ANITI (ANR-19-P3IA-0004).

trajectories obtained from a trajectory optimizer [13]. The
trajectories can later be refined using the trained policy to
produce better demonstrations by warm-starting the trajec-
tory optimizer [14], or the policy and the demonstrations
be simultaneously optimized [15], [16]. These works show
the correlation between policy learning and trajectory opti-
mization, as optimal trajectories and optimal policies are two
ways of considering the solution of the optimal control (or
Markov decision) problem.

Reciprocally, several works have tried to take advantage of
this duality to learn a quantity that would help a trajectory
optimizer. In [17], a trajectory optimizer is helped with a
dedicated dynamic model learned on a specific task. In [18],
a dedicated cost model is learned to cope with the prohibitive
complexity of optimizing long-horizon trajectories. Shorten-
ing the trajectory horizon typically leads to observing the
importance of obtaining a good approximation of the value
function, both in trajectory optimization and policy learning.
It was originally proposed to learn the value as a proxy for
the cost corresponding to the end of the horizon [19]. While
a fair approximation of the value function can be obtained
offline by sampling long locally optimal trajectories, the
computation cost might become prohibitive when the state
space is large or requires clever sampling solutions [20].

Producing new optimal trajectories while exploiting a
previously optimized value approximation in a reinforcement
loop can be considered as an actor-critic formulation, where
the actor is optimally acting over an horizon: it can then be
shown that the prediction reduces the noise in learning the
value and speeds up the training [21]. As shown in [22],
deep policy gradients methods often fail to adhere to the
key primitives of reinforcement learning: the role of the
value function estimated by the critic is only marginal since
the learned value function does not accurately model the
underlying value function.

In this paper, we focus on learning the value function by
combining a trajectory optimizer and a supervised learning
phase using value approximation and its derivatives. Our
objective is to learn the value with a high accuracy, while
avoiding the need to extensively sample the state space. A
trajectory optimizer is first used to sample optimal trajecto-
ries over a short horizon to get a lower bound on the value
function. As we are using differential dynamic program-
ming [23]–[25], a particular instance of (direct shooting)
trajectory optimizer, we also get, for free, samples of the
derivative of the value (see Sec. II). We then train a neural
network to approximate the value and its derivative using a
Sobolev loss (see Sec. III). This particular loss accelerates

the convergence to a more accurate approximation, while
enabling better generalization despite sparse sampling. As a
side effect, it also provides an accurate way of evaluating
the approximate gradient of the value. As our trajectory
optimizer also demands the Hessian of the value, we propose
a particular network architecture, that we call Residual
network, which provides a fair approximation of the second
derivatives. We evaluate of our approach on three classical
control problems : inverted pendulum, cartpole and unicycle,
that are exhaustively investigated, and on a more demanding
demonstrator featuring a 7-dof manipulator arm.

II. RECURSIVE OPTIMALITY

A. Problem formulation and notations

While optimal control problem are best written with
continuous time and integrals, we directly consider here its
transcription into a time-discrete system with autonomous
dynamics:

x+ = f(x, u,Ω) (1)

where the next state, x+, and the current state, x, are living in
an n-dimensional vector space x ∈ X , (possibly representing
an element of a Lie group), and controls u ∈ U , with Ω a
parametrization of the environment where the system evolves
and f , the time independent dynamic function that governs
the state transition from the current state and control. The
goal in optimal control is to find pairs of trajectories X : t →
x(t) ∈ X and U : t → u(t) ∈ U that minimizes some cost
functional L(X,U). For a discrete system, the cost functional
can be written as :

L(X,U) =

+∞∑
k=0

l(xk, uk) (2)

where l(x, u) : X × U → R is the running cost. Therefore
given an initial state x0 and a time horizon T , aim of
optimal control is to find the pair of optimal state and control
trajectories X∗, U∗ that minimizes the cost functional.

We denote by V : x → V (x) ∈ R the value function, i.e.
the optimal value of L(X,U) when the trajectory X starts
from a given state x, and by π : x → π(x) ∈ U the optimal
policy.

B. Truncating the horizon

While we typically want to control the system during an
indefinite (infinite) horizon, finite computational resources
implies to shorten the horizon to a finite length T . The
infinite sum (2) is then truncated to:

L(X,U) =

T−1∑
k=0

l(xk, uk) + lf (xT) (3)

We define Vk as the cost-to-go, over the horizon T − k,
from a starting state x as :

VT−k(x) = min
U

T−1∑
j=k

l(xj , uj) + lf (xT) (4)

Recursive optimality can be obtained if the terminal cost
is chosen to be the value function. In that case, the problem
writes:

VT−k(x) = min
u

l(x, u) + VT−k−1(f(x, u)) (5)

The problem then becomes the infinite horizon problem but
can be solved with finite resources, given that V (x) can
be properly evaluated. In this particular case, the cost-to-
go is independent of the timestep and is equal to the value
function:

VT (x) = V (x), ∀T > 0

C. Differential Dynamic Programming

Differential dynamic programming (DDP) exploits the
recursive nature of Bellman Optimality Principle by rewriting
the optimal value function, Eq 3 with the terminal condition
VT (x) = lf (x). It proceeds by iteratively solving the optimal
control problem described in Sec II-A to find the local
solution by performing a backward pass to approximate
a quadratic fit of the value function around the current
candidate trajectory and a forward pass to compute a new
nominal trajectory based on the value function computed in
backward pass.

A consequence of the backward pass is that it reconstructs
a quadratic model of the value function along the horizon.
The solver then returns an evaluation of the cost-to-go and its
first and second order derivatives over the preview horizon.

DDP is a second order algorithm with superlinear conver-
gence rate. It requires at each iteration an evaluation of the
dynamic and cost function and their derivatives. In particular,
we need to provide the first and second order derivatives of
the terminal cost lf (xT).

D. Value at the horizon start and end

In the following, we will use an approximation of the
value function as a proxy to represent the truncated horizon
end. This implies that we should be able to evaluate an
approximation of the value function and its first and second
order derivatives at the end of the horizon. The solver will
then return a refined approximation of the value function at
the beginning of the horizon, and its derivatives. We will
now use these two properties to build our algorithm.

III. DIFFERENTIAL VALUE PROGRAMMING

A. Algorithm principles

1) Batch of trajectories and cost-to-go learning: We
propose an algorithm named Differential Value Programming
(DVP) that iteratively builds a better neural approximation
of the value function, V n

θ , where θ are the parameters of the
neural network at nth iteration.

The first iteration of DVP simply generates a batch of
optimal trajectories of horizon length T without any terminal
cost model, i.e. approximating the value function at the end
of the horizon by 0. We then learn the value function by su-
pervised learning, as explained with more details below. The
result of this first iteration is a neural network approximating
the cost-to-go for an horizon of T , denoted by V 0

θ

2) Iterative value learning: DVP then proceeds by itera-
tively building upon its estimates of value functions. In the
subsequent iterations, we replace the terminal cost functional
with the approximated value predicted by the neural network.
So, after the initial iteration is complete, we replace (3) with

Vn(x) = min
u

T−1∑
k=0

l(xk, uk) + V n−1
θ (xT) (6)

where n is the nth DVP iteration and V n−1
θ is the deep

neural network parameterized by θ representing the value
approximated in the previous iteration. Should each iteration
result in a perfect training, iteration n would lead to the
approximation of the cost-to-go for an horizon of (n+1).T
which would tend toward the global V as n increases.

B. Sobolev Regression

Classical regression invariably involves optimizing the
parameters of a deep neural network such that the error
between the learned function and the ground truth function
decreases. The premise of Sobolev learning, [26], is to use
the derivatives of the function to be approximated, such that
the derivatives of the network match the derivatives of the
learned function.

The loss function for our regression is then composed of
two terms:

lossf =

S∑
s=1

λ (m (xs | θ) , f (xs)) (7)

lossd =

S∑
s=1

D∑
d=1

λd

(
Dd

xm (xs | θ) , Dd
xf (xs)

)
(8)

where lossf penalizes the differences between the model and
the dataset, of S samples, with a norm λ (in our case the L2

norm), lossd penalizes the difference between the derivatives
of the model and the derivatives of the observations, and Dd

x

are the higher order derivatives evaluated at x (we stay at
order d = 1 in our implementation) for a norm λd (also L2

in our implementation).
Sobolev learning has been shown to lead to better gener-

alization in robotics and reinforcement learning [27], albeit
at a higher computation cost [28], as it constrains training
by forcing neural networks to fit a target slope. However,
encoding the target derivative information in neural networks
has been shown, empirically, to increase robustness against
noise as proven in [29] and mitigate the problem of increased
computation cost by being more data efficient [30].

C. Evaluating second-order derivatives

As mentioned above, Sobolev learning allows us to obtain
a more accurate convergence despite a sparser dataset, and
also regularizes the derivatives of the model. This second
point is important as these derivatives are needed by the DDP,
as explained in Sec. II. Yet DDP also requires the Hessian of
the value function. While Sobolev would theoretically benefit
from second-order information, which is also available in
practice from the DDP, the evaluation of the second-order

loss (8) and the backpropagation of its gradient are not
reasonable to evaluate.

We rather propose to set up a particular network architec-
ture, called Residual network architecture, that we demon-
strate to properly regularize the training of the Hessian. Our
network model reads:

m(x|θ) = r(x|θ)2 (9)

where r(x|θ) is a vector-tailed network, called the residual
network, whose output is squared and summed to produce
the final value. The gradient of this model is then simply:

D1
xm(x|θ) = 2D1

xr(x|θ)T r(x|θ)

where D1
xm and D1

xr are the gradient of m and Jacobian of
r respectively. The Hessian of m is approximated as:

D2
xm(x|θ) ≈ 2D1

xr(x|θ)TD1
xr(x|θ)

This approximation is known as the Gauss approximation,
[31], and leads to the famous superlinear algorithm Gauss-
Newton (which is typically implemented in most of DDP
frameworks). We can interpret this network as computing the
value as the square of a latent vector r, and approximating
the second order derivatives of the value as the derivatives
of the network tail.

We will show empirically that this particular model,
combined with first-order Sobolev learning, leads to an
accurate, robust and efficient representation of the value
function, which perfectly suits to the requirements of the
DDP algorithm.

IV. EMPIRICAL EVALUATION

In this section, we report an empirical analysis of the
performance of DVP on simple toy problems.

A. Experimental setup

We propose to benchmark our approach on 3 systems
by using as a baseline (ground truth) the arbitrarily good
approximations of the value function that can be obtained
by sampling large datasets of long optimal trajectories in
various configurations. We used the following problems:

a) Unicycle: The unicycle [32] features a kinematic
model of evolving on the 2D horizontal plane either driving
forward or turning on the spot. The 3 dimensional configura-
tion vector q = (x, y, θ)T and the control u = (v, ω) includes
the unconstrained longitudinal and angular velocities.

The task is to reach the goal position q = (0, 0, 0)T while
minimizing the residual sum of errors:

L = ||w1 ∗ q||2 + ||w2 ∗ u||2 (10)

b) Cartpole: A cartpole1 is a dynamical system where
an underactuated pole is attached on top of a 1D actuated
cart. The task is to balance the pole around its unstable
unstable equilibrium (upper position) by controlling the

1We use the Open Ai gym, [33], implementation of the dynamical
model.

Fig. 1: Convergence of DVP using relative criteria i.e Bellman residuals
(left) and absolute criteria i.e difference between value function at each
iteration and ground truth (right)

horizontal forces acting on the cart [34]. The cost functional
to be minimized is:

L = w1||x||2 + w2||u||2 (11)

where x = (q, v) is the state and the control u is force
exerted on the cart.

c) Simple Pendulum: The inverted pendulum1 swing-up
problem consists in bringing the pendulum from a random
position to its upper equilibrium and maintaining it upright.
The cost functional we use is identical to the cartpole cost
functional, with u representing the torque applied about the
rotation axis of the pendulum.

In our experiments, we empirically establish baselines
of DVP. Concretely, we aim to quantify the convergence
properties of DVP and the influence of Sobolev training.
In order to characterize the convergence properties of our
algorithm, we use a validation dataset as a substitute for
the value function of the infinite horizon problem. This can
be done, albeit at a high computational cost, by solving
the optimal control problem over extremely long horizons
sufficient for reaching steady state from any starting point.

B. Convergence of DVP

1) Overall convergence: The difference between the value
function at each iteration and ground truth with respect to
DVP iterations is depicted in Fig. 1. For the pendulum case,
just 1 iteration is sufficient for DVP to achieve convergence.
For cartpole, DVP takes a few more iterations to converge to
a good enough approximation of the global value function.
For systems with regions of local minima like unicycle,
achieving convergence requires relatively more iterations.

We used the idea of Bellman residual, [35], to establish
the convergence criteria of DVP. It is easy to see that as the
value function estimates come closer to the optimal value
function, the difference in successive estimates decreases.
Residuals between two successive value functions can be a
good indication of prediction. Upon or near convergence, the
higher iterations of DVP should not show much difference
between their behaviors.

2) Influence of the horizon length: We discuss two results
regarding the impact of the initial horizon length T . Short
horizons lead to important differences between the cost-to-go
and the value, hence to a poor approximation of the value
in early iterations of DVP. This clearly appears in Fig. 2,

Fig. 2: Importance of horizon Length. (left) State trajectories computed by
the solver with the neural value proxy V N

θ , for T = 20 to 100. The goal
position for the unicycle, with the configuration vector q = [q0 = x, q1 =
y, q2 = θ], is the origin, [0, 0, 0], in cartesian space. The trajectory in red is
the reference ground truth state trajectory computed by the solver at horizon
1000. (right) State trajectories computed by the solver without the terminal
value proxy, for different horizons

Fig. 3: Evolution of the difference between ground truth value function and
different iterations, for short horizons (left) and long horizons (right), shown
here for unicycle.

where the truncation to small horizon leads to trajectories
far from the optimum. Once the value is properly estimated,
the bundle of trajectories converges closer to the optimum
(on the unicycle, the convergence is not perfect despite an
accurate convergence to the value, due to nonholonomy).

Consequently, DVP converges faster when T increases.
For the considered system, the typical duration of an episode
(until system steady state) is 150, and DVP shows proper
convergences for T ≥ 40, see Fig. 3. For smaller T ,
the convergence is slower or even fails to reach a global
optimum. This is not surprising and can be mitigated by
increasing the dataset size.

3) Robust convergence: We empirically establish the sta-
bility and robustness of our algorithm by forcing DVP to
learn a dataset with artificially biased terminal cost lfxT

in the first iteration. We find that DVP requires only a
few iterations to learn the ground truth. Fig. 4 shows the
convergence of DVP under various levels of initialization
noise.

C. Influence of Sobolev learning

1) Importance of the Sobolev loss: Our experiments with
Sobolev learning corroborate the generalization capabilities
and confirm that Sobolev regression requires fewer training
epochs than classical regression. Sobolev training requires
only 50 samples to achieve a 10−3 accuracy on a validation

Fig. 4: Evolution of the algorithm under incorrect initialization. The y-axis
measures the mean squared difference between each iteration and ground
truth value function.

Fig. 5: Sobolev training Loss comparison for Residual Network and Feed
Forward Network. The training loss in predicting value is shown in left. The
training loss in gradients for feedforward and residual network is shown on
the right.

dataset.
2) Residual network: For our experiments, we use a 3

layered Residual network with hyperbolic tangent as an
activation function and 64 units in each hidden layers. The
final residual layer contains 3 units. Empirically, we find that
the advantage of modeling the value function as a squared
residual leads to faster convergence during Sobolev training.
The gradients of residual network are also more accurate
than those of feed forward network as shown on Fig. 6.

D. Comparison with PPO

We compare the accuracy and rate of convergence of
DVP against a classical actor-critic RL algorithm off the
shelf, which approximates the value as a side quantity when
computing the policy (critic network). To cope with the
requirement of the RL solver, we have consider for both
DVP and PPO a discounted version of the optimal control
problem considered until now.

Fig. 7 shows the qualitative comparison of the value
functions predicted for pendulum, cartpole and unicycle by
DDP, DVP and PPO. PPO properly captures the overall shape
and the spread of the topology, but overestimates it. This
is to be expected, since policy gradient methods often fail
to guarantee anything about value function as empirically
established in [22].

Fig. 8 shows the state trajectories computed by DVP and
PPO. We observe that the trajectories computed by DVP are
smoother than the trajectories output by PPO.

From our experience, PPO was also more sensitive to
small changes, either to the environment parameters (e.g dis-
count factor) and algorithm hyperparameters which limited
the experiments we have been able to carry out.

a: Gradients computed by solver at infinite horizon

b: Gradients of Residual Network

c: Gradients of Feed forward Network

Fig. 6: Evaluation of the gradient approximation for the unicycle. (top) true
gradients of the underlying function computed by the solver. (mid) gradients
of Residual network. (bottom) gradients when using a plain feedforward
network (no Gauss approximation). The two neural networks were trained
for 50000 epochs on 100 samples generated by solver at horizon = 50

Fig. 7: Comparison between the values estimated by DVP, PPO and the
ground truth for the unicycle. Differences between (left) ground truth and
DVP, (mid) ground truth and PPO and (right) DVP and PPO. PPO produces
a value approximation which is further to the ground truth than DVP.

a: DVP b: PPO

Fig. 8: The state trajectories predicted by DVP and PPO for unicycle. The x-
axis denotes the time horizon in knots, while the y-axis shows the evolution
of the configuration vector, q, of unicycle. The goal is to reach the origin
[0, 0, 0]

Fig. 9: End Effector position, pEE, and velocity vEE in cartesian
coordinates for DVP (orange) and ground truth (blue)

V. APPLICATION TO A ROBOT MANIPULATOR

In this section, we show the scaling of our algorithm. We
consider a 7-dof manipulator, controlled in torque, where the
robot state x = (q, q̇) concatenates at the joint configuration
and velocity and u = Zq are the joint torques. The dynamics
are computed using Pinocchio, [36], while policy trials are
validated with Bullet [37].

We formulate the optimal control problem as a static End
Effector (EE) pose reaching ocp task. We use a quadratic
cost on the EE translation and state limits. Additionally, we
regularize the state and torque controls.

The primary feature of DVP is that as iterations increase,
the approximated value function asymtotes to global time
independent value function. So, when used as a proxy for
terminal cost functional, DVP tends to drive the locally
optimal solver toward globally optimal solution. This im-
mediately constrains the corresponding trajectories to sat-
isfy the Hamilton-Jacobi-Bellman criteria of optimal sub-
structures: sub-solutions of an indefinite horizon optimal
control problem should also be optimal solutions to the
corresponding definite horizon subproblems. We can see this
quite easily in Fig 9 for the EE trajectory computed by the
solver with approximated value function as terminal proxy
computed at horizon 200 (in orange) and the ground truth
EE trajectory computed at horizon 1000 (shown in blue). The
EE trajectories for truncated horizon problem are co-incident
with the infinite horizon trajectory.

The trajectories computed with DVP and solver, for trun-
cated horizon, also maintain the recursive optimality and
stability when used online in simulation. The DVP terminal
cost can also serve as a highly stable anchor that allows
for quick re-planning online under external disturbances. Fig
11 shows the evolution of mean squared errors between EE
trajectories computed by solver-DVP and solver at infinite
horizon, when external perturbations are injected in the
system.

Finally, in Fig 10 we show the generalizability of
our algorithm to compute optimal trajectories for dif-
ferent starting configurations. We approximate the ter-
minal value function with the 10th iteration of DVP.

Fig. 10: EE trajectories for multiple starting configurations computed by
solver with terminal neural cost functional.

Fig. 11: Evolution of mean squared errors when disturbances are externally
injected in Bullet.

A more comprehensive rendering of PyBullet simulation
can be found at https://gepettoweb.laas.fr/
articles/amit_icra_22.html

VI. CONCLUSION

In this paper, we have proposed an algorithm to accurately
learn the value function of an optimal control problem. Our
contribution relies on a trajectory optimizer which produces
good estimates of the cost-to-go over a finite preview hori-
zon. We then leverage on supervised learning using (i) a
Sobolev loss and (ii) a particular network architecture that we
named Residual network, to learn an accurate approximation
of the value function and its derivatives. We can then
use our value model to evaluate an approximation of the
value at the end of the horizon, and its derivatives. By
alternating between production of new optimal trajectories
and refinement of the value and its derivatives, we set up
a reinforcement loop which leads to a quick convergence
to an accurate value approximation. We have proposed a
complete evaluation of our method, on three typical classic
control and a more demanding system. We see our algorithm
as a first step toward building a complete reinforcement
learning algorithm for the continuous domain, able to fully
exploits the derivatives of the simulator to reach superlinear
convergence rate.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, 2015.

[2] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in International Conference on Learning Representations.
ICLR, 2015.

[3] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning. ICML, 2015.

[4] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and
S. Levine, “Meta-world: A benchmark and evaluation for multi-task
and meta reinforcement learning,” in Conference on Robot Learning.
CoRL, 2020.

[5] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, 2016.

[6] R. Strudel, A. Pashevich, I. Kalevatykh, I. Laptev, J. Sivic, and
C. Schmid, “Learning to combine primitive skills: A step towards
versatile robotic manipulation,” in IEEE International Conference on
Robotics and Automation. ICRA, 2020.

[7] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” in Robotics:
Science and Systems XV. RSS, 2019.

[8] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. Panne, “Learning
locomotion skills for cassie: Iterative design and sim-to-real,” in
Conference on Robot Learning. CoRL, 2020.

[9] M. Hutter, C. Gehring, A. Lauber, F. Gunther, C. D. Bellicoso,
V. Tsounis, P. Fankhauser, R. Diethelm, S. Bachmann, M. Blösch
et al., “Anymal-toward legged robots for harsh environments,” Ad-
vanced Robotics, vol. 31, no. 17, 2017.

[10] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in IEEE International Conference on Intelligent
Robots and Systems. IROS, 2012.

[11] J. Hwangbo, J. Lee, and M. Hutter, in Per-Contact Iteration Method
for Solving Contact Dynamics. RAL, 2018.

[12] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International Conference on Machine
Learning. ICML, 2016.

[13] S. Levine and V. Koltun, “Guided policy search,” in International
Conference on Machine Learning. ICML, 2013.

[14] N. Mansard, A. DelPrete, M. Geisert, S. Tonneau, and O. Stasse,
“Using a memory of motion to efficiently warm-start a nonlinear
predictive controller,” in IEEE International Conference on Robotics
and Automation. ICRA, 2018.

[15] I. Mordatch and E. Todorov, “Combining the benefits of function
approximation and trajectory optimization.” in Robotics: Science and
Systems, vol. 4. RSS, 2014.

[16] I. Mordatch, N. Mishra, C. Eppner, and P. Abbeel, “Combining
model-based policy search with online model learning for control of
physical humanoids,” in IEEE International Conference on Robotics
and Automation. ICRA, 2016.

[17] I. Lenz, R. A. Knepper, and A. Saxena, “Deepmpc: Learning deep
latent features for model predictive control,” in Robotics: Science and
Systems. RSS, 2015.

[18] A. Tamar, G. Thomas, T. Zhang, S. Levine, and P. Abbeel, “Learn-
ing from the hindsight plan—episodic mpc improvement,” in IEEE
International Conference on Robotics and Automation. ICRA, 2017.

[19] M. Zhong, M. Johnson, Y. Tassa, T. Erez, and E. Todorov, “Value
function approximation and model predictive control,” in Symposium
on Adaptive Dynamic Programming and Reinforcement Learning.
IEEE, 2013.

[20] B. Landry, H. Dai, and M. Pavone, “Seagul: Sample efficient adver-
sarially guided learning of value functions,” in Learning for Dynamics
and Control. PMLR, 2021.

[21] D. Hoeller, F. Farshidian, and M. Hutter, “Deep value model predictive
control,” in Conference on Robot Learning. CoRL, 2020.

[22] A. Ilyas, L. Engstrom, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph,
and A. Madry, “A closer look at deep policy gradients,” in Interna-
tional Conference on Learning Representations. ICLR, 2020.

[23] D. Q. Mayne, “Differential dynamic programming–a unified approach
to the optimization of dynamic systems,” in Control and Dynamic
Systems. Elsevier, 1973, vol. 10.

[24] E. Todorov and W. Li, “A generalized iterative lqg method for locally-
optimal feedback control of constrained nonlinear stochastic systems,”
in Proceedings of the American Control Conference, 2005.

[25] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud,
M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and
N. Mansard, “Crocoddyl: An efficient and versatile framework
for multi-contact optimal control,” in International Conference on
Robotics and Automation. ICRA, 2020.

[26] W. M. Czarnecki, S. Osindero, M. Jaderberg, G. Świrszcz, and
R. Pascanu, “Sobolev training for neural networks,” in Advances in
Neural Information Processing Systems. Neural IPS, 2017.

[27] T. M. Mitchell, S. B. Thrun et al., “Explanation-based neural net-
work learning for robot control,” in Advances in Neural Information
Processing Systems. Neural IPS, 1993.

[28] R. Masuoka, “Noise robustness of ebnn learning,” in International
Conference on Neural Networks, vol. 2, 1993.

[29] J.-W. Lee and J.-H. Oh, “Hybrid learning of mapping and its jacobian
in multilayer neural networks,” Neural computation, vol. 9, no. 5,
1997.

[30] J. B. Witkoskie and D. J. Doren, “Neural network models of potential
energy surfaces: Prototypical examples,” Journal of chemical theory
and computation, vol. 1, no. 1, 2005.

[31] S. Wright, J. Nocedal et al., “Numerical optimization,” Springer
Science, vol. 35, 1999.

[32] S. Fleury, P. Soueres, J.-P. Laumond, and R. Chatila, “Primitives for
smoothing mobile robot trajectories,” Transactions on Tobotics and
Automation, vol. 11, no. 3, 1995.

[33] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[34] R. V. Florian, “Correct equations for the dynamics of the cart-pole
system,” Center for Cognitive and Neural Studies, 2007.

[35] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731,
1966.

[36] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The pinocchio c++ library: A fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in IEEE International Symposium on System
Integration (SII). SICE, 2019.

[37] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2021.

